CN1270920A - 碳毫微管的形成方法 - Google Patents

碳毫微管的形成方法 Download PDF

Info

Publication number
CN1270920A
CN1270920A CN00106211A CN00106211A CN1270920A CN 1270920 A CN1270920 A CN 1270920A CN 00106211 A CN00106211 A CN 00106211A CN 00106211 A CN00106211 A CN 00106211A CN 1270920 A CN1270920 A CN 1270920A
Authority
CN
China
Prior art keywords
tube
carbon nanotubes
plasma
layer
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00106211A
Other languages
English (en)
Other versions
CN1174916C (zh
Inventor
张震
郑皙在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jim Xicui company
Original Assignee
Japan Into Connaught Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020000019559A external-priority patent/KR100335383B1/ko
Application filed by Japan Into Connaught Tektronix Corp filed Critical Japan Into Connaught Tektronix Corp
Publication of CN1270920A publication Critical patent/CN1270920A/zh
Application granted granted Critical
Publication of CN1174916C publication Critical patent/CN1174916C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种容易通过高密度等离子体形成经纯制的碳毫微管的方法,由该碳毫微管中已除去石墨相或碳颗粒。以1011cm-3或更高的等离子体密度使用等离子体化学气相沉积法在基底上生长碳毫微管层。碳毫微管的形成方法包括:通过等离子体沉积在基底上生长碳毫微管层直至预定的厚度;通过等离子体蚀刻纯制碳毫微管;以及重复碳毫微管的生长和纯制。在等离子体蚀刻时,使用包含卤素的气体作为源气体,例如四氟化碳气体。

