JP2004006861A - 寄生電流を低減した磁気ランダムアクセスメモリ - Google Patents

寄生電流を低減した磁気ランダムアクセスメモリ Download PDF

Info

Publication number
JP2004006861A
JP2004006861A JP2003129164A JP2003129164A JP2004006861A JP 2004006861 A JP2004006861 A JP 2004006861A JP 2003129164 A JP2003129164 A JP 2003129164A JP 2003129164 A JP2003129164 A JP 2003129164A JP 2004006861 A JP2004006861 A JP 2004006861A
Authority
JP
Japan
Prior art keywords
magnetic
layer
nmtj
mram
tunnel junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003129164A
Other languages
English (en)
Inventor
K Smith Kenneth
ケネス・ケイ・スミス
Andrew Vanbrocklin
アンドリュー・ヴァンブロックリン
Peter J Fricke
ピーター・ジェイ・フリッケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2004006861A publication Critical patent/JP2004006861A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】MRAMテ゛ハ゛イスの電力消費及び寄生電流のレヘ゛ルを低減すること。
【解決手段】テ゛ータを格納するためのシステムは、複数のメモリセル(102)を有する磁気ランタ゛ムアクセスメモリ(MRAM)テ゛ハ゛イス(500)を含む。各メモリセル(102)は、直列に接続された磁気トンネル接合(MTJ)(202)と非磁気トンネル接合(NMTJ)(204)とを含む。磁気トンネル接合(202)は論理値ハイ(例えば1)又は論理値ロー(例えば0)に対応するヒ゛ット値を格納する。非磁気トンネル接合(204)は、メモリセル(102)が読み出される際には小さい抵抗を提供し、メモリセル(102)が読み出されない際にはかなり高い抵抗を提供する。結果として、読み出されないメモリセル(102)を介して漏れる寄生電流のレヘ゛ルは、無視できる。
【選択図】図6

