CN1261369C - 用于水和废水的处理方法和装置 - Google Patents
用于水和废水的处理方法和装置 Download PDFInfo
- Publication number
- CN1261369C CN1261369C CNB018183476A CN01818347A CN1261369C CN 1261369 C CN1261369 C CN 1261369C CN B018183476 A CNB018183476 A CN B018183476A CN 01818347 A CN01818347 A CN 01818347A CN 1261369 C CN1261369 C CN 1261369C
- Authority
- CN
- China
- Prior art keywords
- water
- sludge
- treated
- mixing
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/12—Inert solids used as ballast for improving sedimentation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/02—Softening water by precipitation of the hardness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S210/00—Liquid purification or separation
- Y10S210/902—Materials removed
- Y10S210/911—Cumulative poison
- Y10S210/912—Heavy metal
Landscapes
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
- Physical Water Treatments (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
这项发明指向用于处理水和废水的方法和装置。在一个实施方案中,依照本发明处理水的方法包括将淤泥和沉淀剂与待处理的水混合、将砾石与水混合和把水离分成经过处理的水和淤泥。一些或全部被分离出来的淤泥可能被再循环用于与沉淀剂和待处理的水混合。
Description
本发明的技术领域
本发明涉及用来从水和废水中除去溶解的和悬浮的固体的改进程序,在被除去的固体的脱水特性方面有进一步的改进。
本发明的现有技术
为了把水用于饮用目的或者为了处理待排放的废水,将溶解的和悬浮的各种不同的成份除去可能是需要的。这些成份可能包括重金属、油和油脂、钙、镁、铁、硅石、以及溶解的和悬浮的有机材料。尽管水的质量在不同的来源之间有很大的变化,但是它几乎总是包含一种或多种上述成份。除去这些成份通常是利用物理/化学处理程序完成的。这种类型的程序使用化学反应和物理分离程序的组合从水中将所述成份以固体形式分离出来和除去。
本发明的概述
在一个实施方案中,本发明指向用来处理水的方法。该方法包括使碱性试剂与第一淤泥反应以形成处理淤浆以及使处理淤浆与水反应以形成经过处理的水和悬浮的固体。该方法还包括将经过处理的水和悬浮的固体与不能溶解的粒状材料混合以及使经过处理水、悬浮的固体和不能溶解的粒状材料失去稳定性。该方法进一步包括使经过处理的水、悬浮的固体和不能溶解的粒状材料絮凝化以及把被处理的水、悬浮的固体和不能溶解的粒状材料分成澄清的水和第二淤泥。
在另一个实施方案中,本发明指向一种水处理系统,其中包括备有碱性试剂入口、再循环淤泥入口、搅拌器和处理淤浆的出口的碱性试剂混合室。该系统还包括与处理淤浆的出口相连接并且备有水的入口、搅拌器和被处理的水和悬浮的固体的出口的反应室。系统进一步包括与被处理的水和悬浮固体的出口相连接并且备有不能溶解的粒状物质的入口、搅拌器和被处理的水、悬浮的固体和不能溶解的粒状物质的出口的快速混合物室。系统进一步包括与被处理的水、悬浮的固体和不能溶解的粒状物质的出口相连接并且备有搅拌器和经过絮凝处理的水的出口的絮凝室。系统进一步包括与经过絮凝处理的水的出口相连接并且备有澄清液体出口和淤泥出口的分离器。最后,系统包括与淤泥出口和再循环淤泥入口相连接的淤泥再循环;和与淤泥出口相连接的淤泥排放。
在另一个实施方案中,本发明指向处理水的方法。该方法包括将第一淤泥和沉淀剂与待处理的水混合、将砾石与水混合、以及将水分成澄清的水和第二淤泥。
本发明的其它的优势、新颖的特征和目的在连同示意的未按比例绘制的附图一起考虑的时候将通过下面关于本发明的详细描述变得显而易见。在这些附图中,在不同的附图中被图解说明的每个同一的或几乎同一的组成部分是用单一的数字表示的。为了清楚起见,对本领域技术人员来讲不必给出的赘述和图解,就没有都按每个组成部分标注在每张附图中,也没有将本发明的每个实施方案的每个组成部分都展示出来。
附图简要说明
图1是现有技术的处理程序的平面图;
图2是现有技术的另一种处理程序的平面图;
图3是现有技术的另一种处理程序的平面图;
图4是本发明的一个实施方案的程序流程图;而
图5是本发明的一个实施方案的平面图。
本发明的详细描述
本发明指向用于处理水和废水的方法和装置。一方面,本发明将采用淤泥再循环的水处理程序的诸要素和使用砾石的程序的诸要素合并为实现高效率的新方法。
传统的物理/化学的处理程序可能包括一些或全部下面的步骤:
化学沉降:改变溶解在水中的成份的溶解度从而导致这些成份的沉降和胶体粒子的形成的化学反应;
凝结/絮凝:使胶体粒子失去稳定性和使胶体粒子聚集成更大的絮团,借此使粒子从稳定的悬浮状态转变到不稳定的悬浮状态;
沉积:使絮团沉降和使沉降的固体以淤泥的形式从液体中分离出来;
增稠:一种用来增加固体含量和减少在沉积过程中被除去的淤泥的水含量的沉积程序;以及
过滤:通过机械过滤除去残留在水中的悬浮固体。
典型的现有技术的物理/化学处理程序是在图1中图解说明的,而且是由将化学药品20和水21添加到其中的化学反应罐1、将促凝剂22添加到其中的快速混合罐2、絮凝罐3、澄清器4、产生浓缩淤泥23的增稠器5和产生经过处理的水24的流出过滤器6组成的。这个典型的系统占用相当大的安装空间,需要购买和安装各种不同的处理单元,而且有比较高的操作费用。
这些年来为了获得最大的效率和将物理/化学处理程序中完成的每一个步骤的费用减少到最小而设计的很多技术已被发展。这种设计的例子是在美国专利第4,388,195、5,039,428、5,730,864、5,770,091、6,210,587和6,277,285号中揭示的,在此通过引证将它们全部并入本文。当前的技术通常试图增加在水中悬浮的粒子的凝结和沉降速率。凝结和沉降速率受多种因素影响,包括粒子的类型和密度和正在沉降的固体的浓度。通常,增加固体的浓度和密度将增加固体沉降速率,从而导致较小的设备尺寸、改进的流出物质量和增大的淤泥固体浓度。粒子的浓度和/或密度通常是通过沉降的淤泥的再循环或通过添加砾石材料增加的。这两个程序在下面予以更详细的讨论。
收集和再循环使用沉积淤泥的例子是在通过引证在此被全部并入本文的美国专利第3,738,932号中描述的,并且在图2中予以图解说明。在这个程序中,来自沉积槽9的沉积淤泥25的一部分被再循环使用并且在混合槽7中与碱性淤浆流26反应。碱性淤浆通常是石灰淤浆混合物。随后,混合的淤浆/淤泥流被添加到待处理的水/废水流27中。该混合物在容器8中反应,然后流到沉降步骤。以质量为基础,被再循环的淤泥的数量大约是被除去的数量的二十倍。对于大多数的成份,返回碱性淤浆流的淤泥再循环导致形成易于沉降和脱水的密集的固体。对于金属的氢氧化物淤泥,最后经过脱水的淤泥与在没有再循环处理的70%的水相比通常将包含30-50%的水。这导致低得多的必须处理和处置的淤泥体积。
收集和重复使用沉积淤泥有一些缺点。首先,为了有效地操作,该程序依赖质量充足的淤泥的形成。在开始的启动周期期间,系统操作欠佳。这使该程序不适用于分批的或间歇的处理程序。其次,尽管固体沉降得好,但是沉降速率仍然在通过添加砾石材料所能获得的沉降速率以下。所以,沉降设备的尺寸必须比较大。最后,该程序可能导致比较高的悬浮在流出的水中的非常细的微粒子固体水平。依据质量要求,这可能需要在沉降系统后面安装过滤设备。