Description

碳毫微管的形成方法
本发明涉及碳毫微管的形成方法,更具体而言是涉及使用等离子体来生长和纯制碳毫微管。
碳是包括人在内的所有生物的最重要的组成元素,其与氧、氢、氮等结合,而且具有独特的晶体结构,包括钻石、石墨、富勒烯和碳毫微管。具体而言,碳毫微管是指生长有单壁或多个壁的螺旋管状结构,其可通过卷绕由多个六方体形成的片材而形成的,而所述片材是通过各碳原子结合三个相邻碳原子形成的。碳毫微管的直径在几毫微米至几百毫微米之间的数量级上。根据螺旋管的卷绕形状和直径,碳毫微管有类似于金属作为导体或者作为半导体的功能。同样,其具有预定长度的中空结构使得产生良好的机械、电和化学性质,因此碳毫微管可作为场发射装置、氢容器和可充电电池的电极。
最开始是Sumio Iijima在题目为“石墨碳的螺旋微管(HelicalMicrotubules of Graphitic Carbon),,的文章中(Nature,第354卷,1991年11月7日,第56-58页)发现并报道了在两个石墨棒之间通过电弧放电产生的碳毫微管。该技术通常用于制造碳毫微管,但是相对于最终产物,纯碳毫微管的产率仅为约15%。因此,对于特殊的装置应用必须进行复杂的纯制过程。
其他常规制造碳毫微管的方法描述于Michiko Kusunoki的题目为“通过升华分解碳化硅而自组的外延碳毫微管膜(Epitaxial Carbon NaotubeFilm Self-organized by Sublimation Decomposition of Silicon Carbide)”的文章中(Appl.Phys.Lett.,第71卷,2620页,1977年),其是在高温下通过用激光照射石墨或碳化硅来制造碳毫微管。在该情况下,碳毫微管是在约1200℃或更高的温度下由石墨以及在约1600-1700℃下由碳化硅制成的。但是,该方法也需要多个纯制步骤,并增加成本。另外,该方法在大装置应用时有困难。
W.Z.Li等人在题目为“直线排列的碳毫微管的大规模合成(Large-Scale Synthesis of Aligned Carbon Nanotubes)”的文章中(Science,第274卷,1996年12月6日,1701-1703页)报道了通过热分解烃系列气体由化学气相沉积(CVD)制造碳毫微管的方法。该技术仅适用于不稳定的气体,如乙炔或苯。例如,该技术不能使用甲烷(CH4)来制造碳毫微管。
本发明的目的是提供一种形成碳毫微管的方法,其中使用高密度等离子体生长高密度的碳毫微管。
本发明的另一个目的是提供一种形成碳毫微管的方法,其中碳毫微管是通过使用高密度等离子体除去石墨或碳颗粒来纯制碳毫微管,使得碳毫微管可容易地高密度生长。
为达到本发明的第一个目的,提供一种形成碳毫微管的方法,其中以1011cm-3或更高的密度使用等离子体化学气相沉积法在基底上生长碳毫微管。优选的是,基底是其上形成有催化金属层的无定形硅或聚硅基底。在碳毫微管层的生长过程中,可使用烃系列气体作为等离子体源气体,基底的温度可在600-900℃范围内,而压力可在10-1000mTorr范围内。
为达到本发明的第二个目的,提供一种形成碳毫微管的方法,其包括通过等离子体沉积在基底上生长碳毫微管层,直至具有预定的厚度。接下来,通过等离子体蚀刻纯制碳毫微管。然后重复碳毫微管的生长和纯制。
优选的是,生长碳毫微管层是在1011cm-3或更高的高等离子体密度下通过等离子体化学气相沉积法来进行的。在纯制碳毫微管层的过程中,可使用含卤素气体或含氧气体作为用于蚀刻的等离子体源气体。
根据本发明,通过用高密度等离子体分解稳定的CH4气体可生长高密度的碳毫微管。同样,可通过重复碳毫微管的生长和纯制过程容易地形成高纯度的碳毫微管。
参考附图更详细地说明优选的实施方案,本发明的以上目的和优点由此将更为明显,在附图中:
图1是显示用于形成根据本发明之优选实施方案的碳毫微管的基底的截面图;
图2-6是说明形成根据本发明之优选实施方案的碳毫微管的各个阶段的截面图;
图7是在本发明的优选实施方案中形成的碳毫微管平面的扫描电子显微(SEM)图象;
图8是在本发明的优选实施方案中形成的碳毫微管的垂直截面的SEM图象;
图9是在本发明的优选实施方案中形成的碳毫微管的透射电子显微(TEM)图象;
图10是在本发明的优选实施方案中形成的碳毫微管经放大的TEM图象;以及
图11是比较在本发明的优选实施方案中形成的碳毫微管与常规方法形成的碳毫微管的场发射性质的图。
以下将参考附图更为完全地描述本发明,其中显示了本发明的优选实施方案。但是,本发明还可有许多不同的形式,而且并不仅限于在此所述的实施方案。这些实施方案的提供完全是为了使公开更充分,并使本领域技术人员更好地理解本发明的概念。
参考图1,其示出了用于形成根据本发明之优选实施方案的碳毫微管的基底。在预定的基底11上顺序地形成硅薄膜12和催化金属层13。基底11是刚性绝缘基底,其能够耐受随后的等离子体处理。在本实施方案中,使用玻璃基底,其使得在其上容易地沉积硅薄膜12。硅薄膜12是由无定形硅或聚硅形成的。催化金属层13可由过渡金属如镍、钴和铁以及它们的合金形成。
