CN1253895C - 磁存储装置的热辅助切换 - Google Patents
磁存储装置的热辅助切换 Download PDFInfo
- Publication number
- CN1253895C CN1253895C CNB011329130A CN01132913A CN1253895C CN 1253895 C CN1253895 C CN 1253895C CN B011329130 A CNB011329130 A CN B011329130A CN 01132913 A CN01132913 A CN 01132913A CN 1253895 C CN1253895 C CN 1253895C
- Authority
- CN
- China
- Prior art keywords
- heater wire
- memory element
- sdt
- array
- knot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 230000005415 magnetization Effects 0.000 description 25
- 239000004020 conductor Substances 0.000 description 13
- 238000013500 data storage Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/14—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
- G11C11/15—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
Abstract
通过加热存储元件(10)并把至少一种磁场(Hx,Hy)加到存储元件(10)上,在磁存储元件(10)上进行写操作。
Description
技术领域
本发明涉及信息存储装置。更明确地说,本发明涉及磁随机存取(″MRAM″)存储装置。
背景技术
考虑MRAM装置的例子,它包括:自旋相关隧道贯穿(SDT)结的电阻交叉点阵列;沿着SDT结行伸展的字线;沿着SDT结列伸展的位线。每个SDT结定位在字线和位线的交叉点。在任何给定时间,每个SDT结的磁化强度采取两种稳定的取向之一。这两种稳定的取向,即,平行和反平行取向,代表‘0’和‘1’的逻辑值。磁化强度的取向又影响SDT结的电阻。如果磁化强度取向是平行的,则SDT结的电阻是第一值(R)。如果磁化强度取向是反平行的,则SDT结的电阻是第二值(R+ΔR)。因此,可以通过检测SDT结的电阻状态来读取SDT结的磁化强度取向及其逻辑值。
通过向交叉在选定的SDT结的字线和位线提供写电流来执行在选定的SDT结上的写操作。所述电流建立两种外部磁场,当它们结合起来时,所述选定的SDT结的磁化强度取向从平行转换到反平行,反之亦然。
太小的写电流可能无法改变选定的SDT结的磁化强度取向。理论上,两个组合的外部磁场应该完全能够翻转选定的SDT结的磁化强度取向。不过实际上,组合的磁场并不总是能翻转磁化强度取向。如果选定的SDT结的磁化强度取向不被翻转,则产生写错误并且导致增加错误代码校正的负担。
只受到一种磁场作用的SDT结(也就是说,或者沿选定的字线或者沿选定的位线的SDT结)称为“半选定”SDT结。理论上,单一的磁场应该不能翻转SDT结的磁化强度取向。不过实际上,单一的磁场能够翻转磁化强度取向。如果半选定的SDT结的磁化强度取向被翻转,则产生不希望有的删除并且导致增加错误代码校正的负担。
有必要改善对SDT结写入的可靠性。更一般地说,有必要改善对MRAM装置的磁存储元件写入的可靠性。
发明内容
根据本发明的一个方面,通过加热存储元件并且施加至少一种磁场于存储元件来对磁存储元件执行写入。本发明的一种信息存储装置,它包括:
磁存储元件的阵列;以及
横过所述阵列伸展的加热线,所述加热线包括用于所述存储元件的加热元件和在所述加热元件之间的导电迹线。
根据以下结合附图所进行的详细描述,将明白本发明的其他方面和优点,所述附图以举例的方式说明本发明的原理。
附图说明
图1是对SDT结的图解说明;
图2a和2b是对SDT结的磁滞回线的图解说明;
图3是对能执行热辅助切换的MRAM装置的图解说明;
图4是对用于MRAM装置的加热线路的图解说明;
图5a、5b、5c和5d是对用于MRAM装置的不同型式的加热线路的图解说明;以及
图6是多级MRAM芯片的图解说明。
具体实施方式
如图所示,为了举例说明的目的,本发明具体表现于包括磁存储元件阵列的MRAM装置。在数据存储期间,MRAM装置执行选定的存储元件的热辅助切换。热辅助切换改善了MRAM装置中数据存储的可靠性。
MRAM装置的磁存储元件可以是其电阻值依赖于其磁膜状态的任何元件。这样的元件的例子包括磁隧道结(SDT结是磁隧道结的某种类型)和巨磁阻(″GMR″)自旋阀(spin valves)。为了说明,下边将以SDT结的形式描述所述存储元件。
参照如图1,图中示出SDT结10。SDT结10包括锁定层(pinnedlayer)12,其磁化强度取向在所述锁定层12的平面内、并且固定在这样的方向上,以便在所施加的磁场处在需要的范围内的情况下所述磁化强度不会旋转。SDT结10还包括其磁化强度未锁定的“自由”层14。相反,所述磁化强度可以在沿着位于自由层14的平面的轴(“简单”轴)的两个方向之一取向。如果锁定层12和自由层14的磁化强度的取向相同,则所述取向称为“平行”(用箭头P表示)。如果锁定层12和自由层14的磁化强度的取向相反,则所述取向称为“反平行”(用箭头A表示)。
锁定层12和自由层14被绝缘隧道阻挡层16隔开。绝缘隧道阻挡层16使得在锁定层12和自由层14之间可以出现量子隧道效应。这种隧道贯穿现象是与电子自旋相关的,使SDT结10的电阻随锁定层12和自由层14的磁化强度的相对取向而变。例如,如果锁定层12和自由层14的磁化强度取向是反平行的,则SDT结10的电阻是第一值(R),如果所述磁化强度取向是平行的,则SDT结10的电阻是第二值(R+ΔR)。
可以通过向连接到SDT结10的第一导体18和第二导体20提供电流(1y,1x)来把磁场(Hx,Hy)加到SDT结10上。如果导体18和20正交,则所施加的磁场(Hx,Hy)也是正交的。
当通过导体18和20的电流(1x,1y)足够大的时候,自由层14附近的组合磁场(Hy+Hx)使得自由层14的磁化强度的取向从平行转到反平行,反之亦然。例如足够大的电流1x将使磁化强度取向反平行,与此相反,足够大的电流1y使磁化强度取向平行。
可以这样选择电流的大小、使得组合磁场(Hx+Hy)超过自由层14的切换磁场,但是不超过锁定层12的切换磁场。
但是,如果SDT结10被加热,则写电流(1x,1y)中的一个或两者可能减小。磁膜的矫顽磁力随着温度的升高而减小。如图2a和2b中所示,升高SDT结10的温度会减小SDT结10的矫顽磁力(Hc)。图2a显示室温下的矫顽磁力(Hc),图2b显示比室温高50℃时的矫顽磁力(Hc)。在高温下,在较低的组合磁场(Hx+Hy)的情况下SDT结10从高电阻状态转换到低电阻状态,反之亦然。因此,加热SDT结10使写电流(1x 1y)之一或者两者的幅值减小。另一方面,如果写电流(1x,1y)的幅值不减小,则在存在组合磁场(Hx+Hy)的情况下SDT结10将更可靠地切换。可以改变温度和写电流以达到所需的切换可靠性。