在采用添加砾石材料的程序中,惰性的粒状材料(通常是沙子)是在该处理程序的化学沉降步骤中注入的。这种程序的例子是在通过引证被全部并入本文的美国专利第4,927,543号中描述的,而且是在图3中予以图解说明的。在这个程序中,未经处理的水在反应罐中与化学药品和砾石材料箱混合。然后,将水送到凝结罐10,在那里粒子围绕着砾石材料聚集。含有凝结固体的水流到沉积槽11,在那里固体凭借重力分离。澄清的水被排放,而固体被送往分离器12。分离器12把高密度的砾石材料与密度较低的沉积固体分开。分离器回收砾石材料以便反向循环到反应罐。密度较低的沉积固体通常被送到附加的处理步骤,以便除去水和产生待处置的固体废物。砾石材料大幅地增加固体的沉降速率,借此减少沉积槽所需设备的大小。该程序在与传统的澄清程序比较时还提高了固体的清除效率。然而,砾石/淤泥的分离步骤通常生产低浓度的淤泥产品。为了生产适合脱水和处理的淤泥,安装附加的淤泥增稠设备往往是必需的。
在一个实施方案中,依照本发明的水处理方法包括将淤泥和沉淀剂与待处理的水混合、将砾石与水混合以及将水分成处理过的水和淤泥。一部分或全部分离出来的淤泥可能被再次用于与沉淀剂和待处理的水混合。因此,在这个实施方案中,本发明为了以先前从未作过的方式处理水把淤泥的收集和再循环与添加砾石结合起来。这些程序的组合在此之前尚未被实现,因此,早已察觉但未解决的对改善的处理效率的需求现在才被解决。
淤泥和沉淀剂与待处理的水混合可以采用任何允许一种或多种污染物沉降的材料或设备以任何方式完成。所谓的污染物指的是需要从被处理的水中除去的任何材料。沉淀剂可以是任何能够使污染物沉降的化合物、混合物、化学药品、溶液或类似的东西。例如,沉淀剂可能是降低污染物或与污染物反应形成的比污染物难溶的物质的材料的溶解度的材料。
在本发明的一个示范实施方案中,沉淀剂是碱性试剂。碱性试剂可以是任何pH值高于大约7的能够与淤泥和水互相作用使污染物沉降的材料。例如,碱性试剂可以包括氢氧化钙(Ca(OH)2)或氢氧化镁(Mg(OH)2)的水合淤浆。作为替代实例,碱性试剂可能是氢氧化钠(NaOH)的水溶液。在可能需要软化处理的实施方案中,诸如苏打灰(Na2CO3)之类的软化剂可能作为附加的沉淀剂被添加进去。在一些实施方案中,改善沉降但未必是沉淀剂的材料可能与沉淀剂一起被添加进去。例如,改善沉淀剂性能的材料可能被添加进去。
对于特定的处理应用,只要需要从水中清除的材料有充分的沉降,任何数量的沉淀剂都可以与淤泥和水混合。对于特定的实施方案,优选的沉淀剂数量可能因沉淀剂、污染物的类型和浓度等因素而改变,而且可以凭借熟悉这项技术的人的经验选定。在沉淀剂不以纯净物的形式被添加进去的场合,例如,在沉淀剂是呈淤浆状态的碱性试剂的场合,与淤泥和水反应的沉淀剂的浓度可能因沉淀剂及其添加方式而改变。通常,比较高的沉淀剂浓度是优选的,因为这样的浓度可以减少在下游的设备中用来实现混合和水流速率的设备所必需的尺寸。
待处理的水可以是任何可以用沉淀剂使其中的污染物沉降的水。在一个实施方案中,待处理的水可以是包含溶解的金属的酸性废水。在这个实施方案中,作为碱性试剂的沉淀剂可以中和水的酸性,从而导致金属氢氧化物和/或金属氧化物的沉降。如果铁是其中的金属之一,为了使铁从二价铁(Fe+2)的形式转换成实质上比二价铁的形式难溶的三价铁(Fe+3)的形式,诸如氧之类的附加沉淀剂可能被添加进去,从而导致比较好的沉降。
在另一个实施方案中,待处理的水可能包含浓度比较高的钙和镁。这两种化合物是造成水的硬度的原因。在水被用于饮用或非饮用的用途时高硬度水平可能引起各种不利的影响。钙和镁可以借助沉淀剂通过化学沉降被除去,在这个实施方案中,沉淀剂可能是碱性试剂或苏打灰。钙可能是作为碳酸钙(CaCO3)沉降的,而镁可能是作为氢氧化镁(Mg(OH)2)沉降的。在软化处理程序中涉及的反应如下:
这些沉降反应类似于上面针对金属沉降所描述的那些,然而,苏打灰也可以用来帮助除去镁。
出现在水或废水中被溶解的其它成份可以借助本发明被除去。例如,溶解的硅石可以通过使用适当的沉淀剂被除去。例如,业已发现包含铝和铁的化合物(例如,它们的盐)是有效的硅石沉淀剂。适当的化合物包括硫酸铁、氯化铁和氢氧化铝。任何数量的包含铁或铝的化合物都可以被添加进去,使所需数量的硅石沉降。包含铁或铝的化合物的添加量可能与待沉降的硅石数量成正比。例如,在一个实施方案中,对于每克需要沉降的硅石可能要添加大约3克到大约5克的含铝的化合物或大约5克到大约10克的含铁化合物。这些沉淀剂还可能与其它诸如碱性试剂之类的沉淀剂组合,在某些情况下,可能产生增效的效果。作为另一个例子,业已发现氟化物能借助也可能适合作为沉淀剂用于其它材料的氯化钙沉降。因此,人们应该理解在此揭示的特定的实施方案是作为例子,而且既不倾向于识别所有可能被除去的潜在的成份,也不倾向于识别所有可能帮助这种清除的沉淀剂。
无论待处理的水和相关的沉淀反应的性质如何,沉降的化合物都可能被吸附在淤泥粒子之上,形成晶体粒子。这些晶体粒子与依据不使用再循环淤泥的传统的沉降程序形成的固体相比可能沉降得更快,更容易脱水和持有更少的水。晶体粒子与传统的沉降粒子相比可能更小,而且具有窄得多的粒度分布。粒度分布对于晶体粒子通常在大约1到大约8微米的范围内,而对于传统的沉降粒子通常在大约1到大约45微米的范围内。这些比较小的、更均匀的粒子或许还能够絮凝成紧凑得多的、密集的结块,借此造成先前提到的得到改善的沉降和脱水特性。
淤泥和沉淀剂与待处理的水的混合可以在任何导致被溶解的成份充份沉降的时段内完成。这种被溶解的成份可能进入胶体形式沉降。就沉降而言充份的时间量可能改变,取决于所用的沉淀剂,但是,在在采用碱性试剂的典型的实施方案中,必需的最短时间可能是大约5分钟,而总时间优选是大约20到大约40分钟。如果不提供充份混合和沉降的时间,它可能由于不完全的沉降和晶体生长对处理效率产生不利的影响。如果提供过长的混合和沉降时间,则可能需要比较大的设备,从而增加资本和操作费用。在沉淀剂影响水的pH值的实施方案中,例如,在它是碱性试剂的场合,沉降反应可以在两个阶段中完成,这可能通过将每个阶段中的pH值的变化减到最小改善程序控制。在这样的实施方案中,每个阶段都可以有如同上面讨论的那样选定的反应时间。
第一淤泥和沉淀剂与待处理的水混合可以采用任何能够产生适当的混合为预期的沉降创造条件的设备以任何方式完成。例如,可以使用市售的混合容器。混合可以由搅拌器提供,该搅拌器可以是任何能够产生所需要的剪切速率实现适当的混合的装置。例如,混合可以由包括市售的马达驱动的叶轮的搅拌器提供。在其它的实施方案中,混合可能在管线中完成,从而有可能取消容器和/或搅拌器。在某些通过在管线中添加静态混合器得到补充的情形中,在线混合可以被用在本发明的任何混合步骤之中。
在优选的实施方案中,淤泥和沉淀剂与待处理的水混合是使用用于固体的连续结晶和/或沉降的通流管反应器完成的。通流管反应器可以利用专门设计的搅拌器使固体在反应器内再循环。这种反应器设计可以允许固体以大的循环速率经过一系列底流导流板和溢流导流板。晶体和/或沉淀剂的大小可能是可以通过许多不同的因素控制的,包括:给料进入单元的点、提取固体的手段和循环比。
在一些实施方案中,淤泥和沉淀剂可能是在与待处理的水混合之前混合的。在这样的实施方案中,沉淀剂在与水混合的时候可能与淤泥反应并且改善后续的沉降。例如,不希望受任何特定的理论限制,我们相信某些沉淀剂(例如碱性试剂)可能与淤泥粒子的表面互相作用,从而提供沉降部位。
在淤泥在与待处理的水混合之前与沉淀剂混合的场合,上面描述过的那种传统的混合器可能被用来提供混合。任何混合时间都可能被采用,只要提供适当的混合和相互作用时间即可。例如,在沉淀剂是碱性试剂的一些实施方案中,数量级大约为5-10秒的最短的混合时间是优选的。虽然没有最大的混合时间,但是较长的混合时间可能导致较大的混合容器和增大的资本费用。在一个沉淀剂以碱性试剂形式出现的实施方案中,优选的容器总尺寸提供介于大约2分钟和大约5分钟之间的驻留时间。
无论是首先与沉淀剂混合,还是直接与水混合,任何数量的淤泥都可以与水混合,只要它提供足以产生所需的沉降速率的再循环固体即可。在一个实施方案中,淤泥的数量可能取决于溶解在待处理的水中的材料的浓度。在沉淀剂是碱性试剂的一个这样的实施方案中,再循环固体的数量就典型的水而言可能是在每磅在待处理的水中形成的固体大约5到大约100磅再循环固体的范围内。优选的是被添加的淤泥的数量尽可能低,以减少在下游设备中必需的容量,然而不是这样低点以致预期的沉降速率或沉降效率受到损害。因此,在一个使用碱性试剂作沉淀剂的实施方案中,加入淤泥的优选范围是形成每磅固体大约10到大约30磅淤泥。