在本实施方案中,在基底11上沉积无定形硅至几百—几千埃的厚度,然后在其上沉积镍至几十—几百埃的厚度。当由无定形硅形成硅薄膜12并随后在600℃或更高的温度下进行如图2所示的等离子体沉积处理时,其上沉积的镍扩散进无定形硅薄膜12中,这产生了如图2所示的金属诱导结晶化的聚硅薄膜14。金属扩散进无定形硅薄膜中有助于无定形硅薄膜的结晶,而且在碳毫微管形成过程中无需其他步骤。同样,在聚硅薄膜的表面上存在相当量的镍,其在金属诱导结晶化中始终存在,并在随后的过程中对于生长碳毫微管起到催化金属的作用。
然后在催化金属层13上生长碳毫微管层。图2-6是说明形成根据本发明之优选实施方案的碳毫微管的各个阶段的截面图。
首先参考图2,将具有催化金属层13的基底11放置在等离子体化学气相沉积装置中,以生长碳毫微管层15。在本实施方案中,使用能够通过施用放射频率(RF)功率来产生高密度等离子体的电感耦合等离子体装置(ICP)。用于生长碳毫微管层15的沉积等离子体源气体18可以是包括碳原子的烃系列气体,如乙炔或苯。在本实施方案中,使用甲烷(CH4),而且流速为10sccm。此时,以10sccm的流速一起供应氦(He)。对于生长碳毫微管层15,RF功率保持在1kW,基底11的温度保持在600-900℃,而装置的内压力保持在10-1000mTorrr。为促进碳毫微管层15的生长反应,可添加氮(N2)气体或氢(H2)气体。
在本实施方案中,沉积等离子体18保持在1011cm-3的高密度下,而碳毫微管层15生长至范围是3-300nm的希望厚度。碳毫微管层15的厚度随沉积时间的增加而增加,而沉积时间可在几秒—几百秒的范围内变化。在等离子体沉积模式中,也可在生长碳毫微管层15的过程中在碳毫微管的端部或侧壁上形成石墨相或无定形碳颗粒,使得纯碳毫微管的密度非常低。
如前所述,在基底11上形成有无定形硅薄膜12和催化金属层13时,催化金属在生长碳毫微管层15的过程中扩散进无定形硅层12中,产生金属诱导结晶化的聚硅层14,在该层上保留预定量的催化金属。
然后参考图3,在改变等离子体化学气相装置的条件后,即、从等离子体沉积模式转变为等离子体蚀刻模式后,在生长碳毫微管层15的过程中形成的石墨相或无定形碳颗粒被蚀刻掉,以纯制碳毫微管层15,并产生经纯制的碳毫微管层17(1)。在转变为等离子体蚀刻模式的模式转换之前,用氮气或惰性气体彻底清洗等离子体化学气相沉积装置。等离子体蚀刻的处理条件设定成基本上与图2所示的等离子体沉积模式相同,但等离子体源气体的种类不同。
用于等离子体蚀刻模式的等离子体源气体可以是包含卤素元素如F、Cl或Br的气体或者含氧的气体。在本实施方案中,使用含氟的气体,例如四氟化碳(CF4)。通过与碳离子反应,由四氟化碳气体分离出来的氟离子产生高度挥发性的氟化碳系列气体(CFn)。离子化的氟易于与从石墨相或无定形碳颗粒中分解的碳离子反应,因为与碳毫微管层15相比,所述碳颗粒的结合力更低,使得石墨相或无定形碳颗粒能够被高蚀刻选择性地由碳毫微管中除去。
现参考图4,图3中所示的等离子体蚀刻模式转变为等离子体沉积模式。在此,清洗等离子体化学气相沉积装置,以便完全从该装置中除去氟离子。等离子体沉积模式在与图3所示相同的条件下进行等离子体沉积模式,这在经纯制的碳毫微管层17(1)上产生另一个碳毫微管层15。
参考图5,图4的等离子体沉积模式转变为等离子体蚀刻模式。在此,彻底清洗等离子体化学气相沉积装置。在与图3所示相同的条件下进行等离子体蚀刻模式,产生另一个经纯制的碳毫微管层17(2)。
参考图6,重复n次以上所述的等离子体沉积模式和等离子体蚀刻模式。根据最终碳毫微管层的厚度来适当地确定重复次数。
图7是在本发明之优选实施方案中形成的碳毫微管平面的扫描电子显微(SEM)图象。图8是在本发明之优选实施方案中形成的碳毫微管在不同放大倍数时的垂直截面的SEM图象。如图8所示,碳毫微管很好地在基底上排成一行。
图9是在本发明之优选实施方案中形成的碳毫微管的透射电子显微(TEM)图象。在图9中示出了高度缠绕的丝。图10是在本发明之优选实施方案中形成的碳毫微管经放大的TEM图象。在图10中,单壁碳毫微管非常高密度地缠绕成束。
图11是比较在本发明的优选实施方案中形成的碳毫微管与常规方法形成的碳毫微管的场发射性质的图。常规方法是指连续生长碳毫微管层的技术,与本发明不同,其没有交替地使用等离子体沉积模式和等离子体蚀刻模式。测定单位面积为1cm2的场发射电极的场发射性质。从图11中可以得出以下结论:通过从碳毫微管的尖部或侧壁上除去石墨相或无定形碳颗粒来纯制碳毫微管能够在低电场下得到高电流发射。
根据本发明形成碳毫微管的方法可容易地在高密度等离子体条件下生长高密度的碳毫微管,其使用例如甲烷气体作为源气体。另外,在生长碳毫微管的过程中形成的石墨相或无定形碳颗粒可容易地通过重复等离子体沉积模式和等离子体蚀刻模式来除去,其产生具有良好场发射性质的碳毫微管。
虽然已参考优选实施方案具体地表示和描述了本发明,但本领域技术人员应理解的是,在不偏离本发明的实质和范围的情况下还可对其形式和细节进行各种的改变,而本发明的范围应由所附的权利要求书来限定。