Description

【0001】
【発明の属する技術分野】
本発明はデータ記憶デバイスに関する。より具体的には、本発明は、寄生電流を低減した磁気ランダムアクセスメモリ(MRAM)に関する。
【0002】
【従来の技術】
磁気ランダムアクセスメモリ(MRAM)は、長期データ記憶のために検討されている不揮発性メモリである。MRAMデバイスにおいて実行される読出しおよび書込み動作は、ハードドライブのような従来の長期記憶装置において実行される読出しおよび書込み動作よりも数桁だけ速い。さらに、MRAMデバイスは、ハードドライブおよび他の従来の長期記憶装置よりもコンパクトであり、消費電力が少ない。
【0003】
一般的なMRAMデバイスは、メモリセルのアレイを含む。ワード線がメモリセルの行に沿って延在し、ビット線がメモリセルの列に沿って延在する。各メモリセルは1つのワード線と1つのビット線との交点に配置される。メモリセルは、磁化の向きとして1ビットの情報を格納する。各メモリセルの磁化は常時、2つの安定した向きのうちの一方をとる。これらの2つの安定した向き、平行および反平行は、「0」および「1」の論理値を表す。
【0004】
磁化の向きは、スピン依存トンネル接合デバイスのようなメモリセルの抵抗に影響を及ぼす。たとえば、メモリセルの抵抗は、磁化の向きが平行である場合には第1の値Rであり、磁化の向きが平行から反平行に変更される場合には第2の値R+ΔRに増加する。選択されたメモリセルの磁化の向き、それゆえメモリセルの論理状態は、選択されたメモリセルの抵抗状態をセンシングすることにより読み出され得る。
【0005】
アレイ内の1つのメモリセルの抵抗状態をセンシングすることは、信頼できない可能性がある。アレイ内の全てのメモリセルは、多数の並列な経路を介して互いに結合される。1つの交点において見られる抵抗は、他の行および列のメモリセルの抵抗に並列なその交点にあるメモリセルの抵抗に等しい(メモリセルのアレイは、交点抵抗網として特徴付けられる)。
【0006】
さらに、センシングされているメモリセルが、格納された磁化に起因して異なる抵抗状態を有する場合には、小さな電圧差が生じる可能性がある。この小さな電圧差は、寄生電流または「スニークパス」電流を引き起こす可能性がある。寄生電流は、抵抗状態のセンシングを妨害する可能性がある。
【0007】
【発明が解決しようとする課題】
したがって、従来技術のMRAMデバイスに関連したこれらの問題および/または他の問題に対処するシステムと方法が必要とされている。
【0008】
【課題を解決するための手段】
本発明は、データを格納するためのシステムおよび方法を提供する。本発明の一実施形態では、磁気ランダムアクセスメモリ(MRAM)セルは、磁気トンネル接合と、非磁気トンネル接合(NMTJ)とを含む。別の実施形態では、MRAMデバイスは、MRAMセルに格納されたビット値を読み出すための電流を伝えるための第1のワイヤと、MRAMセルに格納されたビット値を読み出すための電流を伝えるための第2のワイヤと、第1のワイヤと第2のワイヤとの間に配置された第1の磁性層と、第1のワイヤと第2のワイヤとの間に配置された第2の磁性層と、第1の磁性層と第2の磁性層との間に配置された第1の絶縁層と、第2の磁性層と第2のワイヤとの間に配置された第2の絶縁層とを含む。
【0009】
さらに別の実施形態では、磁気ランダムアクセスメモリ(MRAM)セルに格納された値を読み出すための方法は、メモリセルの磁気トンネル接合の両端に電圧差を与えることと、メモリセルの非磁気トンネル接合(NMTJ)の両端に電圧差を与えることとを含む。
【0010】
【発明の実施の形態】
本発明は、添付図面を参照することによりさらに理解を進めることができる。図面内の構成要素は、必ずしも一定の縮尺で描かれているわけではなく、代わりに本発明の原理を明瞭に例示することに重点が置かれている。さらに、図面において、類似の参照番号は、いくつかの図面を通して対応する部分を示す。
【0011】
本明細書にさらに詳細に説明されるように、本発明のシステムおよび方法は、MRAMデバイスの電力消費および寄生電流のレベルを低減することができる。好適には、これは、MRAMメモリセル内に非磁性トンネル接合を含むことにより達成される。一実施形態では、非磁性トンネル接合は、2つの導電層と、それらの導電層間に配置された絶縁層とを含む。
【0012】
ここで図1を参照すると、MRAMセル102のアレイ100が示される。MRAMセル102は行および列に配列され、行はx方向に沿って延在し、列はy方向に沿って延在する。本発明の説明を簡単にするために、比較的少数のMRAMセル102のみが示される。実際には、任意のサイズのアレイを使用できる。
【0013】
ワード線104として機能するトレースは、MRAMセルアレイ100の一方の側にある面内でx方向に沿って延在する。ビット線106として機能するトレースは、MRAMセルアレイ100の反対側にある面内でy方向に沿って延在する。代替の実施形態では、ワード線104はビット線106に垂直でなくてもよい。特定の実施形態によれば、各ワード線104またはビット線106を用いて、書込み電流および/または読出し電流を流すことができる。アレイ100の各行に対して1つまたは複数のワード線104が存在してもよく、アレイ100の各列に対して1つまたは複数のビット線106が存在してもよい。各MRAMセル102は、対応するワード線104とビット線106との交点に配置される。
