CN1241323A - 电子仪器 - Google Patents

电子仪器 Download PDF

Info

Publication number
CN1241323A
CN1241323A CN98801503A CN98801503A CN1241323A CN 1241323 A CN1241323 A CN 1241323A CN 98801503 A CN98801503 A CN 98801503A CN 98801503 A CN98801503 A CN 98801503A CN 1241323 A CN1241323 A CN 1241323A
Authority
CN
China
Prior art keywords
mentioned
driving pulse
pulse
supply
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98801503A
Other languages
English (en)
Other versions
CN1168196C (zh
Inventor
小岛博之
志村典昭
北原丈二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1241323A publication Critical patent/CN1241323A/zh
Application granted granted Critical
Publication of CN1168196C publication Critical patent/CN1168196C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/02Arrangements for controlling dynamo-electric motors rotating step by step specially adapted for single-phase or bi-pole stepper motors, e.g. watch-motors, clock-motors
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)
  • Electromechanical Clocks (AREA)

Abstract

在计时装置之类的伴有步进电动机快进动作的电子仪器中,设有与用于驱动转子的驱动用绕组同轴绕制的检测用绕组,由检测电路检测在该检测用绕组中出现的反感应电压,并通过捕获供给驱动脉冲后最先出现的与驱动脉冲在同极性侧的第1峰值检测转子的转动状态。然后,根据该检测时刻供给下一个驱动脉冲,从而能在确认转子的转动的同时以高速供给驱动脉冲。因此,能以更高的速度进行不发生表针驱动差错的稳定的快进动作。