在再循环使用准备与碱性试剂和水混合的淤泥的场合,它可以以任何方式被再循环。例如,淤泥中的砾石既可以与淤泥分开,也可以不与之分开。在砾石不与淤泥分开的实施方案中,该程序产生的一部分淤泥可以直接反向循环以便不经处理就与沉淀剂和待处理的水混合。
待处理的水与砾石的混合行为可以采用任何能使砾石如同预期的那样充分散布的设备以任何方式用任何材料来实施。砾石材料可以是粒度等于或大于被处理的固体的粒度的任何一种或多种不能溶解的材料。如同在此使用的那样,材料被描述成“不能溶解的”指的是在它将被暴露的环境中在典型的使用周期内丝毫不溶解。在一个实施方案中,砾石材料还可能具有比被处理的液体和固体大的密度。在一些实施方案中,砾石可能有化学或生物学活性,而且可能至少是略微能溶解的。作为例子,砾石可能包括微米级的沙粒和/或碳粒。优选的是,砾石粒子在直径方面至少是20微米,优选介于大约20微米和大约500微米之间。砾石可以以任何能产生预期的沉降速率的速率添加进去。砾石的量较小可能导致效率较低的沉降,而砾石的量较大可能增加操作费用。在一个实施方案中,砾石是以大约1到大约10克/升的剂量率添加进去的。砾石可能是新鲜的(未用过的)材料、清理过的再循环砾石、或未经清理的再循环砾石。
为了改善后面的絮凝(如果有的话)和分离,水和在其中沉降的胶体可能被迫失去稳定性。去稳定作用可以以任何充分破坏水和胶体的稳定性为适当的絮凝创造条件的方式完成。例如,去稳定作用可能是通过添加诸如促凝剂之类能够使在沉降期间形成的胶体粒子失去稳定性的物质完成的。使胶体粒子失去稳定性可以为它们絮凝和沉降创造条件。
在优选的实施方案中,砾石与水混合和使水和胶体粒子失去稳定性可以在单一混合容器中一起完成。在这样的实施方案中,混合速率可能足以使不能溶解的材料和促凝剂均匀散布。因此,采用比较高的混合速率是优选的。比较高的混合速率还可以凭借机械作用增强去稳定作用。在一个实施方案中,混合容器中的速度梯度可能大约为1,000s-1到4,000s-1,优选在大约3,000s-1到大约3,500s-1的范围内。用于添加砾石和去稳定作用两者的驻留时间优选至少一分钟。
为了改善分离作用,在水中沉降的污染物可能是经过絮凝处理的。絮凝可以是采用任何允许依照需要形成絮状物的设备以任何方式完成的。在优选的实施方案中,絮凝是作为低能量混合阶段完成的,该阶段考虑到形成可以更好地分离的大絮凝粒子。这样的混合可以在混合容器中或在管线中完成。在一个实施方案中,用于混合的速度梯度在大约300s-1到大约900s-1的范围内。用于絮凝的混合时间可能是用于添加砾石和去稳定作用两者的时间的大约四倍。
把水分离成澄清的水和淤泥可能是以任何方式采用任何导致适合特定的用途的充份澄清的水和/或增稠的淤泥的设备进行的。预期的水的澄清水平可能因水的倾向性用途和是否需要将下游的处理减到最少而改变。同样地,预期的淤泥密度可能因淤泥将经受怎样的处理而改变;比较稠的淤泥或许因后处理较少而使处理变得容易。分离可以采用任何能够把固体与液体分开的分离器来完成。例如,分离器可以是任何类型的传统的重力分离单元(例如澄清器)管道沉淀器、斜板分离器或任何类似的装置。作为替代例子,分离器可能是过滤器或筛子。在用图5图解说明的实施方案中,分离器是有底部刮刀的传统的管道沉淀器。因为水中的固体的密度和沉降速率都比较高,所以非常高的溢流速率可能在这样的系统中实现。就典型的装置而言,采用管道沉淀器预期的溢流速率范围在大约30到大约200m/hr的范围内。更高或更低的速率也可能实现,取决于水的特性、所用的沉淀剂和砾石材料和预期的流出物和淤泥质量。
在分离器是传统的重力分离单元的场合,经过处理的澄清的水通常是从分离器的顶端排放的。反之,为了处理或重复使用通常在分离器的底部将淤泥收集起来并且泵送出去。如果需要,淤泥可能在不除去砾石材料的情况下被送去处理。淤泥还可能如同先前提到的那样被用于在不除去砾石的情况下反向循环到碱性试剂混合室。然而,在用图5图解说明的实施方案中,所有的淤泥都通过分离器被送出去。分离器把淤泥和砾石材料分开。然后,淤泥可以被排放掉,或者反向循环与沉淀剂一起添加到待处理的水中,或者是它们的某种组合。砾石材料还在清洗后或不清洗的情况下反向循环到将它添加到水中的设备。
在需要将砾石和淤泥分开的实施方案中,这种分离可以以任何方式采用任何产生预期的分离程度的设备来完成。例如,有可能将淤泥粒子与砾石粒子剪开。然后,可以根据两者之间比重的差异凭借重力将淤泥和砾石分开。在用图5图解说明的实施方案中,分离设备包括朝重力沉降罐320给料的高切变泵319。这样的储罐对于允许比重和沉降速率比较高的砾石材料沉降可能是足够大的,但是对于不允许大量的沉降速率比较低的淤泥沉降又是足够小的。其它的程序和设备(例如水力漩流器)也可用被用于这个分离程序。
依照本发明的水处理方法的一个适当的示范实施方案是在图4中予以图解说明的。本发明的方法的这个实施方案包括呈碱性试剂101状态的沉淀剂与淤泥102反应200,形成处理淤浆103。该方法还包括处理淤浆103与待处理的水104反应201,形成经过处理的水和悬浮固体(总起来为105)。该方法还包括将经过处理的水和悬浮固体105与不能溶解的粒状材料106混合202。该方法进一步包括使经过处理的水和悬浮固体105和不能溶解的粒状材料106失去稳定性203。最后,该方法包括使经过处理的水和悬浮固体105和不能溶解的粒状材料106絮凝204,以及将经过处理的水和悬浮固体105和不能溶解的粒状材料106分开205,形成澄清的水107和淤泥102。
适合实现在前面段落中描述的用图4予以图解说明的本发明的方法的实施方案的系统是用图5予以图解说明的。这个系统包括备有碱性试剂入口301、再循环淤泥入口302、搅拌器303和处理淤浆出口304的碱性试剂混合室300。反应室305被接到处理淤浆出口304上并且备有水入口306、搅拌器303和经过处理的水和悬浮固体的出口307。快速混合室308被连接到经过处理的水和悬浮固体的出口307和不能溶解的粒状物质的出口321上并且备有不能溶解的粒状物质的入口309、促凝剂入口310、搅拌器303和经过处理的水、悬浮固体和不能溶解的粒状物质的出口311。絮凝室312被连接到经过处理的水、悬浮固体和不能溶解的粒状物质的出口311上并且备有搅拌器303和经过絮凝处理的水的出口313。该系统进一步包括连接在经过絮凝处理的水的出口313上并且备有沉降板317、澄清液体出口315和淤泥出口316的分离器314。淤泥再循环被连接到淤泥出口316、再循环淤泥入口302和淤泥排放318。淤泥再循环包括用来分离淤泥和砾石的高切变泵319和重力分离器320。
在本发明的替代实施方案中,淤泥可以在添加沉淀剂之前与水混合。例如,淤泥可以在第一容器中与水混合,然后在第二容器中与沉淀剂/淤泥的混合物混合。
至此已经描述了本发明的某些实施方案,但是各种不同的替代方案、修改方案和改进方案对于本领域技术人员将是显而易见的。这样的替代方案、修改方案和改进方案倾向于落在本发明精神和范围内。因此,前面的描述仅仅是作为例子,不倾向于作为某种限制。本发明仅仅如同在权利要求书及其等同物所定义的那样受到限制。
Claims (23)
1.一种用来处理含有污染物和悬浮固体水的方法,该方法包括:
a.使碱性试剂与第一淤泥反应,形成处理淤浆;
b.使处理淤浆与水反应,形成经过处理的水,并且从处理过的水中沉淀一种以上的污染物;
c.将经过处理的水和悬浮的固体与包括不能溶解的粒状材料的砾石混合;
d.使经过处理的水、悬浮的固体和不能溶解的粒状材料失去稳定性;
e.使经过处理的水、悬浮的固体和不能溶解的粒状材料絮凝化以形成絮状物,所形成的絮状物包括一种以上的沉淀的污染物和悬浮的固体;以及
f.将经过处理的水、悬浮的固体和不能溶解的粒状材料分离成澄清的水和第二淤泥。
2.根据权利要求1的方法,其中至少一部分第二淤泥被作为第一淤泥再循环使用。
3.根据权利要求1的方法,进一步包括:
将至少一部分不能溶解的粒状材料从第二淤泥中分离出来;以及
再循环使用这部分不能溶解的粒状材料,与被处理的水和悬浮的固体混合。
4.据权利要求3的方法,进一步包括通过对第二淤泥施加离心力将至少一部分不能溶解的粒状材料从第二淤泥中分离出来。
5.根据权利要求3的方法,进一步包括凭借作用于第二淤泥的重力使至少一部分不能溶解的粒状材料从第二淤泥中分离出来。
6.根据权利要求5的方法,进一步包括在凭借作用于第二淤泥的重力使至少一部分不能溶解的粒状材料从第二淤泥中分离出来之前使第二淤泥和不能溶解的粒状材料产生切变。