可以在施加组合磁场(Hx+Hy)之前加热和取消加热,或者在施加组合磁场(Hx+Hy)的同时加热。可以把自由层14加热到高于环境温度10℃到50℃左右。更一般地说,最大的加热温度可以比截止(Blocking)温度TB(在此温度之上抗铁磁体层丧失其锁定特性)低50℃左右。
回到图1,可以通过第三导体22把热量加到自由层14上,导体22通过电绝缘热传导性材料(例如,氮化硅)层24与第一导体18隔开。虽然流过第三导体22的电流产生附加的磁场,但是,由于第三导体22离SDT结10足够远,使得附加的磁场不会对切换产生不利的影响。
尽管图1显示第三导体22在SDT结10上面,但是第三导体22也可以在SDT结10下面。甚至第三导体22既可以在SDT结10上面又可以在SDT结10下面。
现在参考图3,该图图解说明信息存储装置110,它包括存储元件114的电阻交叉点阵列112。存储元件114排列成行和列,行沿着x方向伸展,列沿着y方向伸展。图中只显示了较少的存储元件114以简化信息存储装置110的图解说明。实际上,可以使用任何规模的阵列。
起字线116作用的迹线沿着x方向在存储单元阵列112一侧的平面上伸展。起位线118作用的迹线沿着y方向在存储单元阵列112相邻侧的平面上伸展。阵列112的每一行可以有一根字线116,阵列112的每一列可以有一根位线118。每个存储元件114都位于字线116和位线118的交叉点上。
起加热线120作用的迹线沿着穿过阵列112的对角线伸展。加热线120可以配置在阵列112顶端或者阵列112底部,或者配置在阵列112顶端和底部。加热线120的典型的结构将结合图4在下面进行描述。
信息存储装置110包括:读电路,用于在读操作期间检测选定的存储元件114的电阻状态以及写电路,用于在写操作期间向所选择的字线116、位线118和加热线120提供写电流。为了简化信息存储装置的110的图解说明,读电路未显示。
写电路包括:通过第一组晶体管124连接到字线116的第一电流源122;通过第二组晶体管128连接到位线118的第二电流源126;和通过第三组晶体管132连接到加热线120的第三电流源130。
在写操作期间,解码器134对地址Ax和Ay解码以选择字线116、位线118和加热线120。解码器134通过命令第一组晶体管124将字线116连接到第一电流源122来选择字线116,通过命令第二组的晶体管128将位线118连接到第二电流源126来选择位线118,以及通过命令第三组的晶体管132将加热线120连接到第三电流源130来选择加热线120。电流流过选定的字线116、位线118和加热线120。选定的字线116和位线118的交叉点上的存储元件114被暴露在组合的磁场(Hx+Hy)中。所述选定的存储元件114还被选定的加热线120加热。沿着对角线伸展的加热线120的优点是选定的元件被加热,但是半选定的元件不被加热。
图3显示字线116的单一电流源122、位线118的单一电流源126和加热线120的单一电流源130。在大型阵列中,可以为字线116配备多个电流源122,为位线118配备多个电流源126以及为加热线120配备多个电流源130,由此每个电流源122被多根字线116共享,每个电流源126被多根位线118共享,每个电流源130被多根加热线120共享。这使得可以对多个存储元件114进行同步写入。
写电路的其他元件未显示。例如,图3未示出用于把字线116、位线118和加热线120的“自由端”连接到参考电压上的晶体管。此外,图3表示的晶体管124,128和132以及电流源是简化的写电路。用来向字线116、位线118和加热线120提供电流的电路可以以各种不同的方式实现。
现在参照图4,图中显示了加热线120的典型结构。加热线120包括被钨、铂或其他高电阻金属制的加热元件120b隔开的铜迹线120a。加热元件120b设置在存储元件114之上。
图5a、5b、5c和5d显示加热线120的不同型式。在这些型式中,加热线120沿着阵列112的对角线伸展。而且,各加热线组120被连接在一起以形成一些回路。向回路的一端提供电流,而回路的另一端连接到参考电压上。这减少了晶体管的数目。还可以把热量加到被同一位线交叉的多个元件上。
图5a显示以多路径的形式排列的加热线120。每条路径包括一对串联连接的加热线120。每条路径的一端连接到参考电压上,而每条路径的另一端通过晶体管132与电流源130连接。在这种配置中,选定的存储元件114被加热而半选定的存储元件114不被加热。这种配置改善了半选定余量,减少了发生不希望有的删除的可能性。
图5b显示串联成单一路径的多条加热线120。单一路径的一端连接到参考电压上,而单一路径的另一端通过晶体管132与电流源130连接。每一条加热线120都覆盖相邻行的存储元件114。
图5c显示与图5b类似的型式,除了加热线120的角度不同之外。图5c的加热线不覆盖相邻行的存储元件114。代之以,每一条加热线120覆盖每隔一列的存储元件114。
图5d显示第一端连接在一起的多条加热线。开关132a允许向加热线的选定的第二端提供电流,而开关132b允许把另一个选定的第二端连接到参考电压上。这种配置允许选择任何两条加热线120形成路径。例如,可以选择开关132a和132b形成虚线所示的电流路径。
可以选择开关132a和132b使电流并联流过多条加热线120。这种配置允许同步写入。
在大型阵列中,可以重复上述型式的存储块。例如,大型阵列可以包括多个写电路和连接到每个写电路的位线组。加热线120的型式可以应用于每一个位线组。
现在参考图6,该图显示包含多层或多平面电阻交叉点存储单元阵列202的芯片200。各平面202重叠在基片204上,并被绝缘材料(未显示)如二氧化硅分开。读和写电路可以制造在基片204上。读和写电路可以包括附加的多路转换器用于选择从其中读出数据和向其写入数据的各层。电流源可以在芯片上或不在芯片上。
根据本发明的信息存储装置可以广泛应用于各方面。例如,所述信息存储装置可以用于计算机中的长期数据存储。这种装置和硬磁盘机以及其他传统的长期的数据存储装置相比有很多的优势(例如,更快的速度,更小的尺寸)。
根据本发明的信息存储装置可以在数字摄相机中用于数字图象的长期存储。根据本发明的信息存储装置甚至可以在计算机中代替动态随机存取存储器和其他的快速,短期的存储器。
根据本发明的信息存储装置不限于通过施加两种正交的磁场到存储元件来切换存储元件。例如,选定的存储元件也可以只通过加热和单一的磁场切换。
本发明不限于以上描述和图解说明的特定的实施例。作为替代,本发明根据以下权利要求书进行解释。
Claims (7)
1.一种信息存储装置(110),它包括:
磁存储元件(114)的阵列(112);以及
横过所述阵列(112)伸展的加热线(120),所述加热线(120)包括用于所述存储元件的加热元件和在所述加热元件之间的导电迹线。
2.权利要求1的装置,其特征在于:所述加热线(120)在穿过所述阵列(112)的对角方向上伸展。
3.权利要求1的装置,其特征在于:加热线组(120)互相连接以形成至少一条路径。
4.权利要求3的装置,其特征在于:每个组的所述各加热线(120)是串联连接的。
5.权利要求1的装置,其特征在于:所述加热线(120)的第一端互相连接。
6.权利要求1的装置,其特征在于还包括开关(124、128、132),用于允许向所述加热线(120)的选定端提供电流。