Description

电子仪器
技术领域
本发明涉及计时装置等备有步进电动机的电子仪器,尤其是能使步进电动机进行快进动作的电子仪器。
背景技术
步进电动机,也称脉冲电动机、步进电机、步进马达或数字电动机等,是经常作为数字控制装置的驱动器使用的由脉冲信号驱动的电动机。近年来,人们不断开发便于携带的小型电子仪器,作为这些仪器的驱动器,广泛采用了小型、轻便的步进电动机。这种电子仪器的代表性装置,是电子表、时间开关、精密计时器之类的计时装置。
该计时装置等所采用的步进电动机10,如图11所示,被双极磁化后的圆盘状转子13,在通过外侧带有凹口的磁饱和部17联结的整体型定子12的内部旋转,转子13随着1Hz等适当频率的驱动脉冲按顺序旋转,在其驱动力的带动下使表针转动。为消除表针驱动差错,关键在于确认转子13是否随驱动脉冲正常旋转,为此,应检测如图12所示的因转子13的旋转而在驱动绕组中逆向感应出的电流或电压。
如该图所示,当转子13从稳定位置通过大约90度的位置时,作为因转子13的旋转而逆向感应的电流(反感应电流),在与驱动脉冲PW极性相反一侧呈现出第1峰值PM1。如转子13进一步转动、并在转过反感应电流为0的位置A后通过旋转了180度的反极性侧的稳定位置B、即驱动目标位置(反极性侧)时,呈现出驱动脉冲PW和与驱动脉冲PW在同极性侧的大的第1峰值PP1。在这之后,随着转子13在稳定和停止前的摆动(振荡),产生第2峰值PM2和PP2。
该第1峰值PM1或PP1虽然强度高,但由于存在着驱动脉冲PW的瞬态电流TW等的影响,所以很难在时间上将驱动脉冲PW与第1峰值PM1或PP1分离。因此,以往在正常驱动表针时,利用斩波脉冲对强度虽弱但易于分离的第2峰值PM2或PP2进行斩波放大,并获取为反感应电压而用于旋转检测。
近年来,在手表等计时装置中加入了各种各样的功能,作为其中的一种,有使步进电动机以比正常驱动表针时快的速度转动从而以自动或手动方式进行时刻设定的功能。在进行使步进电动机以高速转动的快速动作时,必需以用于快进动作的短的周期供给驱动脉冲。另外,为进行时刻设定,在驱动时必须注意不能发生表针驱动差错、即转子的转动差错。
因此,本发明的目的在于,提供一种能以高速稳定地进行步进电动机快进动作的电子仪器。
发明的公开
为此,在本发明的备有步进电动机的电子仪器中,当进行快进动作时,以电流或电压的形式获取因转子旋转而激励产生的反感应功率,从而检测其第1峰值,由此可以在确认转子是否旋转的同时,供给驱动脉冲并以高速进行快进动作。进一步,检测反感应功率的第1峰值中在时间上落后但易于与驱动脉冲分离的与驱动脉冲在同极性侧的第1峰值,并能按适当的时序可靠地输出用于快进动作的驱动脉冲。
即,本发明的电子仪器,具有:步进电动机,使多极磁化后的转子能够在备有驱动用绕组的定子内旋转驱动;驱动装置,对驱动用绕组供给用于驱动转子的驱动脉冲;驱动控制装置,控制该驱动装置使其可以供给用于快进动作的驱动脉冲,同时可以调整该驱动脉冲的时序;及位置检测装置,可以在因转子旋转而激励产生的反感应功率中检测与前一个驱动脉冲极性相同的第1峰值;驱动控制装置,可以根据第1峰值的检测时刻控制下一个驱动脉冲的输出时刻。
与以往在步进电动机的旋转检测中采用的反感应功率的第2峰值相比,可以较早地检测第1峰值,所以能使供给驱动脉冲的时刻提前,因而能提高快进动作的速度。此外,由于检测的是同极性侧的第1峰值,所以,尽管仍是第1峰值,但易于与驱动脉冲分离,并且,通过检测同极性侧的第1峰值,可以确认转子已到达稳定位置。因此,由于能够可靠地检测转子的旋转状态,所以能按适当的输出时序供给下一个驱动脉冲,从而能在与转子的旋转方向一致的时刻供给下一个驱动脉冲。因此,可以节省用于快进动作的能量。
另外,由于能在确认转子是否旋转的同时供给用于快进动作的驱动脉冲,所以,可以防止快进动作中的表针驱动差错并能进行稳定的快进动作。进一步,当因快进动作而使转子的转速升高时,因转子旋转而产生的反感应功率也增大并使第1峰值也升高,所以根据反感应功率检测转子位置变得容易进行,并能可靠地获得检测时刻。
第1峰值,也可以根据在驱动用绕组中感应产生的反感应功率进行检测。但是,由于在步进电动机内除驱动用绕组外还设有检测用绕组,而且位置检测装置能够检测在检测用绕组中感应产生的反感应功率,因而可以抑制驱动脉冲的影响,所以,驱动脉冲和第1峰值易于分离,从而使转子的位置确认更容易进行。该驱动绕组和检测用绕组可以分别单独缠绕,但也可以将驱动用绕组和检测用绕组同轴绕制,在这种情况下,两个绕组中至少缠绕在内侧的绕组最好按规则形式绕制。因此,即使当驱动用绕组缠绕在外侧时,也可以抑制其对步进电动机性能的影响。而当将检测用绕组缠绕在外侧时,能够抑制其电阻等的偏差,因而能使第1峰值的检测能力稳定。
另外,不限于快进动作用的驱动脉冲,该检测用绕组,还能稳定地检测当供给正常速度的驱动脉冲时产生的反感应功率,因此可以在正常速度例如计时装置表针驱动所采用的1Hz左右的驱动脉冲的转子位置检测中使用。
为以高的效率检测同极性侧的第1峰值,位置检测装置,最好是检测由与前一个驱动脉冲极性相同的斩波脉冲放大后的反感应功率。进一步,由于能够根据所供给的驱动脉冲的幅值等选择该斩波脉冲的时序、频率及占空系数中的任何一项,所以,可以防止因驱动脉冲引起的瞬态电流、高频噪声(尖峰噪声)等的影响,因而能更可靠地获得检测时刻。
另外,以前一个驱动脉冲、例如前一个驱动脉冲的输出时刻及结束时刻为基准,仅按规定的时间设定一个不能检测因转子旋转而产生的反感应功率的不灵敏时间(屏蔽时间),并对从驱动用绕组或检测用绕组供给位置检测装置的信号进行屏蔽,也可以防止因驱动脉冲引起的瞬态电流、尖峰噪声等的影响,因而能可靠地获得检测时刻。
在定子备有磁饱和部的整体型定子的情况下,从反感应功率的反极性侧的峰值过渡到同极性侧的峰值时的电压变化平缓,所以很难检测变为0的电压和捕获其特定的时刻。因此,位置检测装置,最好将因转子旋转而产生的反感应功率直接或经斩波放大后与基准电平进行比较以获得检测时刻。与基准电平的比较,可采用比较器,但也可以将反相器的阈值作为基准值(基准电平)而获得检测时刻。因可减少电路元件,所以可以降低电能消耗。
进一步,不仅是利用1次电池驱动的电子仪器,而且像内装发电装置的电子仪器等,当备有用于向驱动装置供电的充放电式的电源装置时,供给驱动装置的供电电压也会发生变化。因此,当供电电压升高时,驱动脉冲的有效功率增加并使转子的转速增加,因而使驱动脉冲与第1峰值变得很难分离,并显现出瞬态电流、尖峰噪声等的影响。为此,当电源装置的供电电压升高时,驱动控制装置,最好是供给脉冲宽度窄的驱动脉冲,以便能可靠地检测第1峰值。另一方面,当电源装置的供电电压降低时,最好是供给脉冲宽度宽的驱动脉冲以确保有效功率,并得到具有足够强度的第1峰值。而当电源装置的供电电压过低时,使第1峰值的强度降低,因而很难获得检测时刻,所以最好能以固定周期供给驱动脉冲,以便能可靠地进行快进动作。
另外,当由位置检测装置检出的检测时刻的周期变短时,通过由驱动控制装置供给脉冲宽度窄的驱动脉冲,可以防止驱动脉冲对反感应功率的第1峰值的检测的影响。而由于这是导致驱动脉冲的有效功率减小的方向,所以还能使步进电动机的快进动作的速度稳定。另一方面,当检测时刻的周期变长时,即使供给脉冲宽度宽的驱动脉冲,对第1峰值的检测的影响也不大,但由于能使驱动脉冲的有效功率增大,因而能增加快进动作的速度。
进一步,当驱动脉冲的脉宽过宽时,有可能对转子的旋转方向起制动作用。例如,一直到检测出反感应功率的峰值点以后有时还留有驱动脉冲。因此,从检测时刻减去一定的时间或供给以一定的比例短于检测时刻的驱动脉冲,即可供给无制动作用的驱动脉冲而进行高速驱动。因此,驱动控制装置,最好是在随后的驱动脉冲的时刻供给脉冲宽度比从输出驱动脉冲到获得检测时刻的时间间隔短规定时间的驱动脉冲。此外,驱动控制装置,也可以在随后的驱动脉冲的时刻供给脉冲宽度与直到获得检测时刻为止的时间间隔成比例地缩短的驱动脉冲。进一步,当可以选择预先准备的多分级脉宽的驱动脉冲时,也可以根据直到测得检测时刻为止的时间间隔供给脉冲宽度逐级缩短的驱动脉冲。
另外,通过使驱动控制装置从由位置检测装置检出的检测时刻起经过规定的延迟时间后供给下一个驱动脉冲,可以使转子的摆动方向(振荡方向)与驱动脉冲的驱动方向一致,从而可以节省为使转子旋转驱动而施加的能量,并能减低快进动作时的耗电量。