7.根据权利要求1的方法,其中水是酸性的并且包含溶解的金属。
8.根据权利要求1的方法,其中水包含溶解的钙和镁。
9.根据权利要求1的方法,其中碱性试剂选自氢氧化钙、氢氧化镁、氢氧化钠、碳酸钠以及它们的混合物。
10.根据权利要求1的方法,进一步包括使第二试剂与第一淤泥反应。
11.根据权利要求1的方法,其中使被处理的水、悬浮的固体和不能溶解的粒状材料失去稳定性包括添加促凝剂。
12.根据权利要求1的方法,其中不能溶解的粒状材料是沙子。
13.根据权利要求1的方法,在第一淤泥和碱性试剂与待处理的水混合之前,第一淤泥和碱性试剂被混合从而形成处理过的淤泥。
14.根据权利要求1的方法,在第一淤泥和碱性试剂与待处理的水混合之后,粒状材料被加入处理过的水。
15.根据权利要求1的方法,所述方法进一步包括在第一混合罐内混合碱性试剂和第一淤泥,然后在第二混合罐内混合处理过的淤泥和待处理的水。
16.根据权利要求1的方法,其中待处理的水是酸性的并包括溶解的金属,并且所述方法中包括的将处理过的淤泥与待处理的水混合将导致至少一些溶解的金属从水中沉淀,并且所形成的絮状物包括一些沉淀的金属。
17.根据权利要求1的方法,所述方法进一步包括通过化学沉淀水中包含的钙或镁,如果水中包含钙,钙将变为碳酸钙沉淀,如果水中包含镁,镁将变为氢氧化镁沉淀。
18.根据权利要求17的方法,其中所形成的絮状物包括镁或钙。
19.一种用化学沉淀和砾石絮凝来处理含有污染物和悬浮固体水或废水的方法,该方法包括:
a.使第一淤泥与沉淀剂混合,形成处理组分;
b.使处理组分与水或废水混合并从水或废水中沉淀污染物;
c.在水或废水被处理组分处理后,使水或废水经过砾石絮凝,从而除去沉淀的污染物和悬浮的固体;
d.使水或废水经过砾石絮凝包括将水或废水与包括不能溶解的粒状材料的砾石混合;
e.使水或废水经过砾石絮凝进一步包括使水或废水去稳定性,以及使水或废水絮凝导致形成絮状物,所形成的絮状物包括化学沉淀处理所产生的被沉淀的污染物和悬浮的固体;以及
f.砾石絮凝所形成的絮状物构成了第二淤泥
g.从水或废水中分离出第二淤泥。
20.根据权利要求19的方法,所述方法包括从第二淤泥中分离不能溶解的粒状材料,以及将至少部分的第二淤泥用于至少部分的第一淤泥。
21.根据权利要求17的方法,所述方法进一步包括通过化学沉淀水中所包含的钙或镁来软化水,其中在水中包含钙的情况下,钙变为碳酸钙沉淀,以及在水中包含镁的情况下,镁变为氢氧化镁沉淀。
22.根据权利要求17的方法,其中沉淀剂选自由氢氧化钙、氢氧化镁、氢氧化钠、碳酸钠及以上化合物的混合物所组成的组。
23.根据权利要求17的方法,其中对处理过的水、悬浮固体和不能溶解的粒状材料去稳定性包括加入凝结剂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24540800P | 2000-11-02 | 2000-11-02 | |
US60/245,408 | 2000-11-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1473135A CN1473135A (zh) | 2004-02-04 |
CN1261369C true CN1261369C (zh) | 2006-06-28 |
Family
ID=22926528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB018183476A Expired - Fee Related CN1261369C (zh) | 2000-11-02 | 2001-11-02 | 用于水和废水的处理方法和装置 |
Country Status (15)
Country | Link |
---|---|
US (1) | US6919031B2 (zh) |
EP (1) | EP1330414B9 (zh) |
JP (1) | JP2004512937A (zh) |
KR (1) | KR100851456B1 (zh) |
CN (1) | CN1261369C (zh) |
AT (1) | ATE499325T1 (zh) |
AU (2) | AU2009302A (zh) |
BR (1) | BR0114877B1 (zh) |
DE (1) | DE60144102D1 (zh) |
DK (1) | DK1330414T3 (zh) |
ES (1) | ES2364628T3 (zh) |
HK (1) | HK1057740A1 (zh) |
MX (1) | MXPA03003823A (zh) |
WO (1) | WO2002036500A2 (zh) |
ZA (1) | ZA200302544B (zh) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607671B2 (en) * | 2001-08-15 | 2003-08-19 | Texaco Inc. | Reactor and solids settler for grey water treatment |
FR2833939B1 (fr) * | 2001-12-21 | 2004-10-29 | Omnium Traitement Valorisa | Procede de traitement d'eau par floculation lestee et decantation |
US6869540B2 (en) | 2002-04-17 | 2005-03-22 | Nutech 03 | Ballast water ozone injection method and system |
US7407592B2 (en) * | 2002-04-17 | 2008-08-05 | Nutech 03, Inc. | Ozone retention method and system |
US7381338B2 (en) * | 2002-04-17 | 2008-06-03 | Nutech 03, Inc. | Ballast water treatment system and method without off-gas |
US7416660B2 (en) * | 2002-04-17 | 2008-08-26 | Nutech 03, Inc. | Bypass flow and ozone proportion method and system |
US7402253B2 (en) | 2002-04-17 | 2008-07-22 | Nutech 03, Inc. | Controlled bypass flow and ozone proportion method and system |
AT5702U3 (de) * | 2002-07-17 | 2003-09-25 | Plasser Bahnbaumasch Franz | Verfahren zur reinigung von schotter eines gleises |
US20060108273A1 (en) * | 2004-02-06 | 2006-05-25 | Perri Joyce S | Ballasted flocculation process and system incorporating an electro-coagulation reactor for treating water or wastewater |
FR2888761B1 (fr) * | 2005-07-25 | 2007-09-14 | Otv Sa | Dispostif de separation gravitaire pour le traitement des eaux |
US7695630B2 (en) * | 2005-11-15 | 2010-04-13 | De Guevara Cesar Ladron | Process for conditioning an aqueous solution for efficient colloidal precipitation |