7.权利要求1的装置,还包括写电路,所述写电路适于利用所述加热元件(120b)将选定的存储元件(114)的温度升高到高于环境温度最大达10℃至50℃左右,并且在温度升高时施加写磁场。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/758757 | 2001-01-11 | ||
US09/758,757 US6603678B2 (en) | 2001-01-11 | 2001-01-11 | Thermally-assisted switching of magnetic memory elements |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1365117A CN1365117A (zh) | 2002-08-21 |
CN1253895C true CN1253895C (zh) | 2006-04-26 |
Family
ID=25052991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011329130A Expired - Lifetime CN1253895C (zh) | 2001-01-11 | 2001-09-03 | 磁存储装置的热辅助切换 |
Country Status (8)
Country | Link |
---|---|
US (2) | US6603678B2 (zh) |
EP (1) | EP1225592B1 (zh) |
JP (1) | JP4194781B2 (zh) |
KR (2) | KR20030009054A (zh) |
CN (1) | CN1253895C (zh) |
DE (1) | DE60114359T2 (zh) |
HK (1) | HK1048884B (zh) |
TW (1) | TW519644B (zh) |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724674B2 (en) * | 2000-11-08 | 2004-04-20 | International Business Machines Corporation | Memory storage device with heating element |
US6603678B2 (en) * | 2001-01-11 | 2003-08-05 | Hewlett-Packard Development Company, L.P. | Thermally-assisted switching of magnetic memory elements |
US6687178B1 (en) * | 2001-02-23 | 2004-02-03 | Western Digital (Fremont), Inc. | Temperature dependent write current source for magnetic tunnel junction MRAM |
JP2002368196A (ja) * | 2001-05-30 | 2002-12-20 | Internatl Business Mach Corp <Ibm> | メモリセル、記憶回路ブロック、データの書き込み方法及びデータの読み出し方法 |
FR2829867B1 (fr) | 2001-09-20 | 2003-12-19 | Centre Nat Rech Scient | Memoire magnetique a selection a l'ecriture par inhibition et procede pour son ecriture |
JP4218527B2 (ja) * | 2002-02-01 | 2009-02-04 | 株式会社日立製作所 | 記憶装置 |
US6912152B2 (en) | 2002-02-22 | 2005-06-28 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
SG115462A1 (en) * | 2002-03-12 | 2005-10-28 | Inst Data Storage | Multi-stage per cell magnetoresistive random access memory |
KR100829557B1 (ko) * | 2002-06-22 | 2008-05-14 | 삼성전자주식회사 | 열자기 자발 홀 효과를 이용한 자기 램 및 이를 이용한데이터 기록 및 재생방법 |
JP4078912B2 (ja) * | 2002-07-26 | 2008-04-23 | ソニー株式会社 | 磁気記憶装置 |
US6791865B2 (en) * | 2002-09-03 | 2004-09-14 | Hewlett-Packard Development Company, L.P. | Memory device capable of calibration and calibration methods therefor |
US7023723B2 (en) * | 2002-11-12 | 2006-04-04 | Nve Corporation | Magnetic memory layers thermal pulse transitions |
JP3906145B2 (ja) * | 2002-11-22 | 2007-04-18 | 株式会社東芝 | 磁気ランダムアクセスメモリ |
DE10301092B4 (de) * | 2003-01-14 | 2006-06-29 | Infineon Technologies Ag | MRAM-Speicherzelle |
KR100615600B1 (ko) * | 2004-08-09 | 2006-08-25 | 삼성전자주식회사 | 고집적 자기램 소자 및 그 제조방법 |
US6952364B2 (en) * | 2003-03-03 | 2005-10-04 | Samsung Electronics Co., Ltd. | Magnetic tunnel junction structures and methods of fabrication |
JP2004288311A (ja) * | 2003-03-24 | 2004-10-14 | Toshiba Corp | 半導体記憶装置及びその制御方法 |
WO2005001490A2 (en) * | 2003-06-23 | 2005-01-06 | Nve Corporation | Thermally operated switch control memory cell |
US6906941B2 (en) * | 2003-07-22 | 2005-06-14 | Hewlett-Packard Development Company, L.P. | Magnetic memory structure |
JP2005064050A (ja) * | 2003-08-14 | 2005-03-10 | Toshiba Corp | 半導体記憶装置及びそのデータ書き込み方法 |