在通过检测反感应功率的第1峰值而判断是否转动的电子仪器中,重要的是不能检测该峰值时的处理。当驱动控制装置可以供给规定的有效功率的驱动脉冲而由位置检测装置不能获得检测时刻时,可以假定转子已转动并经过一定时间后供给与前一个驱动脉冲极性不同的下一个驱动脉冲。由此,可以继续保持快进动作的速度,而不会有较大的降低。
为可靠地检测反感应功率的第1峰值,反感应功率最好具有大的值。当快进动作开始时,转子的速度小,因而反感应功率也小,所以反感应功率的增减和极性变化、以及第1峰值的检测概率自然就变得很低。因此,最好是设置可以使供给驱动装置的供电电压(电源电压)升压的升压装置,并可以在快进动作开始时通过驱动控制装置将由升压装置升压后的供电电压供给驱动装置,从而能在短时间内达到规定的快进动作速度。
另外,由于快进动作开始时反感应功率小,所以,与之相对应地,也可以使位置检测装置在快进动作开始时将因转子旋转而产生的反感应功率的判断值设定得较低。
进一步,当供给包含快进动作开始时即驱动开始的第1个驱动脉冲或随后的若干个脉冲的脉冲群时,驱动控制装置也可以定期供给驱动脉冲,并在平稳地达到规定的快进动作速度后根据第1峰值的检测时刻供给驱动脉冲,从而能在稳定的状态下进行加速。
另外,在快进动作开始时,重要的是驱动控制装置可以供给有效功率等于或大于正常转动用驱动脉冲的驱动脉冲,从而使转子可靠地旋转。
进一步,在快进动作开始时,如在定子中留有前一个驱动脉冲的剩余磁通,则很难提高转子的速度。因此,在快进动作开始时最好由驱动控制装置供给与前一个用于正常转动的驱动脉冲极性相反的消磁脉冲,使转子能进行加速。
另外,当可以选择预先准备的多分级有效功率的驱动脉冲时,驱动控制装置,在快进动作开始时从有效功率小的驱动脉冲开始顺序选择和供给,或在快进动作时从有效功率大的驱动脉冲开始顺序选择和供给,并判断转子是否转动,以便能以转子可转动的最小限度有效功率的驱动脉冲进行快进动作。
另外,当检测由快进动作引起的反感应功率的特征而结束输出着驱动脉冲的高速快进动作时,重要的是防止发生表针驱动差错。因此,在快进动作结束时,驱动控制装置最好是能供给有效功率足够大的辅助脉冲或使转子的反感应功率再生的再生脉冲中的任何一个或两者,以限制转子的转动。
或者,通过由驱动控制装置在快进动作结束时不是按照检测时刻而是供给定期的脉冲,使转子稳定地返回正常驱动表针的状态。
另外,在快进动作结束时,通过根据检测时刻供给一个有效功率大的驱动脉冲或被分割为多个子脉冲的驱动脉冲,可以使转子的速度逐渐地降低。而当从检测时刻起经过规定的延迟时间后供给下一个驱动脉冲时,可在快进动作结束时控制延迟时间,从而使转子的速度降低。
另外,通过获得因转子旋转而产生的反感应功率的第1峰值的检测时刻而供给驱动脉冲的方法,在进行反向快进动作(回拨动作)的情况下也是适用的。在该反向快进动作中,可以由位置检测装置根据因转子旋转而产生的反感应功率检测可开始反向转动的第2检测时刻,并由驱动控制装置根据该第2检测时刻控制用于开始反向转动的驱动脉冲的输出时序,从而开始反向快进动作。此外,通过由驱动控制装置在开始反转前以与用于反转的驱动脉冲相反的极性供给有效功率小的辅助脉冲,可以使转子易于向相反方向转动。
进一步,由于通过获得检测时刻而能判明转子的位置,所以也可以在确认转子已转动后控制与驱动脉冲下降沿对应的停止时刻。即,通过使驱动控制装置根据由位置检测装置获得的检测时刻使驱动脉冲停止,可以更可靠地使转子转动,并能对反转等的发生防止于未然。因此,能进行高速且更稳定的快进动作。并且,即使在供电电压变化、或转子的负载转矩变化的情况下,也仍能自动地对步进电动机供给其有效功率足以适应这些影响的驱动脉冲。因此,能够更稳定地进行快进动作。
为了在供给驱动脉冲的过程中获得检测时刻,可以由驱动控制装置从驱动装置供给构成驱动脉冲的多个子脉冲,并当子脉冲为低电平时可以由位置检测装置检测因转子旋转而产生的反感应功率。
另外,通过设置与驱动用绕组不同的检测用绕组,能以高的效率在供给驱动脉冲的过程中检测反感应功率的第1峰值,并可以根据该峰值的检测使驱动脉冲停止。此外,由于在获得检测时刻后使驱动脉冲停止,所以在检测中可以防止瞬态电流和尖峰噪声的影响,并能进行稳定的高速动作。
位置检测装置,最好从前一个驱动脉冲的输出时刻起仅按规定的时间设定一个不能检测因转子旋转而产生的反感应功率的不灵敏时间(屏蔽时间),通过设定这样的屏蔽,可以防止因噪声等使驱动脉冲停止。
另外,当未能获得检测时刻时,通过由驱动控制装置设定经过一定的时间后使驱动脉冲停止的时刻,也可以继续进行快进动作。
进一步,在快进动作结束时,通过延长从检测时刻到停止驱动脉冲的延迟时间,可以增大驱动脉冲的有效功率,并能限制转子的转动。
附图的简单说明
图1是表示本发明实施形态的备有步进电动机的计时装置的简略结构的图。
图2是表示图1所示步进电动机的绕组部结构的断面图。
图3是示意地表示图1所示步进电动机的驱动用绕组及检测用绕组的电压变化的图。
图4是示意地表示在整体型定子和双体型定子内产生的反感应电流变化的图。
图5是表示在图1所示计时装置中进行快进动作的处理的一例的时序图。
图6是表示在图1所示计时装置中开始快进动作的处理的一例的时序图。
图7是表示在图1所示计时装置中开始快进动作的处理的一例的流程图。
图8是表示在图1所示计时装置中结束快进动作的处理的一例的时序图。
图9是示意地表示在图1所示计时装置中根据检测时刻控制驱动脉冲停止时间的处理中的驱动用绕组及检测用绕组的电压变化的图。
图10是表示在图1所示计时装置中根据检测时刻控制驱动脉冲停止时间的处理的一例的时序图。
图11是示意地表示转子在定子内的转动状态的图。
图12是示意地表示当转子如图11所示旋转时驱动用绕组的电流变化及与其同时发生的反感应电流的变化的图。
用于实施发明的最佳实施形态
以下,参照附图对本发明进行更详细的说明。在图1中示出装有步进电动机的手表等计时装置的一例。该计时装置1,备有:步进电动机10、驱动该步进电动机10的控制装置20、传递步进电动机10的运动的齿轮系50、及由齿轮系50驱动的秒针61、分针62和时针63。步进电动机10,备有:由从控制装置20供给的驱动脉冲产生磁力的驱动绕组11、由该驱动绕组11励磁的定子12、及由在定子12的内部励磁的磁场驱动旋转的转子13,并且是由圆盘状的2极永久磁铁构成转子13的PM型(永磁旋转型)的步进电动机10。定子12设有磁饱和部17,借助于由驱动绕组11产生的磁力在转子13周围的各相(极)15和16中生成不同的磁极。此外,为限定转子13的旋转方向,在定子12内周的适当位置设置内切口18,用于产生堵转转矩,以使转子13停止在适当的位置。
步进电动机10的转子13的转动,由通过金属齿轮与转子13啮合的齿轮系50传递到各个表针,该齿轮系50由第5轮51、第4轮52、第3轮53、第2轮54、中心轮55和柱形轮56组成的。第4轮52的轴与秒针61连接,第2轮54与分针62连接,柱形轮56与时针63连接,由各表针与转子13的旋转联动地指示时刻。当然,也可以将指示年月日等的传动系统(图中未示出)与齿轮系50联接。
在该计时装置1中,为了由步进电动机10的转动指示时刻,对用作基准的频率信号进行计数(计时)并定期向步进电动机10供给驱动脉冲。本例的用于控制步进电动机10的控制装置20,备有:用晶体振子等基准振荡源21产生脉冲信号的脉冲合成电路22、根据由脉冲合成电路22供给的各种脉冲信号控制步进电动机10的控制电路25、及进行旋转检测的检测电路75。
控制电路25,具有:通过驱动电路向驱动绕组11供给频率为1Hz的驱动脉冲P1以便驱动步进电动机10的驱动用转子13使其进行正常表针驱动的功能;当驱动用转子13不转动时输出有效功率大于驱动脉冲的辅助脉冲P2的功能;继辅助脉冲之后输出用于使转子的能量再生的再生脉冲Pr的功能;输出用于消磁的与辅助脉冲P2极性不同的消磁脉冲PE的功能;及调整驱动脉冲的有效功率的功能。本例的控制电路25,还具有供给用于进行以比正常驱动表针用的速度快的速度驱动转子13的快进动作的驱动脉冲PW的功能。此外,还备有用该驱动脉冲PW在与正常驱动表针相反的方向进行驱动的功能。进一步,还可以根据由检测电路75获得的检测时刻输出上述驱动脉冲PW。