FR2899891B1 (fr) * | 2006-04-18 | 2008-05-30 | Amenagement Urbain & Rural | Procede et installation de traitement d'un effluent charge de matieres en suspension avec lestant injecte en zone tranquillisee |
US20080073279A1 (en) * | 2006-09-27 | 2008-03-27 | Cort Steven L | High Rate Clarification of Cooling Water Using Magnetite Seeding and Separation |
US7820053B2 (en) * | 2006-09-27 | 2010-10-26 | Cort Steven L | Magnetic separation and seeding to improve ballasted clarification of water |
US7815804B2 (en) * | 2006-12-12 | 2010-10-19 | Otv Sa S.A. | Method for treating wastewater or produced water |
US10023487B2 (en) | 2006-12-12 | 2018-07-17 | Veolia Water Solutions & Technologies Support | Method of recovering oil or gas and treating the resulting produced water |
FR2910822B1 (fr) * | 2006-12-29 | 2009-02-27 | Otv Sa | Procede et installation de traitement d'eau par floculation lestee et decantation |
US20110036771A1 (en) | 2007-01-09 | 2011-02-17 | Steven Woodard | Ballasted anaerobic system and method for treating wastewater |
US20100213123A1 (en) | 2007-01-09 | 2010-08-26 | Marston Peter G | Ballasted sequencing batch reactor system and method for treating wastewater |
CN101568388B (zh) | 2007-01-09 | 2013-09-18 | 西门子工业公司 | 用于去除工业废水中溶解的污染物、颗粒污染物和油类污染物的系统 |
US8470172B2 (en) | 2007-01-09 | 2013-06-25 | Siemens Industry, Inc. | System for enhancing a wastewater treatment process |
US8491788B2 (en) * | 2007-10-23 | 2013-07-23 | Siemens Industry, Inc. | Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance |
US8491794B2 (en) | 2007-10-23 | 2013-07-23 | Siemens Industry, Inc. | Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance |
US7520993B1 (en) * | 2007-12-06 | 2009-04-21 | Water & Power Technologies, Inc. | Water treatment process for oilfield produced water |
US8353641B2 (en) * | 2008-02-14 | 2013-01-15 | Soane Energy, Llc | Systems and methods for removing finely dispersed particulate matter from a fluid stream |
US8349188B2 (en) * | 2008-02-14 | 2013-01-08 | Soane Mining, Llc | Systems and methods for removing finely dispersed particulate matter from a fluid stream |
US20100072142A1 (en) * | 2008-09-19 | 2010-03-25 | Palo Alto Research Center Incorporated | Method and system for seeding with mature floc to accelerate aggregation in a water treatment process |
MX340615B (es) | 2009-02-27 | 2016-07-18 | Soane Mining Llc | Sistemas, metodos, procesos y aparatos para remover material en particulas finamente dispersada de una corriente de fluido. |
US8945394B2 (en) * | 2009-10-27 | 2015-02-03 | Soane Energy, Llc | System, methods, processes and apparatus for removing finely dispersed particulate matter from a fluid stream |
KR101075885B1 (ko) * | 2009-04-28 | 2011-10-25 | (주)대우건설 | 응집-경사판 침전지를 전처리로 한 가압식 정밀여과기와 회수율 증대를 위한 공극제어형 섬유사여과기를 이용한 정수 처리 장치 및 방법 |
US20110000861A1 (en) * | 2009-07-06 | 2011-01-06 | Bear Creek Services, LLC. | Portable and Scalable Water Reclamation System and Method |
US8980059B2 (en) | 2009-08-12 | 2015-03-17 | Nanopaper, Llc | High strength paper |
JP4875128B2 (ja) * | 2009-10-15 | 2012-02-15 | 株式会社東芝 | 固形物分離システム |
WO2011050090A1 (en) | 2009-10-20 | 2011-04-28 | Soane Mining, Llc | Systems and methods for recovering fine particles from fluid suspensions for combustion |
US8894863B2 (en) | 2010-03-17 | 2014-11-25 | Soane Mining, Llc | Method for removal of dissolved metal cations from aqueous fluids using modified capture polymers and tether polymer bearing anchor particles |
FR2958927B1 (fr) * | 2010-04-20 | 2012-05-25 | Otv Sa | Procede de traitement d'eau par floculation lestee mettant en oeuvre un agent floculant d'origine naturelle |