Claims (13)

1、一种形成碳毫微管的方法,其中,以1011cm-3或更高的等离子体密度使用等离子体化学气相沉积法在基底上生长碳毫微管层。
2、如权利要求1所述的方法,其中,所述基底是其上形成有催化金属层的无定形硅或聚硅基底。
3、如权利要求1所述的方法,其中,在碳毫微管层的生长过程中,使用烃系列气体作为等离子体源气体,基底的温度在600-900℃范围内,而压力在10-1000mTorr范围内。
4、一种形成碳毫微管的方法,其包括以下步骤:
通过等离子体沉积在基底上生长碳毫微管层,直至具有预定的厚度;
通过等离子体蚀刻纯制碳毫微管;以及
重复碳毫微管的生长和纯制。
5、如权利要求4所述的方法,其中,生长碳毫微管层是在1011cm-3或更高的高等离子体密度下通过等离子体化学气相沉积法来进行的。
6、如权利要求4所述的方法,其中,所述基底是其上形成有催化金属层的无定形硅或聚硅基底。
7、如权利要求4所述的方法,其中,在碳毫微管层的生长过程中,使用烃系列气体作为等离子体源气体,基底的温度在600-900℃范围内,而压力在10-1000mTorr范围内。
8、如权利要求4所述的方法,其中,在纯制碳毫微管层的过程中,使用含卤素的气体作为用于蚀刻的等离子体源气体。
9、如权利要求8所述的方法,其中,在纯制碳毫微管层的过程中,使用含氟的气体作为用于蚀刻的等离子体源气体。
10、如权利要求9所述的方法,其中,在纯制碳毫微管层的过程中,使用四氟化碳(CF4)气体作为用于蚀刻的等离子体源气体。
11、如权利要求4所述的方法,其中,在纯制碳毫微管层的过程中,使用含氧的气体作为用于蚀刻的等离子体源气体。
12、如权利要求4所述的方法,其中,在生长碳毫微管的过程中,碳毫微管层的厚度一次生长至厚度为3-300nm。
13、如权利要求6所述的方法,其中,所述碳毫微管层生长在金属诱导结晶化的聚硅层上,该聚硅层是通过沉积在无定形硅基底上的催化金属的扩散而由无定形硅基底转变的。
CNB001062115A 1999-04-21 2000-04-21 碳毫微管的形成方法 Expired - Fee Related CN1174916C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR14306/1999 1999-04-21
KR19990014306 1999-04-21
KR1020000019559A KR100335383B1 (ko) 1999-04-21 2000-04-14 탄소 나노튜브의 제조방법
KR19559/2000 2000-04-14

Publications (2)

Publication Number Publication Date
CN1270920A true CN1270920A (zh) 2000-10-25
CN1174916C CN1174916C (zh) 2004-11-10

Family

ID=26634991

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001062115A Expired - Fee Related CN1174916C (zh) 1999-04-21 2000-04-21 碳毫微管的形成方法

Country Status (6)

Country Link
US (1) US6331209B1 (zh)
EP (1) EP1046613B1 (zh)
JP (1) JP3484441B2 (zh)
CN (1) CN1174916C (zh)
AT (1) ATE288877T1 (zh)
DE (1) DE60017968T2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891780B (zh) * 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
CN103582609A (zh) * 2011-05-10 2014-02-12 国立大学法人静冈大学 碳纳米管的制造方法和制造装置