根据来自控制电路25的控制信号Φo1和Φo2向步进电动机10供给各种驱动脉冲的驱动电路30,备有由串联连接的n沟道MOS33a和p沟道MOS32a、及n沟道MOS33b和p沟道MOS32b构成的桥式电路,由这些元件可以控制从电源41供给步进电动机10的驱动用绕组11的功率。
在本例的步进电动机10的绕组部19中,检测用绕组71与驱动用绕组11绕制在一起,该检测用绕组71连接着斩波电路72。斩波电路72,是将p沟道MOS73a和73b并联连接的电路,可以由从检测电路75的斩波部77以控制信号Φt1和Φt2的形式供给的斩波脉冲对在检测用绕组71中产生的反感应功率进行放大。然后,将经斩波放大的反感应电压以信号Φk1和Φk2的形式供给检测电路75,分别由检测用反相器76a和76b进行电平判定,并由位置判定部78根据其结果判断转子的位置。
另外,本例的计时装置1,还备有可对电源41进行充电的发电装置40、及将从电源41输出的功率升压和降压后供给控制装置20的驱动电路30的升降压电路49。本例的升降压电路49,可以用多个电容器49a、49b和49c进行多级升压和降压,并能根据来自控制装置20的驱动控制电路25的Φ11调整供给驱动电路30的电压。此外,升降压电路49的输出电压,还通过监视电路Φ12供给驱动控制电路25,由此可以监视该输出电压。因此,不仅可以控制正常驱动表针时的驱动脉冲P1,而且也可以控制用于快进动作的驱动脉冲PW的电压。因此,由于本例的计时装置1可以根据脉冲宽度和电压控制驱动脉冲PQ和PW的有效功率,所以,可以进行精细的驱动功率控制,并能供给为使转子13转动的功率适当的驱动脉冲,因而可以节省功率,同时能以高速进行稳定的快进动作。
在图2中,将在本例的步进电动机10中采用的的绕组部19放大后示出。图2(a)以纵向剖面示出绕组部19,图2(b)以与纵向垂直的剖面示出绕组部19。本例的绕组部19,将检测用绕组71缠绕在磁心19a的周围,并将驱动用绕组11缠绕在其外侧。并且,缠绕在内侧的检测用绕组71,以规则的形式绕制,使其表面基本均匀平坦,即使将2个绕组同轴绕制,也不会降低缠绕在外侧的驱动用绕组11的性能。当然,也可以将驱动用绕组11缠绕在内侧,在这种情况下,内侧的驱动用绕组11最好也以规则形式绕制,以便能够抑制缠绕在外侧的检测用绕组71的电阻的偏差等,并能进行稳定的反感应功率的检测。该驱动用绕组11和检测用绕组71也可以分别单独缠绕,但通过将驱动用绕组11和检测用绕组71同轴绕制,可以减小绕组的设置空间,因而能使步进电动机10小型化。
在图3中,相对于施加在驱动用绕组11上的驱动脉冲PW,示出在检测用绕组71中产生的反感应电压的状态。在检测用绕组71中,随着驱动脉冲PW的变化产生尖峰信号S,但不产生如图11所示的瞬间电流,呈现出易于检测与驱动脉冲PW在同极性侧的反感应功率的第1峰值PP1的状态。因此,可以采用这样一种驱动方法,即用任何手段检测第1峰值PP1并根据其发生时刻(检测时刻)产生下一个驱动脉冲PW,从而使转子13以高速进行快进动作。在该驱动方法中,由于是根据第1峰值的检测时刻DT供给驱动脉冲PW,所以与根据规定频率(周期)定期供给驱动脉冲PW的模式(定期驱动模式)不同,在下文中称作自激驱动模式。
当然,也可以不使用检测用绕组而根据在驱动用绕组感应产生的反感应功率检测第1峰值。在这种情况下,为避免如后文所述的瞬态电流TW的影响,重要的是使驱动脉冲PW具有狭窄的宽度、或设定适当的不灵敏时间。
在自激驱动模式中,以电流或电压的形式捕获由转子13的旋转而激励的反感应功率并检测该反感应功率的第1峰值中在时间上落后但易于与驱动脉冲分离的与驱动脉冲在同极性侧的第1峰值PP1,所以,与以往在步进电动机的旋转检测中采用的反感应功率的第2峰值相比,可以较早地检测出转子13的位置。因此,可以使供给驱动脉冲的输出时刻提前,并能提高快进动作的速度。另一方面,将供给驱动脉冲PW后最先出现的第1峰值用作检测时刻DT,并由此可以决定供给驱动脉冲的时刻,所以能确保检测转子位置的时间,同时可以将用于获得检测时刻的时间减少到最低限度。因此,可以在最低限度的时间内确认转子13的位置,同时输出驱动脉冲PW,所以,能够进行稳定的高速快进动作。
另外,如在前面参照图11和图12所说明过的,当检测第1峰值PP1时,可以确认转子13已到达稳定位置,所以能够进行可靠的表针驱动。此外,由于在确认转子13的位的同时输出驱动脉冲PW,所以,可以在与转子13的旋转方向一致的时刻供给下一个驱动脉冲,因而可以减小驱动脉冲PW的有效功率。因此,由于能使驱动脉冲的脉冲宽度PW变窄,所以易于与第1峰值PP1分离,并能进行更稳定的高速快进动作。
为检测同极性的第1峰值PP1,也可以通过判断反感应电压的极性检测反感应电压变为0的点(零交点)。但是,当存在着外部磁场的影响或检测电平的偏差时,检测零交点的时刻经常比反感应电压实际上变为0的点要早。因此,使下一个驱动脉冲的时刻与转子13的预定旋转方向不同,因而使转子13向相反方向旋转。与此不同,在本例的计时装置1中,将由斩波电路72利用与前一个驱动脉冲PW极性相同的斩波脉冲放大后的反感应电压与检测电路75中的反相器76a和76b的阈值进行比较。通过与上述某个一定的电平(电压电平或电流电平)相比较而进行检测,可以防止检测电平的偏差,并能进行可靠地反映转子13的位置的位置判定。此外,由于可以将因转子13的旋转而产生的反感应电压设定得大于由外部磁场影响所附加的电压,所以,能够消除外部磁场的影响。另外,还可以根据条件对判定反感应电压的检测电平(相当于反相器的阈值)进行变更和控制。因此,即使从这几方面看,采用电平检测的方法,也能以良好的精度可靠地进行转子13的位置检测。当然,也可以用比较器等代替反相器判定反感应电压的电平,但从电路上看,采用反相器时只需少量的电路元件等构成要素即可。因此,能使包含检测电路75的控制装置小型化并以低成本制作,同时还能减低耗电量。
另外,如图4所示,在像本例定子12这样的备有磁饱和部17的整体型定子的情况下,反感应电压不是规则的正弦波,从反感应功率的反极性侧的峰值PM1过渡到同极性侧的峰值PP1时的电压变化平缓。因此,零交点不像定子分离式的双体型定子那样容易判定。与此不同,如果像本例这样检测一定的电平,则即使在整体型定子的情况下,也能可靠地捕获第1峰值PP1。
当然,捕获第1峰值PP1以外的反感应电压的某些特征,也可以检测转子13的位置,并根据检测结果在适当的时刻供给驱动脉冲。
[快进动作过程中的自激驱动]
在图5中,以时序图示出按自激驱动模式进行快进动作的的一例。首先,在时刻t1,输出用于供给脉宽为W0的驱动脉冲PW的控制信号Φo1。在时刻t2,当驱动脉冲PW结束(从高电平返回低电平)时,在检测用绕组71的信号Φk1中发生高频噪声即尖峰信号S。但是,对检测用绕组的反感应电压进行斩波放大的斩波脉冲,在从供给驱动脉冲PW的时刻t1起经过比脉宽W0长的屏蔽时间τ0的时刻t3供给。因此,信号S不会被斩波放大,因而达不到检测电平L(反相器26的阈值)。这样,通过从前一个驱动脉冲的输出时刻起仅按规定时间设定不对因转子旋转而产生的反感应功率进行检测的不灵敏时间(屏蔽时间)τ并对从检测用绕组供给位置检测装置的信号进行屏蔽,可以防止由驱动脉冲引起的尖峰信号S的影响,并能可靠地获得检测时刻。当然,用作屏蔽时间τ的基准的时刻,并不限定于输出时刻,也可以是驱动脉冲结束的时刻或其他时刻。采用驱动用绕组检测反感应电压时也同样,在这种情况下,将屏蔽时间τ的长度设定为足以不对由驱动用绕组引起的瞬态电流进行检测的程度,就能可靠地获得检测时刻。
当在时刻t3根据信号Φt1供给与驱动脉冲PW极性相同的斩波脉冲时,检测用绕组71的被放大的反感应电压的电平,出现在信号Φk1中。然后,在时刻t4,当信号Φk1的电平达到检测电平L时,将该时刻作为检测时刻DT,开始输出下一个驱动脉冲PW的周期。另外,当获得检测时刻DT时,将斩波脉冲停止。最好是根据所供给的驱动脉冲的幅值或根据采用检测用绕组还是采用驱动用绕组选择斩波脉冲的时刻、频率及占空系数中的至少任何一项,并且,最好是调整到能防止由驱动脉冲引起的瞬态电流或尖峰噪声的影响,从而能更可靠地获得检测时刻。