【0014】
ここで図2Aおよび図2Bを参照すると、MRAMセル102は、磁気トンネル接合(MTJ)202と、非磁気トンネル接合(NMTJ)204と、ワード線104の一部104Xと、ビット線106の一部106Xとを含む。一般に、トンネル接合は概して、2つの導電層と、それらの導電層間に絶縁性誘電体の薄い層とを含む。導電層の両端に電位をかけることにより、誘電体層を電子が突き抜ける。磁気トンネル接合は、その抵抗が1つまたは複数の導電層の磁化の向きの関数であるトンネル接合である。非磁気トンネル接合は、その抵抗が任意の導電層の磁化の向きによってあまり影響を及ぼされないトンネル接合である。
【0015】
NMTJ204は、MTJ202の両端に流れる寄生電流を著しく低減する。部分104Xおよび106Xは、対応するワード線104と対応するビット線106との交点に配置される。部分104Xおよび106Xの相対的な位置は、所望の実施形態に応じて入れ替えることができることに留意されたい。MTJ202は、固定された磁性層(固定層)214を含み、その固定層214は、固定層214の面内で配向されるが、対象となる範囲内に磁界がかけられても回転しないように固定された磁化を有する。また、MTJ202は、固定されない磁化の向きを有する「自由」層212も含む。もっと正確にいうと、その磁化は、自由層212の面内に存在する軸(「磁化容易」軸)に沿って2つの方向のうちのいずれか一方に向けられることができる。自由層212および固定層214の磁化の向きが同じ方向である場合には、その向きは「平行」であると言われる(図2Aの矢印によって示される)。自由層212および固定層214の磁化の向きが反対の方向である場合には、その向きは「反平行」であると言われる(図2Bの矢印によって示される)。自由層212の磁化は、MRAMセル102を横切るワード線104とビット線106とに書込み電流を加えることにより配向され得る。各磁性層212または214は、たとえば、特にニッケル、鉄、コバルトまたはそれらの組み合わせのような、適切に磁化されることができる材料からなる。
【0016】
自由層212および固定層214は、たとえば、数ある中でも酸化アルミニウムのような適切な絶縁性材料からなる絶縁性トンネル障壁216によって分離される。自由層212および固定層214がそれぞれ絶縁性トンネル障壁216の上下に配置されるように示されるが、当業者には理解されるようにそれらの相対的な位置は入れ替えることができる。絶縁性トンネル障壁216によって、自由層212と固定層214との間に量子力学トンネル効果が生じるようになる。このトンネル現象は電子スピン依存性であり、メモリセル102の抵抗が自由層212と固定層214との相対的な磁化の向きの関数になる。たとえば、メモリセル102の抵抗は、自由層212および固定層214の磁化の向きが平行である場合には第1の値Rであり、その向きが反平行である場合には第2の値R+ΔRである。
【0017】
図3Aは、メモリセル102の第1の実施形態を示す。メモリセル102は、磁気トンネル接合(MTJ)202およびNMTJ204を含む。NMTJ204は、隣接するメモリセルが読み出されている間に、メモリセル102を流れる寄生電流のレベルを低減する。当業者には理解されるように、NMTJ204は、図3Aに示されるようにMTJ202の下に配置されるか、またはその上に配置されてもよい。別の実施形態では、MTJ202の下に第1のNMTJ204が配置され、MTJ202の上に第2のNMTJ204が配置され得る。
【0018】
NMTJ204は、導電層218および222と、絶縁性トンネル障壁220とを含む。導電層218および222はそれぞれ、たとえば、数ある中でも銅またはアルミニウムのような任意の高い導電性材料からなることができる。絶縁性トンネル障壁220は、適切な絶縁性材料からなり、導電層218と222との間で電子のトンネル効果を可能にするほど十分に薄い。たとえば、絶縁性トンネル障壁220は、酸化アルミニウムからなることができ、0.5〜2nm(5〜20オングストローム)の厚みとすることができる。
【0019】
図3Bは、メモリセル102の第2の実施形態を示す。この実施形態では、メモリセル102のNMTJ204は、導電層218と絶縁性トンネル障壁220とを含む。また、NMTJ204は、NMTJ204がワード線104に接触しているか、またはビット線106に接触しているかに応じて、ワード線104の部分104X(図1)か、またはビット線106の部分106X(図1)かを含む。
【0020】
図3Cは、メモリセル102の第3の実施形態を示す。この実施形態では、メモリセルは、共有される固定磁性層214を含むMTJ202およびNMTJ204を含む。別の実現可能な実施形態では、MTJ202およびNMTJ204は、MTJ202およびNMTJ204の相対的な位置に応じて、共有される自由磁性層212を含むことができる。NMTJ204は、磁化された層を含んでもよいが、NMTJ204の抵抗は、そのように磁化された層の磁化の向きには無関係である。
【0021】
図3Dは、メモリセル102の第4の実施形態を示す。この実施形態では、メモリセルは、MTJ202と、絶縁性トンネル障壁220とを含む。絶縁性トンネル障壁220はNMTJ204の一部である。絶縁性トンネル障壁を含むことに加えて、NMTJ204は、NMTJ204がワード線104に接触しているか、またはビット線106に接触しているかに応じて、ワード線104の部分104Xか、またはビット線106の部分106Xかを含む。さらに、NMTJ204はMTJ202と磁性層を共有する。共有される磁性層は、MTJ202およびNMTJ204の相対的な位置に応じて、図3Dに示されるように固定磁性層214としてもよく、または自由磁性層212としてもよい。
【0022】
図4は、NMTJの両端の電圧の変化に応答する、NMTJの両端の抵抗の変動を示すグラフである。縦軸402はlog10に等しい値を表す。ただしRはNMTJの両端の抵抗(Ω)である。横軸404はNMTJの両端の電圧(V)を表す。線分406は、ある特定の電圧範囲にわたるlog10のプロットを表す。図4によって示唆されるように、NMTJは、NMTJの両端の電圧との負の指数関数の相関関係を有する抵抗を提供する。たとえば、電圧が0.1Vから0.2Vに倍増する場合には、Rは100kΩから10kΩまで10分の1に減少する。同様に、電圧が0.2Vから0.4Vに倍増する場合には、Rは10kΩから1kΩまで10分の1に減少する。したがって、メモリセル102が読み出されていない低電圧値では、Rは非常に高いのに対して、メモリセル102が読み出されている高電圧値では、Rは非常に低い。
【0023】
一実施形態では、メモリセルの全抵抗(R)はR+Rに等しい。ただし、RはメモリセルのMTJの抵抗を表す。メモリセルが読み出されていないが、依然としてその端子間で小さな電圧降下があるときには、Rは比較的高くなるであろう。したがって、Rを含むRも比較的高くなるであろう。結果として、無視できる程度の電流(寄生電流として知られる)のみが、メモリセルを流れることができる。寄生電流(I)の大きさは、メモリセルの両端の電圧降下(V)をRで割った値に等しい。NMTJが存在しない場合、メモリセルの抵抗は非常に小さくなり、したがってIが非常に多くなるであろう。
【0024】
NMTJに起因する寄生電流の減少により、MRAMアレイ100(図1)からデータを読み出す際にデータ読出しエラーの可能性が低減され、その際の消費電力の量も低減される。また、寄生電流の減少によって、メモリのアクセス時間および信号の整定時間も減少し、それによりさらに、MRAMアレイ100の性能が改善される。図4に示されるグラフは単なる例示にすぎないことに留意されたい。したがって、NMTJの両端の抵抗と電圧との間の厳密な関係は、NMTJの構成および形態によっては、図4に示される関係とは異なる場合がある。たとえば、一実施形態では、NMTJの両端の抵抗と電圧との間に、より大きな負の指数関数の相関関係が存在する場合もある。
【0025】
図5は、NMTJを有するメモリセル102を含むMRAMデバイス500を示すブロック図である。読出し動作中に、行復号回路508が、ワード線104に定供給電圧Vsまたはグランド電位を印加できる。定供給電圧Vsは外部回路によって提供されてもよい。
【0026】
MRAMデバイス500はさらに、読出し動作中に、選択されたメモリセル102の抵抗をセンシングするための読出し回路と、書込み動作中に、選択されたメモリセル102の磁化を配向するための書込み回路とを含む。読出し回路は概して520で示される。書込み回路は、本発明の実施形態の説明を簡単にするために示されていない。
【0027】
読出し回路520は、複数のステアリング回路522およびセンス増幅器524を含む。多数のビット線106が、各ステアリング回路522に接続される。各ステアリング回路522は、各ビット線106を動作電位の供給源か、またはセンス増幅器524のいずれかに接続する1組のスイッチを含む。センス増幅器524の出力はデータレジスタ530に供給され、次いでそのデータレジスタ530は、MRAMデバイス500のI/Oパッド532に結合される。複数のビット線を各センス増幅器524へと多重化してもよい。MRAMデバイス500が多段のメモリセルアレイを有する場合には、さらに別の段からのビット線106をセンス増幅器524へと多重化してもよい。
【0028】
一実施形態では、電流源、電圧フォロワおよびコンパレータ(図示せず)を用いて、選択されたメモリセル102の抵抗状態が判定される。この実施形態では、行復号回路508が、対応するワード線104をグランド電位に接続することにより、選択されたメモリセルを横切るワード線を選択する。電流源は、選択されたメモリセル102を横切るビット線106にセンス電流を供給する。電流源と選択されたメモリセル102との間の接合部の電位が電圧フォロワによって検出され、電圧フォロワは選択されないビット線またはワード線のサブセットに同じ電位を印加する。また、その接合部の電位は、コンパレータによって基準電圧と比較される。コンパレータの出力はハイまたはローの信号を提供し、その信号は選択されたメモリセル102の抵抗状態を示す。
【0029】
別の実施形態では、電流センス増幅器(図示せず)および電圧源を用いて、選択されたメモリセル102の抵抗状態が判定される。行復号回路508は選択されたワード線104にセンス電圧Vsを印加し、選択されたビット線106は電流センス増幅器の仮想グランドに結合される。センス電圧Vsは、たとえば、0.1V〜0.5VのDC電圧とすることができ、外部電圧源によって供給され得る。選択されない線のサブセット(たとえば、全ての選択されないビット線)も仮想グランドに接続される。仮想グランドは、選択されたビット線106および選択されない線のサブセットに等電位が印加される限り、0電位または任意の他の電位とすることができる。センス電流は、電圧源から、選択されたメモリセル102を通り、さらに電流センス増幅器を通って流れる。選択されたビット線を流れるセンス電流がセンシングされ、選択されたメモリセル102の抵抗状態、それゆえ論理値が判定され得る。センス電流は、選択されたメモリセル102の抵抗状態によって、Vs/R、またはVs/(R+ΔR)のいずれかに等しくなる。
【0030】
図6、図7および図8は、メモリアレイが如何に実施され得るかの例を示す。図6は、第1の例示的なメモリアレイ600の斜視図を示す。メモリアレイ600は、それぞれ読出しおよび書込み(R/W)線として機能するビット線106およびワード線104を含む。アレイ600の説明を簡単にするために、2つのワード線104および2つのビット線106のみが示される。実際には、メモリアレイ600は、数百万または数十億ものワード線104およびビット線106を有することができる。磁気トンネル接合(MTJ)202および非磁気トンネル接合(NMTJ)204は、ワード線104とビット線106との交点に配置される。MTJ202を用いて1ビット値が格納されるのに対して、NMTJ204は、MTJ202に著しい寄生電流が流れるのを防ぐために、低電圧時に高い抵抗を提供する。
【0031】
図7は、第2の例示的なメモリアレイ700の斜視図を示す。メモリアレイ700はメモリアレイ600(図6)に類似しているが、メモリアレイ700は、磁気トンネル接合202を介して格納された値を読み出すための第1段の行702と、磁気トンネル接合202に値を書き込むための第2段の行704とを含む点で異なる。各第1段の行702は、絶縁層710によって第2段の行704から分離される。この絶縁層710は、たとえば酸化シリコンのような絶縁性材料からなることができる。
【0032】
図8は、第3の例示的なメモリアレイ800の斜視図を示す。メモリアレイ800はメモリアレイ700(図7)と類似しているが、メモリアレイ800は、磁気トンネル接合202を介して格納された値を読み出すための第1段の列802と、磁気トンネル接合202に値を書き込むための第2段の列804とを含む点で異なる。各第1段の列802は、絶縁層810によって第2段の列804から分離される。この絶縁層810は、第1段の行702と第2段の行704との間に配置された絶縁層710と同じ組成を有することができる。図6、図7および図8には示されないが、NMTJ204は、たとえば図3B、図3Cおよび図3Dに示されるように、MTJ202の一部、および/または下側の行の一部を含んでもよい。
【0033】
本発明の上述の実施形態は、本発明の原理を明瞭に理解するための、数ある実施形態のうちの実現可能な例にすぎないことを強調しておきたい。本発明の原理から概ね逸脱することなく、本発明の上述の実施形態に対して、数多くの変形および修正を行うことができる。全てのそのような修正形態および変形形態は、本開示および発明の範囲内にあり、特許請求の範囲によって保護されることが意図されている。
【0034】
【発明の効果】
本発明によれば、MRAMデバイスの電力消費および寄生電流のレベルを低減することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施形態によるMRAMアレイの一例を示す図である。
【図2A】図1に示されるメモリセルの磁性層に関する磁化の向きを示すブロック図である。
【図2B】図1に示されるメモリセルの磁性層に関する磁化の向きを示すブロック図である。
【図3A】図1に示されるメモリセルの実施形態を示すブロック図である。
【図3B】図1に示されるメモリセルの実施形態を示すブロック図である。
【図3C】図1に示されるメモリセルの実施形態を示すブロック図である。
【図3D】図1に示されるメモリセルの実施形態を示すブロック図である。
【図4】電圧の変化に応答する図3に示された非磁気トンネル接合の両端の抵抗の変化の一例を示すグラフである。
【図5】一実施形態によるMRAMデバイスを示すブロック図である。
【図6】一実施形態によるメモリアレイの斜視図である。
【図7】別の実施形態によるメモリアレイの斜視図である。
【図8】さらに別の実施形態によるメモリアレイの斜視図である。
【符号の説明】
100 MRAMセルアレイ
102 MRAMセル
104 ワード線
106 ビット線
202 磁気トンネル接合
204 非磁気トンネル接合
212 磁性層(自由層)
214 磁性層(固定層)
216、220 絶縁性トンネル障壁
218 222 導電層
500 磁気ランダムアクセスメモリデバイス

Claims (10)

  1. 磁気ランダムアクセスメモリ(MRAM)セル(102)であって、
    磁気トンネル接合(MTJ)(202)と、および
    前記磁気トンネル接合(202)と直列に接続される非磁気トンネル接合(NMTJ)(204)とを備える、磁気ランダムアクセスメモリセル。
  2. 前記NMTJ(204)が、
    第1の導電層(218)と、
    第2の導電層(222)と、および
    前記第1の導電層(218)と前記第2の導電層(222)との間に配置された絶縁層(220)とを含む、請求項1に記載のMRAMセル。
  3. 前記NMTJ(204)の両端の抵抗が、前記NMTJ(204)の両端の電圧と逆指数関数の関係を有する、請求項2に記載のMRAMセル。
  4. 前記NMTJ(204)の抵抗と前記NMTJ(204)の両端の電圧との関係が、前記第1の導電層(218)または前記第2の導電層(222)の磁化の向きとは無関係である、請求項2に記載のMRAMセル。
  5. 前記磁気トンネル接合(202)が、
    第1の磁性層(212)と、
    第2の磁性層(214)と、および
    前記第1の磁性層(212)と前記第2の磁性層(214)との間に配置された絶縁層(216)とを含む、請求項2に記載のMRAMセル。
  6. 磁気ランダムアクセスメモリ(MRAM)デバイス(500)であって、
    MRAMセル(102)に格納されたビット値を読み出すための電流を伝えるための第1のワイヤ(106)と、
    前記MRAMセル(102)に格納されたビット値を読み出すための電流を伝えるための第2のワイヤ(104)と、
    前記第1のワイヤ(106)と前記第2のワイヤ(104)との間に配置された第1の磁性層(212)と、
    前記第1のワイヤ(106)と前記第2のワイヤ(104)との間に配置された第2の磁性層(214)と、
    前記第1の磁性層(212)と前記第2の磁性層(214)との間に配置された第1の絶縁層(216)と、および
    前記第2の磁性層(214)と前記第2のワイヤ(104)との間に配置された第2の絶縁層(220)とを備える、磁気ランダムアクセスメモリデバイス(500)。
  7. 前記第2の絶縁層(220)の両端の抵抗が、前記第2の絶縁層(220)の両端の電圧と負の指数関数の関係を有する、請求項6に記載のMRAMデバイス(500)。
  8. 前記第1の磁性層(212)、前記第2の磁性層(214)および前記第1の絶縁層(216)が、磁気トンネル接合(202)を提供する、請求項6に記載のMRAMデバイス(500)。
  9. 前記第2の絶縁層(220)が、非磁気トンネル接合(NMTJ)(204)の一部である、請求項6に記載のMRAMデバイス(500)。
  10. 前記NMTJ(204)が前記第2の磁性層(214)を含む、請求項9に記載のMRAMデバイス(500)。
JP2003129164A 2002-05-15 2003-05-07 寄生電流を低減した磁気ランダムアクセスメモリ Withdrawn JP2004006861A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/146,201 US6826077B2 (en) 2002-05-15 2002-05-15 Magnetic random access memory with reduced parasitic currents