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582673B1 (en) 2000-03-17 2003-06-24 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
US7879308B1 (en) 2000-03-17 2011-02-01 University Of Central Florida Research Foundation, Inc. Multiwall carbon nanotube field emitter fabricated by focused ion beam technique
US7847207B1 (en) 2000-03-17 2010-12-07 University Of Central Florida Research Foundation, Inc. Method and system to attach carbon nanotube probe to scanning probe microscopy tips
US6591658B1 (en) * 2000-10-25 2003-07-15 Advanced Micro Devices, Inc. Carbon nanotubes as linewidth standards for SEM & AFM
CN100457609C (zh) * 2000-11-13 2009-02-04 国际商业机器公司 单壁碳纳米管的制造方法及应用
US7090819B2 (en) * 2001-02-12 2006-08-15 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
WO2002103737A2 (en) 2001-06-14 2002-12-27 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
KR101005267B1 (ko) 2001-06-14 2011-01-04 하이페리온 커탤리시스 인터내셔널 인코포레이티드 변형된 탄소 나노튜브를 사용하는 전기장 방출 장치
US7341498B2 (en) 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
JP4863590B2 (ja) * 2001-08-24 2012-01-25 双葉電子工業株式会社 カーボンナノチューブの改質方法、カーボンナノチューブ及び電子放出源
FR2832995B1 (fr) 2001-12-04 2004-02-27 Thales Sa Procede de croissance catalytique de nanotubes ou nanofibres comprenant une barriere de diffusion de type alliage nisi
US20030143327A1 (en) * 2001-12-05 2003-07-31 Rudiger Schlaf Method for producing a carbon nanotube
US6835613B2 (en) * 2001-12-06 2004-12-28 University Of South Florida Method of producing an integrated circuit with a carbon nanotube
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6889216B2 (en) 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US8156057B2 (en) 2003-03-27 2012-04-10 Knowm Tech, Llc Adaptive neural network utilizing nanotechnology-based components
US7398259B2 (en) 2002-03-12 2008-07-08 Knowmtech, Llc Training of a physical neural network
US7412428B2 (en) 2002-03-12 2008-08-12 Knowmtech, Llc. Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
US9269043B2 (en) 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US7392230B2 (en) 2002-03-12 2008-06-24 Knowmtech, Llc Physical neural network liquid state machine utilizing nanotechnology
US6858197B1 (en) 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US6871528B2 (en) * 2002-04-12 2005-03-29 University Of South Florida Method of producing a branched carbon nanotube for use with an atomic force microscope
CA2584508A1 (en) 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
US7752151B2 (en) 2002-06-05 2010-07-06 Knowmtech, Llc Multilayer training in a physical neural network formed utilizing nanotechnology
US7175494B1 (en) * 2002-08-22 2007-02-13 Cdream Corporation Forming carbon nanotubes at lower temperatures suitable for an electron-emitting device
US7827131B2 (en) 2002-08-22 2010-11-02 Knowm Tech, Llc High density synapse chip using nanoparticles
EP1394115B1 (en) 2002-08-24 2009-10-21 Haldor Topsoe A/S Rhenium (iv) sulphide nanotube material and method of preparation
CA2505996A1 (en) * 2002-11-15 2004-06-03 Mcgill University Method and apparatus for producing single-wall carbon nanotubes
US6841002B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with post-treatment step
US20050132949A1 (en) * 2002-11-22 2005-06-23 Kang Sung G. Forming carbon nanotubes by iterating nanotube growth and post-treatment steps
US6841003B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with intermediate purification steps
JP4514130B2 (ja) * 2002-12-20 2010-07-28 株式会社アルネアラボラトリ 光パルスレーザ
WO2005007565A2 (en) * 2003-06-10 2005-01-27 Nuvotec, Inc. Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
TW200506998A (en) * 2003-06-19 2005-02-16 Cdream Display Corp Forming carbon nanotubes at lower temperatures suitable for electron-emitting device, and associated fabrication method
US7426501B2 (en) 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system
US7163967B2 (en) * 2003-12-01 2007-01-16 Cryovac, Inc. Method of increasing the gas transmission rate of a film
WO2005110624A2 (en) * 2003-12-31 2005-11-24 Eikos Inc. Methods for modifying carbon nanotube structures to enhance coating optical and electronic properties of transparent conductive coatings
US7335327B2 (en) * 2003-12-31 2008-02-26 Cryovac, Inc. Method of shrinking a film
KR100590828B1 (ko) * 2004-02-02 2006-06-19 학교법인 한양학원 탄소나노튜브의 제조방법
US7718223B1 (en) * 2004-12-07 2010-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Control of carbon nanotube density and tower height in an array
US7704547B1 (en) 2004-12-07 2010-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Carbon nanotube growth density control
TWI245332B (en) * 2004-12-31 2005-12-11 Ind Tech Res Inst Method of carbon nanomaterials purification by ozone
US7502769B2 (en) 2005-01-31 2009-03-10 Knowmtech, Llc Fractal memory and computational methods and systems based on nanotechnology
US7409375B2 (en) 2005-05-23 2008-08-05 Knowmtech, Llc Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