在从检测时刻DT起经过规定的延迟时间d0后的时刻t5,根据信号Φo2输出反极性侧的下一个驱动脉冲PW。这样,在自激驱动模式中,由检测时刻DT决定驱动脉冲PW的输出时刻。延迟时间d0,可以根据转子13的动作状态设定,并可以通过仿真等预先设定适当的时间,使转子13的方向朝向下一个稳定方向。在从输出下一个驱动脉冲PW起经过屏蔽时间τ0后的时刻t6,输出与该驱动脉冲PW在同极性侧的斩波脉冲,并在信号Φk2中出现由斩波脉冲放大后的反感应功率。然后,在时刻t7,当信号Φk2的电平达到检测电平L时,得到检测时刻DT。因此,根据检测时刻DT(时刻t7)在下一个时刻开始用于供给下一个驱动脉冲PW的周期。
在本例中,与在前一周期中从输出驱动脉冲到获得检测时刻DT的时间间隔I1比较,下一个周期的时间间隔I2变短。因此,在从时刻t7的检测时刻DT起经过延迟时间d0后的时刻t8,供给比前一个驱动脉冲PW窄的脉宽为W1的驱动脉冲PW。这样,当由检测电路75检出的检测时刻DT的周期变短时,通过供给脉宽W窄的驱动脉冲PW,可以防止驱动脉冲PW对第1峰值PP1的检测的影响。进一步,通过使脉宽W变窄,还能缩短屏蔽时间τ,并可以使供给1个驱动脉冲的时间间隔缩短,因此能以更高的速度驱动步进电动机。此外,通过使脉宽W变窄,还可以减低驱动脉冲的有效功率,所以,能进行自动控制,使步进电动机具有适当的快进动作速度。
与图5所示的情况相反,在检测时刻DT的周期每经过一个周期后变长的情况下,即使供给脉冲宽度宽的驱动脉冲,对第1峰值的检测的影响也不大,但由于能使驱动脉冲的有效功率增大,因而能使转子13的转速加速。通过按如上方式控制驱动脉冲PW的宽度W,能可靠地进行第1峰值的检测,同时可以进行自动控制,使步进电动机以适当的速度进行快进动作。
进一步,在图5中,当驱动脉冲PW的脉宽从W0到W1变窄时,在随后的产生反感应电压的时刻也提前了。因此,屏蔽时间τ也从τ0缩短为τ1,在从时刻t8经过屏蔽时间τ1后的时刻t9,开始斩波放大,并能在时刻t10可靠地捕获第1峰值,从而获得得检测时刻DT。
在从时刻t8开始的周期中,从输出驱动脉冲PW的时刻t8到检测时刻DT的时间间隔I3,进一步缩短。因此,在从时刻t11开始的周期中,输出脉冲宽度更窄的脉宽为W2的驱动脉冲PW。然后,当在时刻t12获得检测时刻DT时,在经过相对于脉宽W2设定的缩短了的延迟时间d1后,开始下一个周期,并输出驱动脉冲PW。这样,在本例的自激驱动中,由于供给1个驱动脉冲PW的周期时间发生变化,所以延迟时间d最好也能根据驱动脉冲PW的脉宽等选择,以便可以与转子13的摆动方向(振荡方向)一致地供给下一个驱动脉冲PW。从检测时刻起经过适当的延迟时间d后供给下一个驱动脉冲PW,就可以使转子的振荡方向与驱动脉冲的行进方向(驱动方向)一致,从而使转子易于转动,因而能节省施加于转子13的能量,并可以减低快进动作时的耗电量。
调整驱动脉冲PW的脉宽的方法,可考虑如下几种。如驱动脉冲PW的的长度与时间间隔I1或I2相当,则对经过稳定位置B后的转子13的旋转有可能起制动作用。因此,最好是使驱动脉冲PW的脉宽比前一个时间间隔I1短。为此,可以考虑对所计得的时间间隔Ii(第i个时间间隔)决定规定的时间i0,并将第i+1个或在其后的驱动脉冲的脉宽W控制为(Ii-i0)。或者,可考虑设定适当的比率α(0<α<1),并将I×α设定为下一个驱动脉冲PW的宽度。此外,在可以分级选择驱动脉冲PW的脉宽的情况下,如时间间隔Ii变短,则也可以进行按级切换并供给脉宽短的驱动脉冲的控制。
另外,本例的计时装置1,内装发电装置40,所以供给驱动电路30的供电电压将会有变化。此外,即使是采用一次电池的电子仪器,其供电功率也会随耗电量而变化。在这种情况下,虽可以利用升降压电路49将电压的变化抑制到一定的程度,但只不过是能对电压进行分级调整。因此,当供电电压变高时,驱动脉冲PW的有效功率增加,使转子13的速度升高,并驱动脉冲与第1峰值难于分离,因而很容易受到瞬态电流、尖峰噪声等的影响。为此,本例的控制电路25,对电源装置的供电电压进行监视,并当供电电压变高时,供给脉宽W窄的驱动脉冲PW,从而能可靠地获得检测时刻DT。另一方面,当电源装置的供电电压变低时,最好是供给脉宽W宽的驱动脉冲PW以确保有效功率,并使转子13的转速升高到能得到强度足够的反感应电压。这种脉宽控制,由于当电压变高时供给脉宽窄因而有效功率小的驱动脉冲。当电压变低时供给脉冲宽度宽因而有效功率大的驱动脉冲,所以,在保持快进动作的速度恒定这一点上也是有效果的。
当电源装置的供电电压进一步变低、使转子13的转速降低因而使反感应电压变低时,往往不能检测到其电平。因此,当电源部41的电压变得非常低时,控制电路25切换到以固定周期供给驱动脉冲的定期驱动模式,即使不能获得检测时刻DT,也可以按一定的时序供给用于快进动作的驱动脉冲,并能继续进行快进动作。
即,在检测第1峰值PP1并判断转子是否转动后供给下一个驱动脉冲PW的自激驱动模式中,如未得到检测时刻DT,则不能进入供给下一个驱动脉冲的周期。因此,本例的控制电路,当从检测电路75得不到检测时刻DT时,可以假定转子13已转动并经过一定时间后供给与前一个驱动脉冲PW极性不同的下一个驱动脉冲,因此可以保持快进动作的速度。
不能获得检测时刻DT时的处理,并不限定于此,也可以在经过一定时间后供给与驱动脉冲极性相同的有效功率足够大的辅助脉冲P2。按照这种方式,可以使转子可靠地转动,并能对表针驱动差错的发生防止于未然。或者,执行供给使转子13摆动而不转动的驱动脉冲并检测其反感应电压的磁极位置检测处理,在准确地确认了转子13的位置后,也可以供给极性与其位置适应的驱动脉冲,以继续进行快进动作。
另一方面,当不能得到检测时刻DT时,也可以假定在自激驱动模式的速度下不进行快进动作,并按与正常速度驱动表针时同样的时序检测转子的动作。例如,可以通过检测因转子13的转动而产生的反感应电压的第2峰值PM2或PP2判断转子是否转动。并且,当转子13不转动时,可以从控制装置25供给有效功率足够大的辅助脉冲P2,同时供给有效功率逐级大于前一个驱动脉冲的驱动脉冲,从而在快进动作中采用与正常驱动表针时同样的脉宽控制。进一步,当得到其有效功率能稳定驱动转子的驱动脉冲时,也可以变更为检测第1峰值PP1的自激驱动模式,借以增加快进动作的速度。
[快进动作开始时]
在图6中,示出开始自激驱动时的处理的一例。在自激驱动中,为能可靠地检测反感应电压的第1峰值PP1,第1峰值最好具有大的值。但是,当快进动作开始时(起动时,即包含驱动开始的第1个驱动脉冲或随后的若干个脉冲时),转子13的速度小,因而反感应功率小,第1峰值也低。为此,在本例中,由升降压电路49将供电电压升压,并在时刻t21输出比随后的驱动脉冲PW的电压V1高的电压为V0的驱动脉冲,使转子13加速。因此,可以得到在时刻t22达到检测电平L的强度足够高的反感应电压,并能获得检测时刻DT。因此,可以将时刻t22作为下一个周期的起点,并可以在经过适当的延迟时间d后输出用于快进动作的正常电压V1的驱动脉冲PW,以继续进行快进动作。
快进动作开始时的处理,不限于本例,例如,考虑到快进动作开始对反感应电压低的情况,可以将检测电平L降低而判定快进动作开始时的反感应电压。此外,快进动作开始时,控制电路25,当然也可以选择定期供给驱动脉冲的定期驱动模式而不是自激驱动模式,在转子13达到一定的速度后,再切换到自激驱动模式
另外,为防止快进动作开始时的表针驱动差错,最好参照在开始快进动作之前用于进行正常表针驱动的驱动脉冲P1的有效功率,供给有效功率等于或大于该有效功率的驱动脉冲PW,使转子能可靠地转动。
进一步,在快进动作开始时,如在定子12中留有前一个驱动脉冲P1的剩余磁通,则很难提高转子13的速度。因此,在快进动作开始时,可以进行这样的处理,即由控制电路25供给与前一个用于正常转动的驱动脉冲P1极性相反的消磁脉冲PE,使定子12消磁,从而使转子13加速。
另外,如图7所示,当控制电路25备有可以供给有效功率随脉宽等逐级不同的多个驱动脉冲PW1~PWn的功能时,首先,在步骤ST1中,选择有效功率最小的驱动脉冲PW,在步骤ST2中供给该驱动脉冲后,在步骤ST3中检测转子13的位置。然后,如转子13在转动,则在步骤ST4中,采用该有效功率的驱动脉冲,开始快进动作。另一方面,如果转子13不转动,则在步骤ST5中选择并供给下一个驱动脉冲。这些步骤一直进行到转子13转动为止,从而能以有效功率最小的驱动脉冲开始快进动作。相反,也可以从有效功率大的驱动脉冲开始按顺序供给,并在转子13停止转动的情况下,选择和供给在这之前仍能使转子13转动的最小限度有效功率的驱动脉冲。