US6961263B2 (en) * | 2003-09-08 | 2005-11-01 | Hewlett-Packard Development Company, L.P. | Memory device with a thermally assisted write |
US6865105B1 (en) | 2003-09-22 | 2005-03-08 | Hewlett-Packard Development Company, L.P. | Thermal-assisted switching array configuration for MRAM |
KR100615089B1 (ko) * | 2004-07-14 | 2006-08-23 | 삼성전자주식회사 | 낮은 구동 전류를 갖는 자기 램 |
KR100568512B1 (ko) * | 2003-09-29 | 2006-04-07 | 삼성전자주식회사 | 열발생층을 갖는 자기열 램셀들 및 이를 구동시키는 방법들 |
US7369428B2 (en) * | 2003-09-29 | 2008-05-06 | Samsung Electronics Co., Ltd. | Methods of operating a magnetic random access memory device and related devices and structures |
KR100653708B1 (ko) * | 2004-11-03 | 2006-12-04 | 삼성전자주식회사 | 발열체를 갖는 자기 램 소자의 구동 방법들 |
US7372722B2 (en) * | 2003-09-29 | 2008-05-13 | Samsung Electronics Co., Ltd. | Methods of operating magnetic random access memory devices including heat-generating structures |
KR100835275B1 (ko) * | 2004-08-12 | 2008-06-05 | 삼성전자주식회사 | 스핀 주입 메카니즘을 사용하여 자기램 소자를 구동시키는방법들 |
US6987692B2 (en) * | 2003-10-03 | 2006-01-17 | Hewlett-Packard Development Company, L.P. | Magnetic memory having angled third conductor |
FR2860910B1 (fr) * | 2003-10-10 | 2006-02-10 | Commissariat Energie Atomique | Dispositif a jonction tunnel magnetique et procede d'ecriture/lecture d'un tel dispositif |
US6911685B2 (en) | 2003-10-10 | 2005-06-28 | Hewlett-Packard Development Company, L.P. | Thermally-assisted magnetic memory structures |
US20060281258A1 (en) * | 2004-10-06 | 2006-12-14 | Bernard Dieny | Magnetic tunnel junction device and writing/reading method for said device |
WO2005036558A1 (en) * | 2003-10-14 | 2005-04-21 | Agency For Science, Technology And Research | Magnetic memory device |
US6819586B1 (en) * | 2003-10-24 | 2004-11-16 | Hewlett-Packard Development Company, L.P. | Thermally-assisted magnetic memory structures |
US7522446B2 (en) * | 2003-10-31 | 2009-04-21 | Samsung Electronics Co., Ltd. | Heating MRAM cells to ease state switching |
US7257018B2 (en) * | 2003-12-12 | 2007-08-14 | Macronix International Co., Ltd. | Method and apparatus for a low write current MRAM having a write magnet |
US6925000B2 (en) * | 2003-12-12 | 2005-08-02 | Maglabs, Inc. | Method and apparatus for a high density magnetic random access memory (MRAM) with stackable architecture |
US7193889B2 (en) | 2004-02-11 | 2007-03-20 | Hewlett-Packard Development Company, Lp. | Switching of MRAM devices having soft magnetic reference layers |
US7110287B2 (en) * | 2004-02-13 | 2006-09-19 | Grandis, Inc. | Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer |
FR2866750B1 (fr) * | 2004-02-23 | 2006-04-21 | Centre Nat Rech Scient | Memoire magnetique a jonction tunnel magnetique et procede pour son ecriture |
US7057920B2 (en) * | 2004-04-26 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Two conductor thermally assisted magnetic memory |
US7102921B2 (en) * | 2004-05-11 | 2006-09-05 | Hewlett-Packard Development Company, L.P. | Magnetic memory device |
US7372116B2 (en) | 2004-06-16 | 2008-05-13 | Hitachi Global Storage Technologies Netherlands B.V. | Heat assisted switching in an MRAM cell utilizing the antiferromagnetic to ferromagnetic transition in FeRh |