US7420396B2 (en) 2005-06-17 2008-09-02 Knowmtech, Llc Universal logic gate utilizing nanotechnology
US7599895B2 (en) 2005-07-07 2009-10-06 Knowm Tech, Llc Methodology for the configuration and repair of unreliable switching elements
CN101283027A (zh) * 2005-08-08 2008-10-08 卡伯特公司 包含纳米管的聚合物组合物
US7678841B2 (en) * 2005-08-19 2010-03-16 Cryovac, Inc. Increasing the gas transmission rate of a film comprising fullerenes
US20100212728A1 (en) * 2005-09-29 2010-08-26 Masaru Hori Diode and Photovoltaic Device Using Carbon Nanostructure
US8252405B2 (en) * 2005-10-27 2012-08-28 The Board Of Trustees Of The Leland Stanford Junior University Single-walled carbon nanotubes and methods of preparation thereof
US8293340B2 (en) * 2005-12-21 2012-10-23 3M Innovative Properties Company Plasma deposited microporous analyte detection layer
US7754336B2 (en) * 2006-06-30 2010-07-13 Cardinal Cg Company Carbon nanotube glazing technology
JP5140989B2 (ja) * 2006-10-26 2013-02-13 ソニー株式会社 単層カーボンナノチューブヘテロ接合の製造方法および半導体素子の製造方法
US7901776B2 (en) * 2006-12-29 2011-03-08 3M Innovative Properties Company Plasma deposited microporous carbon material
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US7930257B2 (en) 2007-01-05 2011-04-19 Knowm Tech, Llc Hierarchical temporal memory utilizing nanotechnology
US7750297B1 (en) 2007-03-09 2010-07-06 University Of Central Florida Research Foundation, Inc. Carbon nanotube collimator fabrication and application
US8974904B2 (en) * 2007-07-05 2015-03-10 University Of Dayton Aligned carbon nanotubes for dry adhesives and methods for producing same
CN101827782B (zh) * 2007-09-12 2014-12-10 斯莫特克有限公司 使用纳米结构连接和粘接相邻层
KR101638463B1 (ko) 2008-02-25 2016-07-11 스몰텍 에이비 나노구조 프로세싱을 위한 도전성 보조층의 증착과 선택적 제거
JP5577356B2 (ja) 2009-02-17 2014-08-20 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブを繊維上に含んで構成された複合材料
BRPI1008131A2 (pt) 2009-02-27 2016-03-08 Applied Nanostructured Sols "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás".
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
CA2758570A1 (en) 2009-04-24 2010-12-16 Applied Nanostructured Solutions, Llc Cnt-based signature control material
WO2010129234A2 (en) 2009-04-27 2010-11-11 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
EP2284123A1 (de) * 2009-07-24 2011-02-16 BAM Bundesanstalt für Materialforschung und -prüfung Verfahren zur Entfernung von Verunreinigungen aus nanostrukturiertem Kohlenstoffmaterial und gereinigtes nanostrukturiertes Kohlenstoffmaterial
BR112012002216A2 (pt) 2009-08-03 2016-05-31 Applied Nanostructured Sols método de incorporação de nanopartículas em fibras compósitas, fibra de vidro e tapete de fibra picada ou compósito
CA2775619A1 (en) 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
CA2776752A1 (en) 2009-11-23 2011-10-13 Applied Nanostructured Solutions, Llc Cnt-tailored composite sea-based structures
CN103079805B (zh) 2009-12-14 2015-02-11 应用纳米结构方案公司 含有碳纳米管并入的纤维材料的防火复合材料和制品
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (pt) 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
KR101818640B1 (ko) 2010-03-02 2018-01-15 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 카본 나노튜브 주입된 섬유를 포함하는 전기 장치 및 그의 제조 방법
JP2013521656A (ja) 2010-03-02 2013-06-10 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
WO2012037042A1 (en) 2010-09-14 2012-03-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
EP2619133A1 (en) 2010-09-22 2013-07-31 Applied NanoStructured Solutions, LLC Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
AU2011305751A1 (en) 2010-09-23 2012-06-21 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
FR2966815B1 (fr) * 2010-10-28 2013-05-31 Centre Nat Rech Scient Methode de purification de nanotubes de carbone
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US9449873B2 (en) 2013-06-19 2016-09-20 Infineon Technologies Ag Method for processing a carrier and an electronic component
CN103436854B (zh) * 2013-09-05 2015-09-09 吉林大学 一种石墨烯和碳纳米管复合材料的制备方法
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof
CN113233443A (zh) * 2021-04-22 2021-08-10 电子科技大学 氟化螺旋碳纳米管的制备方法及在锂一次电池中的应用
CN113912042B (zh) * 2021-11-22 2023-04-25 郑州大学 一种铝电解产生的全氟化碳制备碳纳米管的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069712B2 (ja) 1991-08-03 2000-07-24 株式会社サカタ製作所 金属製折版屋根用接続具
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
WO1997019208A1 (en) * 1995-11-22 1997-05-29 Northwestern University Method of encapsulating a material in a carbon nanotube
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US6159538A (en) * 1999-06-15 2000-12-12 Rodriguez; Nelly M. Method for introducing hydrogen into layered nanostructures
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891780B (zh) * 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
CN103582609A (zh) * 2011-05-10 2014-02-12 国立大学法人静冈大学 碳纳米管的制造方法和制造装置
US9428391B2 (en) 2011-05-10 2016-08-30 National University Corporation Shizuoka University Method and apparatus for producing carbon nanotubes