[快进动作结束时]
在图8中,示出自激驱动结束时、即快进动作的驱动结束时最后供给的驱动脉冲或供给其前面的几个脉冲时的处理的一例。在本例的计时装置1中,快进动作用于设定时刻等,所以最好使快进动作在规定的时刻结束。即,当快进动作结束时,步进电动机10必须停止而不能转过头,并在无表针驱动差错的状态下切换到正常的表针驱动。因此,在本例中,在快进动作结束时,从控制电路25供给有效功率足够大的辅助脉冲P2并进一步供给使转子13的反感应功率再生的再生脉冲Pr,用以限制转子的转动。另外,在此之前,供给分解为多个子脉冲PS的有效功率大的驱动脉冲PW,用来减缓转子13的转速,使其能够平稳地停止。当然,也可以将再生脉冲Pr与驱动脉冲PW组合而结束快进动作,也可以仅用再生脉冲Pr结束快进动作。
本例的控制电路25,当在时刻t31获得检测时刻DT时,进入停止模式,在经过适当的延迟时间d3后的时刻t32,供给包含多个子脉冲PS的有效功率大的用于停止的梳状驱动脉冲PW。由于转子13受驱动脉冲限制的时间较长,所以在该驱动脉冲作用下,使转子13的转速能逐渐降低,并形成了易于停止的状态。当然使用脉冲宽度宽的有效功率大的驱动脉冲也可以进行同样的处理。
在经过适当的屏蔽时间τ后的时刻t33,进行斩波放大并检测反感应电压,在时刻t34得到检测时刻DT。然后,在本例中,在经过比前一个周期长的延迟时间d4后供给用于停止的驱动脉冲PW,并使转子13的摆动的时刻与驱动脉冲的供给时刻错开,从而能减小转子13保持的旋转能量,使转子的速度降低。
在经过稍长一些的延迟时间d4后的时刻t35,供给下一个用于停止的驱动脉冲PW,并在经过屏蔽时间τ后的时刻t36,开始斩波放大并进行反感应电压的检测。然后,在时刻t37,当被放大后的反感应电压达到检测电平L并得到检测时刻DT时,在经过延迟时间后的时刻t38,供给用于最终使转子13停止的辅助脉冲P2,接着,在时刻t39供给再生脉冲Pr。辅助脉冲P2,是脉宽非常宽的有效功率大的脉冲,因而能可靠地使转子13转到下一个步距角,同时将其限制在该步距角内。接着,通过供给再生脉冲Pr,可以将转子13的摆动能量再生,并能使转子13更加稳定。
按照上述方式,在再生脉冲Pr停止的时刻t40,可以使转子13基本上停止在规定的步距角内,并能继续开始正常的1Hz的表针驱动。
快进动作的处理,不限于此,在快进动作结束时,控制电路也可以从自激驱动模式切换到定期供给驱动脉冲而与检测时刻无关的定期驱动模式,在以适当的速度并在稳定的状态下使转子转动后将快进动作停止。
进一步,在快进动作结束时,为防止表针或齿轮系等由步进电动机驱动的被驱动装置的惯性影响,在将步进电动机的旋转力传递到表针等被驱动装置的路径(齿轮系)中最好采用反向传动效率低的传动装置。例如,在特开昭55-18925号、特开昭55-17275号等中公开了反向传动效率低的传动装置的技术。
另外,上述自激驱动模式,即使在反向快进动作(回拨动作)的情况下也可以采用。在开始回拨动作时,可以由检测电路75根据反感应电压设定可开始向反向拨回的第2检测时刻,并在该时刻供给开始反转用的驱动脉冲。另外,在控制电路中,在开始反转之前,供给与最初的反转用驱动脉冲极性相反且有效功率小的反转用辅助脉冲,对转子13施加反作用力,以使其易于向相反方向转动。
[驱动脉冲的停止控制]
在图9和图10中,示出可以通过检测反感应电压控制驱动脉冲PW的脉宽的例。如上所述,只要获得检测时刻DT,就可以确认转子13已转到规定位置,所以在获得检测时刻DT后,通过设定使驱动脉冲PW停止(从高电平变为低电平)的停止时刻,就能可靠地控制转子13。在图9中,示出在本例中得到的驱动脉冲和反感应电压的关系。在本例中,在供给驱动脉冲PW并检测到第1峰值PP1后,将驱动脉冲PW停止。因此,驱动脉冲PW停止时的尖峰信号S出现在第1峰值PP1之后,所以还能防止尖峰信号S的影响。
在图10中示出包含驱动脉冲停止控制的自激驱动模式的处理的一例。当在时刻t51输出驱动脉冲PW时,在经过适当的屏蔽时间τ5后的时刻t52,根据控制信号Φt1输出斩波脉冲。由该斩波脉冲放大后的反感应电压的电平出现在信号Φk1中。屏蔽时间τ5,可以设定为不检拾输出驱动脉冲PW时的尖峰噪声或其他噪声的适当的时间。当被放大后的反感应电压的电平在时刻t53达到检测电平L时,得到检测时刻DT。在本例中,将得到该检测时刻DT的时刻设定为驱动脉冲PW的停止时刻,因此在时刻t53将驱动脉冲PW停止,与此同时,进入输出下一个驱动脉冲PW的周期。这样,在本例中,根据检测时刻DT决定驱动脉冲的停止时刻,同时也决定了下一个驱动脉冲的输出时刻。
从检测时刻DT起经过适当的延迟时间d5后的时刻t54,被判定为下一个驱动脉冲PW的输出时刻,并输出驱动脉冲PW。与上述相同,对该驱动脉冲PW,也是当在时刻t55获得检测时刻DT时,将其作为停止时刻并将驱动脉冲PW停止。下一个周期也按同样方式进行,但对于输出驱动脉冲的时刻t56,当被放大后的反感应电压达到检测电平L的时间由于某种原因而延迟时,检测时刻拖延到时刻t57。因此,停止时刻也延长到时刻t57,在这段时间内继续输出驱动脉冲PW,其结果是输出了脉宽W宽的驱动脉冲PW。
这样,在本例的自激驱动模式中,输出驱动脉冲PW的输出时刻根据检测时刻DT设定,进一步,停止驱动脉冲PW的停止时刻也根据检测时刻DT设定。因此,驱动脉冲的时刻和脉宽W都应根据转子的状况进行设定,才能进行驱动,从而使转子13可靠地转动,并能对反转等的发生防止于未然。因此,能进行更稳定的高速快进动作。并且,即使在供电电压变化、或转子的负载转矩变化的情况下,也仍能自动地对步进电动机供给其有效功率足以适应这些影响的驱动脉冲。因此,能够进行非常稳定的高速快进驱动。
在本例中,以除驱动用绕组11外还设有检测用绕组71的例进行了说明,但也可以用驱动绕组11在供给驱动脉冲的过程中获得检测时刻。为此,只须从控制电路25供给包含多个子脉冲的驱动脉冲并在不受或少受驱动脉冲影响的状态下在各子脉冲间的间隔中检测因转子13的旋转而产生的反感应功率即可。
另外,当由于某种原因而不能得到检测时刻时,例如当在时刻t58输出驱动脉冲并从经过屏蔽时间τ5后的时刻t59起即使由斩波脉冲对反感应电压进行放大也不能达到检测电平L时,在经过脉宽的最大值Wmax的时刻t60强制性地将驱动脉冲停止。然后,在从输出驱动脉冲的时刻t58起经过适当的最大时间间隔Imax后的时刻t61,输出下一个驱动脉冲PW。按照这种方式,就可以由控制电路25在经过一定时间后将驱动脉冲停止,并转入下一个周期,继续进行快进动作。
另外,在上述自激驱动模式中,当快进动作结束时,设定从检测时刻起到停止驱动脉冲的适当的延迟时间,并通过强制性地延伸驱动脉冲的脉宽而使转子113的速度逐渐地降低。
如上所述,本例的计时装置1,检测因转子13的转动而产生的反感应电压,以捕获初始峰值(第1峰值)的时刻(检测时刻),并根据该检测时刻控制输出随后的驱动脉冲的时刻。另外,如上所述,还可以根据该检测时刻控制驱动脉冲本身的脉宽。因此,能使转子13可靠地转动,同时可以在与转子13的转速一致的时刻供给驱动脉冲。因此,能以很少的耗电量进行稳定的高速快进动作。
如上所述的各驱动脉冲PW、斩波脉冲、辅助脉冲P2等的波形,是作为例子示出的,当然可以根据在计时装置中采用的步进电动机10的特性等进行设定。另外,在上述的例中,以适用于计时装置的2相步进电动机为例对本发明进行了说明,但本发明当然也同样可以适用于3相以上的步进电动机。此外,代替对各相进行的通用的控制,也能以适合于各相的脉宽和时序供给驱动脉冲。并且,步进电动机的驱动方式,也不限于1相励磁,当然也可以是2相励磁或1-2相励磁。进一步,本发明也不限于手表等计时装置,在精密计时器等多功能计时装置或其他内装步进电动机的电子仪器中,当然也可以应用本发明。
产业上的可利用性
如上所述,在本发明中,通过捕获反感应功率的初始峰值判断转子的位置,并在与该转子位置一致的时刻,供给下一个驱动脉冲,而无须经过空耗的时间。因此,能以高速进行步进电动机的快进动作,并可以提供一种适合于具有采用步进电动机自动进行时刻设定的功能的计时装置等的电子仪器。