NO20042771D0 (no) * | 2004-06-30 | 2004-06-30 | Thin Film Electronics Asa | Optimering av driftstemperatur i et ferroelektrisk eller elektret minne |
US7061037B2 (en) * | 2004-07-06 | 2006-06-13 | Maglabs, Inc. | Magnetic random access memory with multiple memory layers and improved memory cell selectivity |
KR100660539B1 (ko) * | 2004-07-29 | 2006-12-22 | 삼성전자주식회사 | 자기 기억 소자 및 그 형성 방법 |
US7075818B2 (en) * | 2004-08-23 | 2006-07-11 | Maglabs, Inc. | Magnetic random access memory with stacked memory layers having access lines for writing and reading |
FR2880177B1 (fr) * | 2004-12-23 | 2007-05-18 | Commissariat Energie Atomique | Memoire pmc ayant un temps de retention et une vitesse d'ecriture ameliores |
US7196955B2 (en) * | 2005-01-12 | 2007-03-27 | Hewlett-Packard Development Company, L.P. | Hardmasks for providing thermally assisted switching of magnetic memory elements |
US7397074B2 (en) * | 2005-01-12 | 2008-07-08 | Samsung Electronics Co., Ltd. | RF field heated diodes for providing thermally assisted switching to magnetic memory elements |
US7486545B2 (en) * | 2005-11-01 | 2009-02-03 | Magic Technologies, Inc. | Thermally assisted integrated MRAM design and process for its manufacture |
US7633039B2 (en) * | 2006-08-31 | 2009-12-15 | Infineon Technologies Ag | Sensor device and a method for manufacturing the same |
US8100228B2 (en) * | 2007-10-12 | 2012-01-24 | D B Industries, Inc. | Portable anchorage assembly |
FR2922368A1 (fr) * | 2007-10-16 | 2009-04-17 | Commissariat Energie Atomique | Procede de fabrication d'une memoire cbram ayant une fiabilite amelioree |
US7706176B2 (en) * | 2008-01-07 | 2010-04-27 | Qimonda Ag | Integrated circuit, cell arrangement, method for manufacturing an integrated circuit and for reading a memory cell status, memory module |
US7804709B2 (en) * | 2008-07-18 | 2010-09-28 | Seagate Technology Llc | Diode assisted switching spin-transfer torque memory unit |
US8223532B2 (en) | 2008-08-07 | 2012-07-17 | Seagate Technology Llc | Magnetic field assisted STRAM cells |
US8054677B2 (en) | 2008-08-07 | 2011-11-08 | Seagate Technology Llc | Magnetic memory with strain-assisted exchange coupling switch |
US7746687B2 (en) | 2008-09-30 | 2010-06-29 | Seagate Technology, Llc | Thermally assisted multi-bit MRAM |
US8487390B2 (en) * | 2008-10-08 | 2013-07-16 | Seagate Technology Llc | Memory cell with stress-induced anisotropy |
US20100091564A1 (en) * | 2008-10-10 | 2010-04-15 | Seagate Technology Llc | Magnetic stack having reduced switching current |
US8217478B2 (en) | 2008-10-10 | 2012-07-10 | Seagate Technology Llc | Magnetic stack with oxide to reduce switching current |
US7978505B2 (en) * | 2009-01-29 | 2011-07-12 | Headway Technologies, Inc. | Heat assisted switching and separated read-write MRAM |
US8053255B2 (en) | 2009-03-03 | 2011-11-08 | Seagate Technology Llc | STRAM with compensation element and method of making the same |
US7916528B2 (en) * | 2009-03-30 | 2011-03-29 | Seagate Technology Llc | Predictive thermal preconditioning and timing control for non-volatile memory cells |
US8724393B2 (en) | 2011-05-02 | 2014-05-13 | Macronix International Co., Ltd. | Thermally assisted flash memory with diode strapping |