RU2482073C2 (ru) * | 2010-12-24 | 2013-05-20 | Общество с ограниченной ответственностью "Полимеры" | Способ очистки воды |
US9682876B2 (en) | 2011-05-13 | 2017-06-20 | ProAct Services Corporation | System and method for the treatment of wastewater |
US9790153B2 (en) | 2011-11-14 | 2017-10-17 | Cameron International Corporation | Process scheme to improve divalent metal salts removal from mono ethylene glycol (MEG) |
US8845906B2 (en) * | 2011-12-23 | 2014-09-30 | Don E. Henley And Associates, Llc | Process for single system electrocoagulation, magnetic, cavitation and flocculation (EMC/F) treatment of water and wastewater |
US9828262B2 (en) * | 2012-03-26 | 2017-11-28 | Veolia Water Solutions & Technologies Support | Method for removing calcium, barium, magnesium and strontium from frac flowback |
FR2989079B1 (fr) | 2012-04-04 | 2014-05-02 | Veolia Water Solutions & Tech | Dispositif compact de traitement des eaux |
US9169144B2 (en) * | 2012-05-25 | 2015-10-27 | Veolia Water Solutions & Technologies Support | High rate chemical softening process |
CN104395246A (zh) | 2012-06-11 | 2015-03-04 | 伊沃夸水处理技术有限责任公司 | 使用固定膜工艺和压载沉降的处理 |
WO2013188630A2 (en) | 2012-06-15 | 2013-12-19 | Nanopaper, Llc | Additives for papermaking |
CA2876342C (en) | 2012-06-18 | 2017-06-13 | Soane Mining, Llc | Systems and methods for removing finely dispersed particles from mining wastewater |
US9255025B2 (en) | 2012-07-20 | 2016-02-09 | ProAct Services Corporation | Method for the treatment of wastewater |
WO2014052674A1 (en) | 2012-09-26 | 2014-04-03 | Evoqua Water Technologies Llc | System for measuring the concentration of magnetic ballast in a slurry |
US10160683B2 (en) | 2013-05-23 | 2018-12-25 | Veolia Water Solutions & Technologies Support | Wastewater treatment processes employing high rate chemical softening systems |
RU2549420C2 (ru) * | 2013-07-11 | 2015-04-27 | Федеральное государственное бюджетное учреждение науки Институт социально-экономических и энергетических проблем Севера Коми научного центра Уральского отделения Российской академии наук | Способ очистки природной воды |
US11291931B2 (en) | 2014-12-15 | 2022-04-05 | Akadeum Life Sciences, Inc. | Method and system for buoyant separation |
EP3106438A1 (en) | 2015-06-19 | 2016-12-21 | Veolia Water Solutions & Technologies Support | Water softening treatment using in-situ ballasted flocculation system |
EP3464197A4 (en) * | 2016-06-06 | 2020-03-04 | Evoqua Water Technologies LLC | REMOVAL OF HEAVY METALS IN AN UPstream PROCESS |
US10626031B2 (en) | 2016-08-24 | 2020-04-21 | Heritage Research Group | Treatment of sludges and flocculants using insoluble mineral colloidal suspensions |
CA3034877A1 (en) * | 2016-08-24 | 2018-03-01 | Heritage Research Group | Treatment of sludges and flocculants using insoluble magnesium hydroxide colloidal suspensions |
WO2020014273A1 (en) * | 2018-07-09 | 2020-01-16 | Akadeum Life Sciences, Inc. | System and method for buoyant particle processing |
WO2020014109A1 (en) | 2018-07-10 | 2020-01-16 | Veolia Water Solutions & Technologies Support | Process for treating frac flowback and produced water including naturally occurring radioactive material |
CN110015810A (zh) * | 2019-04-01 | 2019-07-16 | 江苏道明化学有限公司 | 一种新型沉淀废水排放的方法 |
EP4392158A1 (en) | 2021-08-26 | 2024-07-03 | Akadeum Life Sciences, Inc. | Method and system for buoyant separation |
WO2024173590A1 (en) | 2023-02-14 | 2024-08-22 | Akadeum Life Sciences, Inc. | Method and system for partially or fully automated buoyancy-assisted separation |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB467887A (en) | 1935-12-04 | 1937-06-24 | Schmidt Sche Heissdampf | Improvements in and relating to water-tube steam boilers, especially suitable for marine purposes |