Claims (37)

1.一种电子仪器,具有:步进电动机,使多极磁化后的转子能够在备有驱动用绕组的定子内旋转驱动;驱动装置,对上述驱动用绕组供给用于驱动上述转子的驱动脉冲;驱动控制装置,控制该驱动装置使其可以供给用于快进动作的驱动脉冲,同时可以调整该驱动脉冲的时序;及位置检测装置,可以在因上述转子旋转而激励产生的反感应功率中检测与前一个驱动脉冲极性相同的第1峰值;其特征在于:上述驱动控制装置,可以根据上述第1峰值的检测时刻控制下一个驱动脉冲的输出时刻。
2.根据权利要求1所述的电子仪器,其特征在于:上述步进电动机的定子,备有检测用绕组,上述位置检测装置能够检测在上述检测用绕组中感应产生的反感应功率。
3.根据权利要求2所述的电子仪器,其特征在于:上述驱动用绕组和检测用绕组同轴缠绕,两个绕组中至少缠绕在内侧的绕组按规则形式缠制。
4.根据权利要求2所述的电子仪器,其特征在于:上述位置检测装置,还可以检测当从上述驱动控制装置供给正常速度的驱动脉冲时因上述转子旋转而激励产生的反感应功率。
5.根据权利要求1所述的电子仪器,其特征在于:上述位置检测装置,可以检测由与前一个驱动脉冲极性相同的斩波脉冲放大后的反感应功率。
6.根据权利要求5所述的电子仪器,其特征在于:可以选择上述斩波脉冲的时序、频率及占空系数中的任何一项。
7.根据权利要求1所述的电子仪器,其特征在于:上述位置检测装置,可以仅按以前一个驱动脉冲为基准的规定时间设定一个不能检测因上述转子旋转而产生的反感应功率的不灵敏时间。
8.根据权利要求1所述的电子仪器,其特征在于:上述位置检测装置,将因上述转子旋转而产生的反感应功率与基准电平进行比较以获得上述检测时刻。
9.根据权利要求8所述的电子仪器,其特征在于:上述位置检测装置,备有可以检测因上述转子旋转而产生的反感应功率的反相器。
10.根据权利要求8所述的电子仪器,其特征在于:上述定子是备有磁饱和部的整体型定子。
11.根据权利要求1所述的电子仪器,其特征在于:具有用于向上述驱动装置供电的电源装置,当上述电源装置的供电电压升高时,上述驱动控制装置,可以供给脉冲宽度窄的驱动脉冲。
12.根据权利要求1所述的电子仪器,其特征在于:具有用于向上述驱动装置供电的电源装置,当上述电源装置的供电电压降低时,上述驱动控制装置,可以供给脉冲宽度宽的驱动脉冲。
13.根据权利要求1所述的电子仪器,其特征在于:具有用于向上述驱动装置供电的电源装置,当上述电源装置的供电电压降低时,上述驱动控制装置,能以固定周期供给驱动脉冲。
14.根据权利要求11~13中的任何一项所述的电子仪器,其特征在于:上述电源装置为充放电型。
15.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,当由上述位置检测装置检出的检测时刻的周期变短时,可以供给脉冲宽度窄的驱动脉冲,当检测时刻的周期变长时,可以供给脉冲宽度宽的驱动脉冲。
16.根据权利要求15所述的电子仪器,其特征在于:上述驱动控制装置,在随后的驱动脉冲的时刻供给脉冲宽度比从输出驱动脉冲到获得检测时刻的时间间隔短规定时间的驱动脉冲。
17.根据权利要求15所述的电子仪器,其特征在于:上述驱动控制装置,在随后的驱动脉冲的时刻供给脉冲宽度与驱动脉冲输出后直到获得检测时刻为止的时间间隔成比例的比该时间间隔短的驱动脉冲。
18.根据权利要求15所述的电子仪器,其特征在于:上述驱动控制装置,可以选择预先准备的多分级脉宽的驱动脉冲,并在随后的驱动脉冲的时刻根据从输出驱动脉冲到获得检测时刻的时间间隔供给脉冲宽度比已输出的驱动脉冲的脉宽长或短的的驱动脉冲。
19.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,可以供给规定有效功率的驱动脉冲,并当不能由上述位置检测装置获得上述检测时刻时,在经过一定时间后供给与前一个驱动脉冲极性不同的下一个驱动脉冲。
20.根据权利要求1所述的电子仪器,其特征在于:具有可以使供给上述驱动装置的供电电压升压的升压装置,上述驱动控制装置,可以在快进动作开始时将由上述升压装置升压后的供电电压供给上述驱动装置。
21.根据权利要求1所述的电子仪器,其特征在于:上述位置检测装置,在快进动作开始时可以将因上述转子旋转而产生的反感应功率的判断值设定得较低。
22.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作开始时可以定期供给驱动脉冲。
23.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作开始时可以供给有效功率等于或大于正常转动用驱动脉冲的驱动脉冲。
24.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作开始时可以供给与前一个用于正常转动的驱动脉冲极性相反的消磁脉冲。
25.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,可以选择预先准备的多分级有效功率的驱动脉冲,在快进动作开始时从有效功率小的驱动脉冲开始顺序选择和供给,并以使转子可转动的最小限度有效功率的驱动脉冲进行快进动作。
26.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,可以选择预先准备的多分级有效功率的驱动脉冲,在快进动作开始时从有效功率大的驱动脉冲开始顺序选择和供给,并以使转子可转动的最小限度有效功率的驱动脉冲进行快进动作。
27.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制部,在快进动作结束时可以供给有效功率大的辅助脉冲或使上述转子的反感应功率再生的再生脉冲。
28.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作结束时可以定期供给驱动脉冲。
29.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作结束时可以供给有效功率大的驱动脉冲。
30.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在快进动作结束时可以供给被分割为多个子脉冲的驱动脉冲。
31.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,在开始反转前能以与反转用的驱动脉冲相反的极性供给有效功率小的辅助脉冲。
32.根据权利要求1所述的电子仪器,其特征在于:上述驱动控制装置,可以根据由上述位置检测装置获得的上述检测时刻控制驱动脉冲的输出停止时刻。
33.根据权利要求32所述的电子仪器,其特征在于:上述驱动控制装置,可以从上述驱动装置供给构成驱动脉冲的多个子脉冲,当子脉冲为低电平时,上述位置检测装置可以检测因上述转子旋转而产生的反感应功率。
34.根据权利要求32所述的电子仪器,其特征在于:上述步进电动机的定子,备有检测用绕组,上述位置检测装置能够检测在上述检测用绕组中感应产生的反感应功率。
35.根据权利要求32所述的电子仪器,其特征在于:上述位置检测装置,可以从前一个驱动脉冲的输出时刻起仅按规定的时间设定一个不能检测因上述转子旋转而产生的反感应功率的不灵敏时间。
36.根据权利要求32所述的电子仪器,其特征在于:上述驱动控制装置,当不能由上述位置检测装置获得上述检测时刻时,在经过一定时间后设定驱动脉冲的停止时刻。
37.根据权利要求32所述的电子仪器,其特征在于:上述驱动控制装置,可以从由上述位置检测装置检出的检测时刻起经过规定的延迟时间后设定驱动脉冲的停止时刻,并可以在快进动作结束时控制上述延迟时间。
CNB98801503XA 1997-08-11 1998-08-11 电子仪器 Expired - Fee Related CN1168196C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP09216775 1997-08-11
JP216775/97 1997-08-11
JP216775/1997 1997-08-11
PCT/JP1998/003570 WO1999008375A1 (fr) 1997-08-11 1998-08-11 Dispositif electronique