US8611141B2 (en) | 2011-09-21 | 2013-12-17 | Crocus Technology Inc. | Magnetic random access memory devices including heating straps |
US8611140B2 (en) * | 2011-09-21 | 2013-12-17 | Crocus Technology Inc. | Magnetic random access memory devices including shared heating straps |
US8902643B2 (en) * | 2011-10-10 | 2014-12-02 | Crocus Technology Inc. | Apparatus, system, and method for writing multiple magnetic random access memory cells with a single field line |
US9007818B2 (en) | 2012-03-22 | 2015-04-14 | Micron Technology, Inc. | Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication |
US9054030B2 (en) | 2012-06-19 | 2015-06-09 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
US8923038B2 (en) | 2012-06-19 | 2014-12-30 | Micron Technology, Inc. | Memory cells, semiconductor device structures, memory systems, and methods of fabrication |
US9379315B2 (en) | 2013-03-12 | 2016-06-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, and memory systems |
US9368714B2 (en) | 2013-07-01 | 2016-06-14 | Micron Technology, Inc. | Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems |
US9466787B2 (en) | 2013-07-23 | 2016-10-11 | Micron Technology, Inc. | Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9269888B2 (en) | 2014-04-18 | 2016-02-23 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
EP3023803B1 (en) * | 2014-11-19 | 2020-03-18 | Crocus Technology S.A. | MLU cell for sensing an external magnetic field and a magnetic sensor device comprising the MLU cell |
US9768377B2 (en) | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
KR20170132510A (ko) | 2016-05-24 | 2017-12-04 | 에스케이하이닉스 주식회사 | 저항변화 메모리 장치 및 동작 방법 |
US12073908B2 (en) * | 2021-03-12 | 2024-08-27 | Micron Technology, Inc. | On-die heater devices for memory devices and memory modules |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1524309A (fr) * | 1967-03-29 | 1968-05-10 | Centre Nat Rech Scient | Mémoires d'informations binaires à structures magnétiques en couches minces |
JPS5720463A (en) * | 1980-07-14 | 1982-02-02 | Toshiba Corp | Semiconductor memory device |
JPS6150277A (ja) | 1984-08-18 | 1986-03-12 | Matsushita Electric Ind Co Ltd | 磁気記憶素子およびその製造方法 |
AU600576B2 (en) * | 1987-04-24 | 1990-08-16 | Sony Corporation | Thermomagnetic recording method applying power modulated laser on a magnetically coupled multi-layer structure of perpendicular anisotropy magnetic film |
JP2574911B2 (ja) | 1990-01-10 | 1997-01-22 | シャープ株式会社 | 光磁気記録方法 |
JPH0423293A (ja) * | 1990-05-18 | 1992-01-27 | Toshiba Corp | 磁気メモリセル及び磁性薄膜 |
US5169485A (en) * | 1991-03-07 | 1992-12-08 | Bell Communications Research, Inc. | Method for the preparation of epitaxial ferromagnetic manganese aluminum magnetic memory element |
JP2815100B2 (ja) | 1991-10-30 | 1998-10-27 | シャープ株式会社 | 不揮発性記録装置 |
US5444651A (en) * | 1991-10-30 | 1995-08-22 | Sharp Kabushiki Kaisha | Non-volatile memory device |
US5396455A (en) * | 1993-04-30 | 1995-03-07 | International Business Machines Corporation | Magnetic non-volatile random access memory |
JP3501416B2 (ja) * | 1994-04-28 | 2004-03-02 | 忠弘 大見 | 半導体装置 |
JPH0927154A (ja) * | 1995-07-10 | 1997-01-28 | Fujitsu Ltd | 光磁気ディスク装置 |