US3738932A (en) | 1971-04-19 | 1973-06-12 | Bethlehem Steel Corp | Method for treating acid water containing metallic values |
GB1398603A (en) * | 1972-09-21 | 1975-06-25 | Environmental Quality Eng Inc | Processes for the biological treatment of waste water |
DE2731939A1 (de) * | 1977-07-14 | 1979-02-01 | Feldmuehle Ag | Verfahren zur reinigung von wasser, insbesondere abwaessern der zellstoff- und papierindustrie |
US4388195A (en) | 1979-07-05 | 1983-06-14 | Passavant-Werke Michelbacher Hutte | Process and apparatus for the chemical-mechanical treatment and purification of ground waters, surface waters and effluents |
JPS6111196A (ja) * | 1984-06-28 | 1986-01-18 | Mitsubishi Heavy Ind Ltd | 化学洗浄廃液の処理方法 |
JPS6111193A (ja) * | 1984-06-28 | 1986-01-18 | Mitsubishi Heavy Ind Ltd | 化学洗浄廃液の処理方法 |
IT1184932B (it) * | 1985-03-27 | 1987-10-28 | Luigi Verde | Procedimento perfezionato per la depurazione delle acque mediante chiariflocculazione |
CA1336020C (en) | 1987-08-17 | 1995-06-20 | Geoffrey Robert. Browne | Clarification process |
FR2627704B1 (fr) | 1988-02-25 | 1991-12-13 | Ile France Syndicat Eaux | Procede et installation de traitement d'eau par decantation faisant intervenir du sable fin |
JP2628535B2 (ja) * | 1989-02-18 | 1997-07-09 | 光整工株式会社 | 高bod,cod廃液の浄化処理法 |
US5039428B1 (en) | 1990-03-05 | 1994-04-12 | Tetra Technologoes Inc | Waste water treatment process using improved recycle of high density sludge |
AU617290B3 (en) | 1991-05-27 | 1991-10-04 | Hoefer, Dawn Annette | Process for removing silica from aqueous liquors |
AU618231B3 (en) | 1991-05-29 | 1991-10-22 | Hoefer, Dawn Annette | Treatment of emulsions |
CA2110300C (en) | 1991-05-29 | 2003-05-13 | Kevin J. Lobb | Batch process and apparatus |
WO1993001320A1 (en) | 1991-07-10 | 1993-01-21 | Hoefer, Dawn, Annette | Recovery of nickel |
CA2084327A1 (en) * | 1992-12-02 | 1994-06-03 | Nural Kuyucak | Lime neutralization process for treating acidic waters |
FR2719234B1 (fr) | 1994-05-02 | 1999-08-13 | Omnium Traitement Valorisa | Procédé et installation de traitement d'un écoulement brut par décantation simple après lestage au sable fin. |
US5840195A (en) | 1995-05-01 | 1998-11-24 | Omnium De Traitement Et De Valorisation | Method and installation for treating an untreated flow by simple sedimentation after ballasting with fine sand |
FR2739094B1 (fr) | 1995-09-21 | 1997-12-19 | Omnium Traitement Valorisa | Procede et installation de dessablage et de decantation physico-chimique d'effluents urbains ou industriels |
US5800717A (en) | 1996-10-02 | 1998-09-01 | Microsep International Corporation | Water and wastewater treatment system with internal recirculation |
FR2758812B1 (fr) | 1997-01-27 | 1999-07-09 | Degremont | Procede de traitement physico-chimique d'effluents, notamment d'eaux de surface destinees a la consommation |
FR2769613A1 (fr) | 1997-10-14 | 1999-04-16 | Omnium Traitement Valorisa | Procede de traitement par voie physico-chimique des eaux et installation pour la mise en oeuvre d'un tel procede |
KR100275004B1 (ko) * | 1998-09-25 | 2000-12-15 | 최춘식 | 고속응집침전형 오폐수처리방법 |
FR2801878B1 (fr) | 1999-12-03 | 2002-02-22 | Degremont | Procede et installation de clarification des liquides et suspensions par floculation lestee et decantation |
-
2001
- 2001-11-02 MX MXPA03003823A patent/MXPA03003823A/es unknown
- 2001-11-02 AU AU2009302A patent/AU2009302A/xx active Pending
- 2001-11-02 JP JP2002539266A patent/JP2004512937A/ja active Pending