Publications (1)

Publication Number Publication Date
JP2004006861A true JP2004006861A (ja) 2004-01-08

Family

ID=29418764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129164A Withdrawn JP2004006861A (ja) 2002-05-15 2003-05-07 寄生電流を低減した磁気ランダムアクセスメモリ

Country Status (3)

Country Link
US (1) US6826077B2 (ja)
JP (1) JP2004006861A (ja)
DE (1) DE10312677A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873543B2 (en) * 2003-05-30 2005-03-29 Hewlett-Packard Development Company, L.P. Memory device
KR100612884B1 (ko) * 2004-12-30 2006-08-14 삼성전자주식회사 자기 논리 소자와 그 제조 및 동작 방법
US8021897B2 (en) 2009-02-19 2011-09-20 Micron Technology, Inc. Methods of fabricating a cross point memory array
CN108666339B (zh) * 2017-03-28 2020-11-13 中芯国际集成电路制造(上海)有限公司 磁性随机存储器及其存储单元的制造方法
CN113963734A (zh) * 2021-10-18 2022-01-21 中国科学院微电子研究所 一种mram及其制造方法
US11972785B2 (en) 2021-11-15 2024-04-30 International Business Machines Corporation MRAM structure with enhanced magnetics using seed engineering

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640343A (en) * 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5930164A (en) * 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
US6292389B1 (en) * 1999-07-19 2001-09-18 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6469926B1 (en) * 2000-03-22 2002-10-22 Motorola, Inc. Magnetic element with an improved magnetoresistance ratio and fabricating method thereof
US6269018B1 (en) * 2000-04-13 2001-07-31 International Business Machines Corporation Magnetic random access memory using current through MTJ write mechanism
US6331944B1 (en) * 2000-04-13 2001-12-18 International Business Machines Corporation Magnetic random access memory using a series tunnel element select mechanism
US6456525B1 (en) * 2000-09-15 2002-09-24 Hewlett-Packard Company Short-tolerant resistive cross point array
FR2817998B1 (fr) * 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
US6531723B1 (en) * 2001-10-16 2003-03-11 Motorola, Inc. Magnetoresistance random access memory for improved scalability
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US6473337B1 (en) * 2001-10-24 2002-10-29 Hewlett-Packard Company Memory device having memory cells with magnetic tunnel junction and tunnel junction in series

Also Published As

Publication number Publication date
US20030214837A1 (en) 2003-11-20
DE10312677A1 (de) 2003-12-04
US6826077B2 (en) 2004-11-30

Similar Documents

Publication Publication Date Title
US7411815B2 (en) Memory write circuit
JP4700259B2 (ja) 共通の導線を共有する一対の磁気ビットを有するメモリ素子アレイ
JP4194781B2 (ja) 熱を利用した切替えを実行する情報記憶装置
US7136300B2 (en) Magnetic memory device including groups of series-connected memory elements
JP4155975B2 (ja) データ記憶装置およびその方法
KR101123925B1 (ko) 판독 동작 수행 방법 및 시스템
JP4660529B2 (ja) 二重接合磁気メモリデバイスの読み出し方法および二重接合磁気メモリデバイスへの書き込み方法
US20110292714A1 (en) Structures and methods for a field-reset spin-torque mram
TWI306610B (en) Read operations on multi-bit memory cells in resistive cross point arrays
JP2004005965A (ja) 小面積の磁気メモリデバイス
KR100898040B1 (ko) 데이터 저장 장치
JP2002050173A (ja) 不揮発性記憶装置
US20080094874A1 (en) Multiple-read resistance-variable memory cell structure and method of sensing a resistance thereof
US7068533B2 (en) Resistive memory cell configuration and method for sensing resistance values
JP2005526351A (ja) 読み出し信号が最大で且つ電磁妨害を低減するmramセルおよびアレイ構造
US6836429B2 (en) MRAM having two write conductors
US6826077B2 (en) Magnetic random access memory with reduced parasitic currents
US6816431B1 (en) Magnetic random access memory using memory cells with rotated magnetic storage elements
US6925003B2 (en) Magnetic memory cell structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801