JP3585674B2 (ja) * | 1996-11-21 | 2004-11-04 | ローム株式会社 | 半導体記憶装置 |
US5761110A (en) * | 1996-12-23 | 1998-06-02 | Lsi Logic Corporation | Memory cell capable of storing more than two logic states by using programmable resistances |
DE69835475D1 (de) * | 1997-04-28 | 2006-09-21 | Canon Kk | Magnetisches Dünnfilmspeicherelement unter Verwendung des GMR-Effekts und magnetischer Dünnfilmspeicher |
US5933365A (en) * | 1997-06-19 | 1999-08-03 | Energy Conversion Devices, Inc. | Memory element with energy control mechanism |
US5936882A (en) * | 1998-03-31 | 1999-08-10 | Motorola, Inc. | Magnetoresistive random access memory device and method of manufacture |
US5982660A (en) | 1998-08-27 | 1999-11-09 | Hewlett-Packard Company | Magnetic memory cell with off-axis reference layer orientation for improved response |
JP4129090B2 (ja) | 1998-10-08 | 2008-07-30 | Tdk株式会社 | 磁性薄膜メモリ素子および磁性薄膜メモリ |
US6016290A (en) | 1999-02-12 | 2000-01-18 | Read-Rite Corporation | Read/write head with shifted waveguide |
JP2000285668A (ja) | 1999-03-26 | 2000-10-13 | Univ Nagoya | 磁気メモリデバイス |
JP2000349217A (ja) | 1999-06-09 | 2000-12-15 | Matsushita Electric Ind Co Ltd | 電子部品、この電子部品を実装した電子機器およびその製造方法 |
WO2000079540A1 (en) | 1999-06-18 | 2000-12-28 | Nve Corporation | Magnetic memory coincident thermal pulse data storage |
US6163477A (en) | 1999-08-06 | 2000-12-19 | Hewlett Packard Company | MRAM device using magnetic field bias to improve reproducibility of memory cell switching |
US6188615B1 (en) * | 1999-10-29 | 2001-02-13 | Hewlett-Packard Company | MRAM device including digital sense amplifiers |
JP3910372B2 (ja) | 2000-03-03 | 2007-04-25 | インターナショナル・ビジネス・マシーンズ・コーポレーション | ストレージ・システム及び書き込み方法 |
US6385082B1 (en) * | 2000-11-08 | 2002-05-07 | International Business Machines Corp. | Thermally-assisted magnetic random access memory (MRAM) |
US6603678B2 (en) | 2001-01-11 | 2003-08-05 | Hewlett-Packard Development Company, L.P. | Thermally-assisted switching of magnetic memory elements |
US6801450B2 (en) * | 2002-05-22 | 2004-10-05 | Hewlett-Packard Development Company, L.P. | Memory cell isolation |
US6911685B2 (en) * | 2003-10-10 | 2005-06-28 | Hewlett-Packard Development Company, L.P. | Thermally-assisted magnetic memory structures |
US6819586B1 (en) * | 2003-10-24 | 2004-11-16 | Hewlett-Packard Development Company, L.P. | Thermally-assisted magnetic memory structures |
US6930369B2 (en) * | 2003-11-14 | 2005-08-16 | Hewlett-Packard Development Company, L.P. | Thin film device and a method of providing thermal assistance therein |
US7196955B2 (en) * | 2005-01-12 | 2007-03-27 | Hewlett-Packard Development Company, L.P. | Hardmasks for providing thermally assisted switching of magnetic memory elements |
US7180770B2 (en) * | 2005-03-24 | 2007-02-20 | Hewlett-Packard Development Company, L.P. | Series diode thermally assisted MRAM |
-
2001
- 2001-01-11 US US09/758,757 patent/US6603678B2/en not_active Expired - Lifetime
- 2001-07-24 TW TW090118026A patent/TW519644B/zh not_active IP Right Cessation
- 2001-09-03 CN CNB011329130A patent/CN1253895C/zh not_active Expired - Lifetime
- 2001-12-07 DE DE60114359T patent/DE60114359T2/de not_active Expired - Lifetime