- 2001-11-02 ES ES01992688T patent/ES2364628T3/es not_active Expired - Lifetime
- 2001-11-02 WO PCT/US2001/045595 patent/WO2002036500A2/en active Application Filing
- 2001-11-02 DK DK01992688.0T patent/DK1330414T3/da active
- 2001-11-02 AT AT01992688T patent/ATE499325T1/de not_active IP Right Cessation
- 2001-11-02 EP EP01992688A patent/EP1330414B9/en not_active Expired - Lifetime
- 2001-11-02 US US10/001,208 patent/US6919031B2/en not_active Expired - Lifetime
- 2001-11-02 KR KR1020037006058A patent/KR100851456B1/ko active IP Right Grant
- 2001-11-02 DE DE60144102T patent/DE60144102D1/de not_active Expired - Lifetime
- 2001-11-02 AU AU2002220093A patent/AU2002220093B2/en not_active Ceased
- 2001-11-02 BR BRPI0114877-0A patent/BR0114877B1/pt not_active IP Right Cessation
- 2001-11-02 CN CNB018183476A patent/CN1261369C/zh not_active Expired - Fee Related
-
2003
- 2003-04-01 ZA ZA200302544A patent/ZA200302544B/en unknown
- 2003-12-16 HK HK03109151.3A patent/HK1057740A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
MXPA03003823A (es) | 2003-07-11 |
BR0114877A (pt) | 2003-12-23 |
HK1057740A1 (en) | 2004-04-16 |
EP1330414B1 (en) | 2011-02-23 |
DE60144102D1 (de) | 2011-04-07 |
US20020088758A1 (en) | 2002-07-11 |
ZA200302544B (en) | 2004-04-01 |
BR0114877B1 (pt) | 2011-12-13 |
AU2009302A (en) | 2002-05-15 |
EP1330414A2 (en) | 2003-07-30 |
KR20030062324A (ko) | 2003-07-23 |
WO2002036500A3 (en) | 2003-02-20 |
ES2364628T3 (es) | 2011-09-08 |
AU2002220093B2 (en) | 2006-09-14 |
JP2004512937A (ja) | 2004-04-30 |
DK1330414T3 (da) | 2011-06-14 |
EP1330414B9 (en) | 2011-09-28 |
WO2002036500A2 (en) | 2002-05-10 |
KR100851456B1 (ko) | 2008-08-08 |
WO2002036500A9 (en) | 2004-05-13 |
CN1473135A (zh) | 2004-02-04 |
US6919031B2 (en) | 2005-07-19 |
ATE499325T1 (de) | 2011-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1261369C (zh) | 用于水和废水的处理方法和装置 | |
AU2002220093A1 (en) | Method and apparatus for treatment of water and wastewater | |
EP2104649B1 (en) | System and method for enhancing an activated sludge process | |
US8454831B2 (en) | Biological and ballasetd flocculation treatment of wastewater | |
US7291275B1 (en) | Method for clarifying industrial wastewater while minimizing sludge | |
EP0377603A1 (en) | PURIFICATION PROCESS. | |
KR101278230B1 (ko) | 급속 응집ㆍ응결 침강제를 이용한 오폐수 중의 총인/총질소 제거방법 및 그 장치 | |
US20240140837A1 (en) | Treatment of Liquid Streams Containing High Concentrations of Solids Using Ballasted Clarification | |
JP5509927B2 (ja) | 金属含有水の処理方法及び金属含有水の処理装置 | |
JP4272122B2 (ja) | 凝集沈殿水処理方法及び装置 | |
JPH04166280A (ja) | 浮上分離サイクロン装置 | |
JPH03118896A (ja) | 液状物質から固相を分離する方法、特に排水浄化方法 | |
JP2000334209A (ja) | 砂添加凝集沈澱装置 | |
JP2568729B2 (ja) | 汚水処理装置 | |
JP2715616B2 (ja) | 塗料汚水の浄化処理方法 | |
JPH09174067A (ja) | 粉末状光触媒による水の浄化方法 | |
KR200236077Y1 (ko) | 전처리 침전조와 부유여재 여과기를 이용한 폐수처리장치 | |
KR101286838B1 (ko) | 석탄침출폐수의 처리장치, 및 화학적 활성화처리법에 의한 석탄침출폐수의 정화방법 | |
CN116143323A (zh) | 一种炼化一体化废水的处理系统及处理方法 | |
KR20170119520A (ko) | 수처리 공정의 배출수 처리장치 및 처리방법 | |
JPH0724217A (ja) | 凝集濃縮装置と凝集濃縮方法 | |
CZ282022B6 (cs) | Způsob čištění odpadních vod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee |
Owner name: VEOLIA WATER SOLUTIONS + TECHNOLOGIES SUPPORT SASU Free format text: FORMER NAME: |
|
CP01 | Change in the name or title of a patent holder |
Address after: French CADIX Patentee after: Veolia Water Solutions & Technologies Supporting One Man Simplified Co., Ltd. Address before: French CADIX Patentee before: Otv SA |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060628 Termination date: 20191102 |
|
CF01 | Termination of patent right due to non-payment of annual fee |