Publications (2)

Publication Number Publication Date
CN1241323A true CN1241323A (zh) 2000-01-12
CN1168196C CN1168196C (zh) 2004-09-22

Family

ID=16693709

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB98801503XA Expired - Fee Related CN1168196C (zh) 1997-08-11 1998-08-11 电子仪器

Country Status (7)

Country Link
US (1) US6163126A (zh)
EP (1) EP0932250B1 (zh)
JP (3) JPH11127595A (zh)
CN (1) CN1168196C (zh)
DE (1) DE69830465T2 (zh)
HK (1) HK1018924A1 (zh)
WO (1) WO1999008375A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782593A (zh) * 2010-02-15 2012-11-14 西铁城控股株式会社 电子计时装置
CN106104395A (zh) * 2014-03-17 2016-11-09 西铁城控股株式会社 电子钟表
CN107181435A (zh) * 2016-03-11 2017-09-19 卡西欧计算机株式会社 驱动装置、步进电动机驱动方法、程序记录介质及电子表
CN109417401A (zh) * 2016-08-04 2019-03-01 日立汽车系统株式会社 具备电力线通信功能的电子控制装置、促动器、电子控制系统及使用它们的汽车
CN111293936A (zh) * 2018-12-06 2020-06-16 斯沃奇集团研究和开发有限公司 直流电动机的控制方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258227A (ja) * 2000-01-06 2001-09-21 Seiko Epson Corp 発電装置、それを有する計時装置および電子機器、発電装置のコギングトルク調整方法
JP4499868B2 (ja) * 2000-04-07 2010-07-07 矢崎総業株式会社 駆動装置
JP4618749B2 (ja) * 2000-07-17 2011-01-26 リコーエレメックス株式会社 時計部を備える小型機器用充電装置
TW505834B (en) * 2001-03-20 2002-10-11 Ebauchesfabrik Eta Ag Timepiece including a generator
DE10225610B4 (de) * 2002-06-07 2006-12-28 Trinamic Motion Control Gmbh & Co. Kg Verfahren und Schaltungsanordnung zum Betreiben eines Schrittmotors
JP2004364490A (ja) * 2003-05-09 2004-12-24 Citizen Watch Co Ltd 被駆動機構を動作させるための小型駆動装置、及びそれを用いた光学レンズの駆動装置とその光学レンズユニット
JP4619081B2 (ja) * 2004-09-29 2011-01-26 シチズンホールディングス株式会社 可逆ステッピングモータ
JP2006226927A (ja) * 2005-02-21 2006-08-31 Seiko Instruments Inc ステップモータ駆動装置及びアナログ電子時計
JP4787555B2 (ja) * 2005-07-05 2011-10-05 セイコーインスツル株式会社 2相ステップモータの回転検出方法及び装置
WO2008004178A2 (en) * 2006-07-04 2008-01-10 Nxp B.V. Method for controlling a deceleration process of a dc motor and controller
JP2011022043A (ja) * 2009-07-16 2011-02-03 Seiko Instruments Inc クロノグラフ時計
JP2013148571A (ja) 2011-12-19 2013-08-01 Seiko Instruments Inc ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP2016031329A (ja) * 2014-07-30 2016-03-07 セイコーエプソン株式会社 ステッピングモーター制御回路、半導体装置、およびアナログ電子時計
EP3203329B1 (en) 2014-09-30 2021-12-08 Citizen Watch Co., Ltd. Electronic clock
US10216523B2 (en) 2015-07-17 2019-02-26 General Electric Company Systems and methods for implementing control logic
JP6536446B2 (ja) * 2016-03-23 2019-07-03 セイコーエプソン株式会社 電子時計
JP6916688B2 (ja) * 2017-08-09 2021-08-11 シチズン時計株式会社 駆動装置
JP7044599B2 (ja) * 2018-03-14 2022-03-30 セイコーインスツル株式会社 針位置制御装置、時計、および針位置制御方法
JP7455503B2 (ja) * 2018-07-12 2024-03-26 セイコーインスツル株式会社 モータ駆動装置およびモータ制御方法
JP7219094B2 (ja) 2019-01-11 2023-02-07 セイコーインスツル株式会社 アナログ電子時計、ステッピングモータ制御装置及びアナログ電子時計の制御方法
JP7295650B2 (ja) * 2019-02-06 2023-06-21 セイコーインスツル株式会社 時計およびモータ制御方法
JP7410760B2 (ja) * 2020-03-13 2024-01-10 セイコーインスツル株式会社 ステッピングモータ制御装置、ムーブメント、時計及びステッピングモータ制御方法
CN111964902A (zh) * 2020-07-29 2020-11-20 广东乐芯智能科技有限公司 一种电子齿轮箱转针故障监测系统
CN111982504A (zh) * 2020-07-29 2020-11-24 广东乐芯智能科技有限公司 一种电子齿轮箱转针故障监测方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074179A (en) * 1975-06-16 1978-02-14 Warner Electric Brake & Clutch Company Position detection methods and apparatus for stepping motors
JPS5291470A (en) * 1976-01-28 1977-08-01 Citizen Watch Co Ltd Portable electronic clock
GB2006995B (en) * 1977-09-26 1982-11-17 Citizen Watch Co Ltd Drive system for pulse motor
JPS5477169A (en) * 1977-12-02 1979-06-20 Seiko Instr & Electronics Ltd Electronic watch
GB2016749B (en) * 1978-01-27 1982-08-11 Suwa Seikosha Kk Batery driven electronic analogue timpieces
JPS5515054A (en) * 1978-07-19 1980-02-01 Seiko Instr & Electronics Ltd Electronic watch
US4321521A (en) * 1978-12-25 1982-03-23 Kabushiki Kaisha Daini Seikosha Detection device of electronic timepiece
JPS55106383A (en) * 1979-02-09 1980-08-15 Seiko Instr & Electronics Ltd Electronic watch with alarm
JPS55147381A (en) * 1979-05-04 1980-11-17 Seiko Instr & Electronics Ltd Detector for electronic watch
JPS5643575A (en) * 1979-09-18 1981-04-22 Seiko Instr & Electronics Ltd Electronic clock
CH641921B (fr) * 1980-02-19 Berney Sa Jean Claude Piece d'horlogerie avec un dispositif de controle du moteur pas a pas.
JPS56158978A (en) * 1980-05-13 1981-12-08 Citizen Watch Co Ltd Electronic watch
JPS5868683A (ja) * 1981-10-20 1983-04-23 Seiko Epson Corp アナログ電子時計
JPS5872084A (ja) * 1981-10-27 1983-04-28 Seiko Instr & Electronics Ltd 電子時計
JPS6056080B2 (ja) * 1981-12-29 1985-12-07 セイコーエプソン株式会社 時計用ステツプモ−タの駆動タイミング検出制御装置
JPS5940186A (ja) * 1982-08-30 1984-03-05 Seiko Epson Corp 電子時計
GB2134290B (en) * 1982-12-16 1986-02-26 Suwa Seikosha Kk An analog electronic timepiece
JPS6056080A (ja) * 1983-09-05 1985-04-01 Hakutou Kagaku Kk スケ−ル生成を防止した金属の腐食防止剤
ZA855080B (en) * 1984-07-25 1986-02-26 Robert John Dunstan Carton pourer attachment
JPS61116682A (ja) * 1985-11-12 1986-06-04 Citizen Watch Co Ltd 電子時計
JPS6334435A (ja) * 1986-07-28 1988-02-15 Hitachi Ltd 恒温設備の冷凍機制御方法
JP2558130B2 (ja) * 1987-12-23 1996-11-27 チッソ株式会社 ポリオレフイン樹脂組成物
JP2687220B2 (ja) * 1988-03-25 1997-12-08 ジエコー株式会社 アナログ時計の時刻修正方法
US5365458A (en) * 1991-03-29 1994-11-15 Nippon Densan Corporation Motor eccentricity measuring apparatus
JP3258125B2 (ja) * 1992-03-18 2002-02-18 シチズン時計株式会社 振動アラーム付電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782593A (zh) * 2010-02-15 2012-11-14 西铁城控股株式会社 电子计时装置
CN102782593B (zh) * 2010-02-15 2014-04-09 西铁城控股株式会社 电子计时装置
CN106104395A (zh) * 2014-03-17 2016-11-09 西铁城控股株式会社 电子钟表
CN106104395B (zh) * 2014-03-17 2019-01-29 西铁城时计株式会社 电子钟表
US10268162B2 (en) 2014-03-17 2019-04-23 Citizen Watch Co., Ltd. Electronic watch
CN107181435A (zh) * 2016-03-11 2017-09-19 卡西欧计算机株式会社 驱动装置、步进电动机驱动方法、程序记录介质及电子表
CN109417401A (zh) * 2016-08-04 2019-03-01 日立汽车系统株式会社 具备电力线通信功能的电子控制装置、促动器、电子控制系统及使用它们的汽车
CN109417401B (zh) * 2016-08-04 2021-06-01 日立汽车系统株式会社 电子控制系统及使用其的汽车
CN111293936A (zh) * 2018-12-06 2020-06-16 斯沃奇集团研究和开发有限公司 直流电动机的控制方法
CN111293936B (zh) * 2018-12-06 2023-06-30 斯沃奇集团研究和开发有限公司 直流电动机的控制方法

Also Published As

Publication number Publication date
DE69830465T2 (de) 2005-10-20
JP3757421B2 (ja) 2006-03-22
WO1999008375A1 (fr) 1999-02-18
HK1018924A1 (en) 2000-01-07
JPH11127595A (ja) 1999-05-11
CN1168196C (zh) 2004-09-22
EP0932250A4 (en) 2004-04-07
EP0932250A1 (en) 1999-07-28
US6163126A (en) 2000-12-19
EP0932250B1 (en) 2005-06-08
DE69830465D1 (de) 2005-07-14
JP2001320898A (ja) 2001-11-16

Similar Documents

Publication Publication Date Title
CN1168196C (zh) 电子仪器
CN1026920C (zh) 带发电装置的电子手表
CN1767361A (zh) 电动机驱动设备和电动机驱动方法
CN1086813C (zh) 由机械能源驱动并由电路调整的时钟
TWI364911B (en) Control circuit for synchronous rectifying and soft switching of a power converter and method thereof
CN1134717C (zh) 步进电动机的控制装置、控制方法和计时装置
CN1929239A (zh) 车辆发电机的电压控制装置
EP1369988A3 (en) Control apparatus and method of electric rotating machine for vehicle
WO2015093574A1 (ja) エンジンユニット、及び車両
JP2001320898A5 (zh)
CN1387311A (zh) 用于驱动三相半波驱动无刷电机的装置
JP3664379B2 (ja) 車両用交流発電機の電圧制御装置
CN107795422A (zh) 发动机单元和车辆
JP2007174778A (ja) 単相ブラシレスdcモータ
CN1284295C (zh) 无位置无刷直流电机控制电路及其智能控制方法
JP2001193540A (ja) 内燃機関の停止位置制御方法及び装置
US9579982B2 (en) Resonant motor system
JP6445698B2 (ja) 内燃機関用電源装置
JP2018107843A (ja) スイッチトリラクタンスモータの制御装置
EP3663870A1 (en) Dc electric motor with asymmetrical stator inductors
US8026683B2 (en) Motor controller
US20140001841A1 (en) Control device for generator-motor and control method for generator-motor
JP4193714B2 (ja) 内燃機関用点火装置
JP2000102279A (ja) 内燃機関始動用電動機兼用発電機
CN101473525B (zh) 控制耦接到热引擎的可逆电机的方法、适于实施该方法的引擎、及其使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040922

Termination date: 20160811