- 2001-12-07 EP EP01310276A patent/EP1225592B1/en not_active Expired - Lifetime
- 2001-12-18 JP JP2001384427A patent/JP4194781B2/ja not_active Expired - Fee Related
-
2002
- 2002-01-10 KR KR1020020001482A patent/KR20030009054A/ko not_active Application Discontinuation
- 2002-12-10 US US10/315,748 patent/US7339817B2/en not_active Expired - Lifetime
-
2003
- 2003-01-28 HK HK03100717.9A patent/HK1048884B/zh not_active IP Right Cessation
-
2008
- 2008-09-05 KR KR1020080087866A patent/KR100901488B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE60114359D1 (de) | 2005-12-01 |
KR20030009054A (ko) | 2003-01-29 |
DE60114359T2 (de) | 2006-06-22 |
US20030123282A1 (en) | 2003-07-03 |
US6603678B2 (en) | 2003-08-05 |
HK1048884A1 (en) | 2003-04-17 |
KR100901488B1 (ko) | 2009-06-08 |
HK1048884B (zh) | 2006-12-22 |
EP1225592B1 (en) | 2005-10-26 |
EP1225592A3 (en) | 2003-01-22 |
EP1225592A2 (en) | 2002-07-24 |
KR20080089319A (ko) | 2008-10-06 |
TW519644B (en) | 2003-02-01 |
JP2002245774A (ja) | 2002-08-30 |
CN1365117A (zh) | 2002-08-21 |
JP4194781B2 (ja) | 2008-12-10 |
US20020089874A1 (en) | 2002-07-11 |
US7339817B2 (en) | 2008-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1253895C (zh) | 磁存储装置的热辅助切换 | |
JP4700259B2 (ja) | 共通の導線を共有する一対の磁気ビットを有するメモリ素子アレイ | |
US6097626A (en) | MRAM device using magnetic field bias to suppress inadvertent switching of half-selected memory cells | |
US7149106B2 (en) | Spin-transfer based MRAM using angular-dependent selectivity | |
CN1213453C (zh) | 包含阻塞寄生路径电流的共享设备的交叉点存储器阵列 | |
US7180770B2 (en) | Series diode thermally assisted MRAM | |
US7589994B2 (en) | Methods of writing data to magnetic random access memory devices with bit line and/or digit line magnetic layers | |
CN1930628A (zh) | 用于磁隧道结的独立写入和读取访问构造 | |
US6466471B1 (en) | Low power MRAM memory array | |
CN1393887A (zh) | 容短接存储单元的电阻交叉点阵列 | |
US8164940B2 (en) | Read/write structures for a three dimensional memory | |
US20130094282A1 (en) | Multi-bit spin-momentum-transfer magnetoresistence random access memory with single magnetic-tunnel-junction stack | |
CN1516187A (zh) | 电阻交叉点阵列中多比特存储单元的读操作 | |
US20060062067A1 (en) | Magnetoresistive memory cell array and mram memory comprising such array | |
JP2005526351A (ja) | 読み出し信号が最大で且つ電磁妨害を低減するmramセルおよびアレイ構造 | |
US6836429B2 (en) | MRAM having two write conductors | |
CN113451355B (zh) | 基于自旋轨道矩的磁性存储器件 | |
US20090279354A1 (en) | Stacked Magnetic Devices | |
KR20050085158A (ko) | 자기 저항 메모리 셀 어레이, 그의 기록 방법과 제조 방법및 비휘발성 메모리 | |
US7397098B2 (en) | Using sense lines to thermally control the state of an MRAM | |
US6760250B2 (en) | Magnetic random access memory | |
JP2004006861A (ja) | 寄生電流を低減した磁気ランダムアクセスメモリ | |
CN1748317A (zh) | 具有在端部区域处于稳定磁状态的磁写入线的mram单元 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SAMSUNG ELECTRONICS CO., LTD Free format text: FORMER OWNER: HEWLETT-PACKARD DEVELOPMENT COMPANY Effective date: 20071228 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20071228 Address after: Gyeonggi Do, South Korea Patentee after: Samsung Electronics Co.,Ltd. Address before: California, USA Patentee before: Hewlett-Packard Co. |
|
CX01 | Expiry of patent term |
Granted publication date: 20060426 |
|
CX01 | Expiry of patent term |