Also Published As

Publication number Publication date
EP1046613A2 (en) 2000-10-25
EP1046613B1 (en) 2005-02-09
JP2000319783A (ja) 2000-11-21
CN1174916C (zh) 2004-11-10
DE60017968T2 (de) 2006-04-13
EP1046613A3 (en) 2002-01-23
DE60017968D1 (de) 2005-03-17
US6331209B1 (en) 2001-12-18
ATE288877T1 (de) 2005-02-15
JP3484441B2 (ja) 2004-01-06

Similar Documents

Publication Publication Date Title
CN1174916C (zh) 碳毫微管的形成方法
Meyyappan et al. Carbon nanotube growth by PECVD: a review
US6900580B2 (en) Self-oriented bundles of carbon nanotubes and method of making same
US7893423B2 (en) Electrical circuit device having carbon nanotube fabrication from crystallography oriented catalyst
JP4658011B2 (ja) 電子サイクロトロン共鳴プラズマ成膜プロセスおよび一重壁カーボンナノチューブのための装置ならびにそれによって得られたナノチューブ
US7713589B2 (en) Method for making carbon nanotube array
US6843850B2 (en) Catalyst-free growth of single-wall carbon nanotubes
US9177745B2 (en) Organic/inorganic composite comprising three-dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
US20060269668A1 (en) Method for making carbon nanotube array
WO2007117503A2 (en) Preparing nanoparticles and carbon nanotubes
JP2004107196A (ja) 炭素ナノチューブロープ及びその製造方法
KR20010066816A (ko) 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
US20040099208A1 (en) Method for forming carbon nanotubes
US20060263274A1 (en) Apparatus for making carbon nanotube array
JP3913442B2 (ja) カーボンナノチューブ及びその作製方法、電子放出源
CN103582609A (zh) 碳纳米管的制造方法和制造装置
CN1853006A (zh) 形成碳纳米管的方法
KR20070071177A (ko) 유리 위에의 단일벽 탄소나노튜브 제조방법
JP2003277029A (ja) カーボンナノチューブ及びその製造方法
KR100335383B1 (ko) 탄소 나노튜브의 제조방법
JP6912904B2 (ja) カーボンナノチューブの製造方法、カーボンナノチューブ、及び配向カーボンナノチューブ付き基材
CN1275851C (zh) 一种碳纳米管的制备方法
WO2009154379A2 (en) Organic/inorganic composite comprising three- dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
JP3453379B2 (ja) 密に詰まった多層カーボンナノチューブの製造方法
KR100503123B1 (ko) 플라즈마 화학기상증착법을 이용한 열린 구조탄소나노튜브 전계방출자의 제조방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: NISSHIN NANOTECH CO., LTD.

Effective date: 20030321

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20030321

Address after: Seoul

Applicant after: Zhang Zhen

Address before: Seoul

Applicant before: Zhang Zhen

Co-applicant before: Japan into Connaught Tektronix Corporation

ASS Succession or assignment of patent right

Owner name: SICHEMU CO.,LTD.

Free format text: FORMER OWNER: NONE

Effective date: 20030716

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20030716

Address after: Seoul

Applicant after: Zhang Zhen

Co-applicant after: Jim Xicui company

Address before: Seoul

Applicant before: Zhang Zhen

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee