CN1213961C - 莫来石坯体和形成莫来石坯体的方法 - Google Patents

莫来石坯体和形成莫来石坯体的方法 Download PDF

Info

Publication number
CN1213961C
CN1213961C CNB008120641A CN00812064A CN1213961C CN 1213961 C CN1213961 C CN 1213961C CN B008120641 A CNB008120641 A CN B008120641A CN 00812064 A CN00812064 A CN 00812064A CN 1213961 C CN1213961 C CN 1213961C
Authority
CN
China
Prior art keywords
mullite
synthetics
temperature
crystal grain
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008120641A
Other languages
English (en)
Other versions
CN1371343A (zh
Inventor
S·A·瓦林
J·R·莫耶
A·R·小普拉尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN1371343A publication Critical patent/CN1371343A/zh
Application granted granted Critical
Publication of CN1213961C publication Critical patent/CN1213961C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

一种基本上由实质上是化学结合的莫来石晶粒组成的莫来石合成物,其中该合成物至少有两个微观结构本质上不同的相邻区域。通过形成一种或多种具有存在于莫来石中的元素的前体化合物的混合物;使该混合物成型为多孔的初形;向多孔初形的一部分添加晶粒成核控制剂并且然后在大气下加热步骤(c)的多孔初形,并且温度达到足以形成莫来石合成物。

Description

莫来石坯体和形成莫来石坯体的方法
本发明涉及莫来石坯体(mullite bodies)和形成莫来石坯体的方法。多孔陶瓷坯体已广泛应用于诸如催化剂载体、过滤载体、过滤器和高温热绝缘体中。通常是由陶瓷粉末形成坯体,然后将该坯体加热至足以形成均匀多孔整体坯体的温度来制备多孔陶瓷坯体。
用陶瓷形成过滤器时,通常要形成颗粒状的陶瓷坯体。然后将该坯体加热至使颗粒轻度烧结成均匀整体坯体的温度(即,赋予该坯体足够的强度,同时仍具有足够的孔隙度以使液体或气体有效通过)。为了轻度烧结坯体,将一层薄的不同材料的区分层(即,其孔尺寸小于轻度烧结坯体的孔尺寸的层)施加在该坯体的一个表面上。
例如,将低温烧结的胶体陶瓷颗粒的分散体施加在已轻度烧结坯体上,并将该被覆坯体再次加热,以将胶体颗粒烧结形成与轻度烧结坯体结合的敷层。一步烧结几乎从未被用过,因为在烧结过程中载体和区分层有明显不同的收缩行为(例如,收缩率和收缩开始发生的温度),会导致裂缝。
近来Moyer等人描述了用莫来石(化学组成在3Al2O3·SiO2至3Al2O3·2SiO2之间的陶瓷)形成过滤器(专利号为US5,194,154和US5,198,007)。Moyer等人描述了大莫来石晶须的整体过滤器和具有单独施有诸如烧结的胶体氧化铝层、聚合的有机化合物或分子筛(例如沸石)等区分层的莫来石过滤器。
在多孔陶瓷(如多孔莫来石)上敷加独立区分层的工艺需要附加的步骤(如两次或多次加热步骤)。因而使处理产生损坏的可能性和由于结合的不足和热膨胀系数的不匹配而产生的区分层的分层的可能性增加了。通常这些会导致过滤器和类似产品成本的增加。
因此,需要提供克服现有技术的一个或多个问题,比如上述问题之一的形成方法和陶瓷过滤器及类似产品。
本发明的第一方面是制备莫来石合成物的方法,该方法包括:
a)形成一种或多种具有存在于莫来石中的元素的前体化合物的混合物,
b)使该混合物成型为多孔的初形(a porous green shape),
c)向多孔初形的一部分添加晶粒成核控制剂和
d)在一种气氛下加热步骤(c)的多孔初形,并且温度达到足以形成基本上由实质上是化学结合的莫来石晶粒组成的莫来石合成物,其中该合成物至少有两个微观结构本质上不同的相邻区域。
令人惊讶的是,本方法允许在原位形成薄的、孔尺寸比莫来石合成体孔尺寸小得多的区分层(discriminating layer)。还令人惊讶的是,该方法在整个合成物的一个或多个方向上能形成具有不同微观结构的交替区域的莫来石合成物。
本发明的第二方面是莫来石合成物,它基本上由基本上是化学结合的莫来石晶粒组成,其中该合成物至少有两个微观结构基本不同的相邻区域并且至少一个区域有莫来石晶须组成。
本发明的莫来石坯体可被用在任何适于用莫来石之处。尤其是,该莫来石坯体可用于需要坯体有两个或多个不同微观结构区域的应用中。例子包括过滤器、难熔材料、热和电绝缘体、催化剂和催化剂载体。
图1是用莫来石颗粒成核控制剂制备的本发明的莫来石合成物的扫描电子显微照片(60x的放大倍数)。
图2是不存在任何成核控制剂时制备的莫来石合成物的扫描电子显微照片(60x的放大倍数)。
图3是本发明的用莫来石颗粒成核控制剂制备的莫来石合成物的扫描电子显微照片(50x的放大倍数)。
图4是本发明的用莫来石颗粒成核控制剂制备的莫来石合成物的扫描电子显微照片(250x的放大倍数)。
莫来石合成物基本上由莫来石晶粒组成。“基本上由莫来石晶粒组成”意味着按体积计合成物至少含有90%的莫来石晶粒。优选莫来石合成物至少含有95%的莫来石晶粒,更优选至少98%,甚至更优选按体积计至少占合成物的98%,最优选基本上所有的合成物是莫来石晶粒。
莫来石合成物除莫来石晶粒外还可含有填充剂。该填充剂是不形成莫来石的化合物并且基本上不与莫来石发生反应。填充剂的例子包括石墨、金属(例如贵金属)、金属氧化物(例如氧化铈)和金属硫化物(例如二硫化钼)。
实质上所有的莫来石合成物晶粒与莫来石坯体的其它莫来石晶粒是化学结合的。这意味着按体积计至多1%的莫来石晶粒不能与其它的莫来石晶粒化学结合。优选基本上所有的莫来石晶粒被化学结合。化学结合一般是指晶粒是烧结或熔融在一起。晶粒间的相互化学结合使得莫来石坯体甚至是多孔的莫来石坯体在操作条件下,例如作过滤器时有足够的强度。
莫来石坯体的晶粒的化学计量可以是任何在3Al2O3·SiO2至1.3Al2O3·SiO2之间(即3-1.3)的适合的化学计量。优选化学计量至多为2.5,更优选至多为2.25,最优选至多2.1至优选至少1.4,更优选至少1.5,最优选至少1.6。最优选的莫来石的实施方式是Al2O3与SiO2的化学计量为1.6-1.85。化学计量可由任何合适的方法,如本领域已知的方法(例如,X-射线衍射或电子衍射)来确定。
晶粒可以具有任何莫来石可呈现的形态,只要一些晶粒是晶须。换言之,至少有一个区域由莫来石晶须组成。“晶须”是指纵横比大于2(例如长是宽的2倍)的晶粒。一般地,至少其中的一个区域是由平均纵横比大于10的晶须组成。优选莫来石坯体中所有的区域由晶须组成。
莫来石坯体也至少有两个微观结构基本不同的相邻区域。“不同的微观结构”是指相邻区域之一的区域,其至少下述特性中的一个特性的至少25%不同于其它的相邻区域的特性,这些特性选自平均孔尺寸、晶粒形态(例如平均纵横比)、晶粒尺寸(例如当量球径)和密度。优选微观结构至少50%不同,更优选至少100%,甚至更优选至少500%,最优选至少1000%不同。每一个特性可由合适的技术,例如本领域已知的技术(例如,抛光部分的电子显微镜)来测定。
一般地,一个区域是相当明显的合成物的一块,例如是其至少在两个相互正交方向上的尺寸至少比整个合成物最小平均当量球径晶粒尺寸大10倍的一块。区域的例子如合成物表面的一层(如区分层)。
相邻的不同区域可以惊人地具有窄的界面区域。例如,区域间的界面通常至多是2mm。依次优选地,界面至多是1mm,至多是0.75mm,至多是0.5mm,0.25mm,0.1mm,50μm,最优选至多是25μm。
本文的界面长度和宽度是由在相邻区域之间的接触形成的平面确定的。界面的厚度是与界面的长和宽垂直测得的距离。例如,当从一个区域向另一个区域测量界面厚度时,界面厚度是从至少一种微观结构性能,如晶粒尺寸与区域的整体性质有10%的不同的起始点处开始,到相同的性能与相邻区域的整体有10%的不同的点处之间的距离。
测量或微观结构的测量是在抛光的部分进行的。例如,平均莫来石颗粒尺寸可由莫来石坯体的抛光部分经扫描电子显微照片(SEM)测定,其中平均颗粒尺寸可由Underwood(安得伍得)在 Quantiative stereology(定量立体测量学),Addison Wesley,Reading,MA,(1970)中描述的截线法测量。
优选的莫来石合成物的实施方案有两个相互邻近的区域,其中一层的平均孔尺寸小一个数量级并且每一个区域由晶须组成。也优选较小孔尺寸区域的晶须具有约至少小于其它区域一个数量级的平均颗粒尺寸。最后,优选两个区域都由化学计量在1.5-2之间的莫来石晶须组成。
另一个优选实施方案是由莫来石晶须组成的合成物,该合成物有底区、顶区和介于底区和顶区之间的中区,其中中区不同于顶区和底区。优选顶区和底区与本文描述的不同。还优选中区的平均当量晶粒尺寸比顶区和底区的平均当量晶粒尺寸小一个数量级。
坯体中存在的杂质(即除上述莫来石中存在的元素之外的元素)总量通常至多占坯体重量的5%。优选杂质总量至多是1%,更优选至多是0.5%,甚至更优选至多是0.1%,最优选莫来石坯体中基本上不存在杂质(微量)。杂质量可由任何合适的全分析技术,诸如那些本领域熟知的(例如X-射线荧光)技术来测定。
制备莫来石合成物时,将含Al、Si和O的前体化合物混合以形成可形成莫来石的混合物。美国专利US5,194,154;5,198,007;5,173,349;4,911,902;5,252,272;4,948,766和4,910,172中描述了可以使用的前体化合物。该混合物也可含有其它的化合物,比如填充剂(前文有述)和有机化合物,以有利于混合物的成型(例如,粘合剂和分散剂,比如 Introduction to the Principles of Ceramic Processing(陶瓷加工原理介绍),J.Reed,Wiley interscience,1988中描述的那些)。一般地,该混合物由化合物,比如粘土(即,水合铝硅酸盐)、氧化铝、二氧化硅、三氟化铝、氟黄玉(fluorotopaz)和沸石组成。优选的前体化合物选自粘土、氧化铝、二氧化硅及其混合物。最优选该混合物由粘土和氧化铝组成。
通常前体化合物按比例选择,以使制备的莫来石具有如上所述的1.3-3的化学计量。
该混合物可由任何适宜的方法,如本领域熟知的方法来制备。实例包括球磨带混、垂直螺旋混合、V-混合和磨碎(attrition milling)。该混合物可干法(即无液体介质存在)或湿法制备。
然后将该混合物以任何适宜的方法,如本领域熟知的方法成型为多孔形坯体,实例包括喷射成型法、挤压、等静压、浇铸成型、轧辊压制和带铸(tape casting)。这些中的每一种方法在 Introduction to the Principles of Ceramic Processing(陶瓷加工原理介绍),J.Reed,Wiley interscience,1988中有详细描述。
多孔形的一部分中加入了成核控制剂。一般地,“一部分”是指成核控制剂加在多孔坯体的表面。成核控制剂或抑制或增强了莫来石的成核。一般地,成核控制剂是在加热多孔坯体之前加施加在成型的多孔坯体上的固体颗粒。成核控制剂的例子包括与混合物有相同化学组成的颗粒,不同的是控制剂颗粒或基本上大于或基本上小于混合物中的颗粒。“基本上大于或小于”是指平均颗粒尺寸至少约与混合物中颗粒的平均尺寸差一个数量级。控制剂也可以是莫来石颗粒。优选的成核控制剂是莫来石颗粒。
成核控制剂可以任何方便的方法,例如浸渍、喷射和涂漆应用。在应用之前,成核控制剂可与其它材料,比如上述的前体化合物和有机化合物组合使用。也可将成核控制剂形成成型坯体并用机械力加在多孔成型坯体上(例如,通过压力将多孔坯体与含控制剂的成型坯体层压在一起)。也就是说,成核控制剂可与前体混合,并用诸如带压延、共挤出、浸渍、喷射或涂漆等方法使混合物在不具有成核控制剂的前体上成层,以形成具有和没有成核控制剂区域的多孔坯体。
该工艺的最终步骤是在一种气氛下加热步骤(c)的多孔初形,并且温度足以形成莫来石合成物。希望的是,至少在部分加热过程中,氟存在于以比如以SiF4、AlF3,HF Na2SiF6 NaF和NH4F为气源的气氛中。优选用在气氛中的氟源是SiF4。
优选地,将多孔坯体在第一温度下加热足以使多孔坯体中的前体化合物转化成氟黄玉的时间,然后升至足以形成莫来石合成物的第二温度。温度也可以在第一温度和第二温度之间循环,以确保完全形成莫来石。第一温度可以是500℃-950℃。优选第一温度至少是550℃,更优选至少是650℃,最优选至少是725℃-750℃,优选至多是850℃,更优选至多是800℃,最优选至多是775℃。
第二温度可以是任何合适的温度,它取决于例如SiF4的分压的变化。一般地,第二温度至少是1000℃至至多1700℃。优选第二温度至少是1050℃,更优选至少是1075℃,最优选至少是1100℃,优选至多是1600℃,更优选至多是1400℃,最优选至多是1200℃。
一般地,在加热至第一温度的过程中,当希望引入含氟的气体时,在至少500℃之前,气氛是惰性的(如氮气)或真空的。在加热至第一温度的过程中,有机化合物和水可被除去。它们也可以经与Introduction to the Principles of Ceramic Processing(陶瓷加工原理介绍),J.Reed,Wiley interscience,1988中描述的本领域常用的独立加热步骤除去。
莫来石合成物特别适合用作催化剂的载体,比如用于汽车的催化式排气净化器的、通常被称之为催化剂涂料层(wash coat)的氧化铝颗粒上的贵金属催化剂的载体。优选莫来石晶粒是晶须。也优选涂料层在莫来石晶粒的至少一部分上成为一薄层。一般地,一部分是指一个区域的晶粒面积的10%被催化剂层覆盖。优选一个区域的所有晶粒被覆盖。更优选合成物所有的晶粒基本上被覆盖。
“薄层”是指催化剂涂料层的厚度一般小于被覆盖的晶粒的平均最小尺寸。一般地,层厚是至多一半的厚度,优选至多是三分之一,最优选至多是被覆盖晶粒的平均最小尺寸的四分之一。
莫来石合成物也特别适合用作移动能源应用(如柴油机发动机)和固定能源应用(如发电厂)的颗粒(粉尘)捕获和氧化(即排气)催化剂。如上所述,莫来石合成物至少有一部分莫来石晶粒有催化剂层,但优选合成物基本上所有的晶粒都覆有一层。然后将被覆的莫来石合成物放置在比如柴油机排气系统中从而气体通过合成物。在这样的装置中,粉尘一般在有小尺寸孔隙的区域被捕获,排出的气体通常在有较大孔隙的区域中被催化。由于粉尘颗粒保存在催化剂中,惊人的是,当催化剂加热至操作温度时,粉尘颗粒可能被燃烧,随后产生的气体如排出的气体一样被催化。
实施例
将25.1重量份的球粘土(Todd Dark grade,Kentucky-Tennessee ClayCompany,Mayfield,KY)与27.6重量份的-氧化铝,1.5份的羟丙基甲基纤维素(METHOCEL J75MS-N,The Dow Chemical Company,Midland,MI)和25份的去离子水混合制备的化学计量为1.67的莫来石前体压成圆片。在使用前将球粘土在110℃下干燥48小时。通过将氢氧化铝(HYDRAL 710,Alcoa,Pittsburgh,PA)在1000℃下加热1小时制得-氧化铝。将该圆片在下面的进度下素烧(bisque-fired)以除去有机粘接剂(即METHOCEL)和使粘土脱水:每分钟1℃下从室温加热至115℃,以每分钟3℃从115℃至350℃,以每分钟5℃从350℃至600℃,在600℃下保持3小时,以每分钟7℃从600℃加热至1025℃,在1025℃下保持1小时,以每分钟10℃冷却至室温。
然后陶瓷素烧坯圆片被莫来石粉体的分散层覆盖以形成成核控制剂的表面层。通过将17克的莫来石粉体(MULCR,Biakowskiinternational,Charlotte,NC)加入到100mL的0.2重量百分数NARVAN821A(R.T.Vanderbilt Company,Norwalk,CT)溶液的去离子水中制备出莫来石分散液。该圆片浸入该分散液中60秒后移去,空气中干燥,然后按上述的进度素烧。
然后将该圆片置于炉内的衬有镍箔的石英管中。在真空下将该圆片加热至950℃,然后在真空下冷却至640℃。此时,将SiF4气体引入管中直至得到了750托的气压。在640℃下将温度保持1小时。然后将该管以每分钟4℃加热至1015℃,然后将加热速度降至每分钟1℃。当温度达到1200℃时,管中的气压即刻减至100托并且允许升至550托,此时,气体以足以维持550托气压的速度被移走。当SiF4的释放基本上停止时(T=1084℃),将该圆片置于真空中并冷却至室温。该实施例的莫来石合成物的SEM显微照片示于图1。
对比例1
除了圆片不加成核控制剂(即莫来石粉)外,按照与实施例1中同样的方式形成圆片。将没有成核控制剂的圆片与实施例1的圆片同时加热并转化成莫来石。该对比例的莫来石圆片的SEM显微照片示于图2。
实施例2
将与实施例1中描述的相似的球粘土(Todd Dark grade,Kentucky-Tennessee Clay Company,Mayfield,KY)和-氧化铝的混合物压成圆片。在1000℃下素烧1小时后,该圆片按如下方法被覆莫来石粉。通过将0.431克的莫来石粉(MULCR,Biakowski international,Charlotte,NC)加入80mL的无水乙醇中并且在100瓦下声波处理(sonicating)40秒制备出分散液。将约0.8mL的分散液用点滴器加在圆片的一面上,使其干燥,同时以圆周运动轻轻地连续旋转该圆片。
将该圆片在100℃下干燥1小时,然后转移至与实施例1描述的相似的管中。在真空下将该圆片加热至700℃并且在此温度保持2小时,然后在真空下冷却至675℃。此时,将SiF4气体引入管中直至得到了600托的气压并以每分钟1℃加热至680℃。在维持600托的恒压下,将该圆片以每分钟3℃加热至1040℃,然后以每分钟1℃加热至1075℃。此时起,手控温度以1℃的步长慢慢的接近SiF4明显开始释放的点(1082℃)。慢慢的升温并且以足以维持600托气压的速度将气体从反应器除去。当SiF4的释放基本上停止时(T=1104℃),将反应器撤出并冷却至室温。该实施例得到的莫来石的SEM显微照片示于图3。
实施例3
将与实施例1中描述的相似的球粘土(Todd Dark grade,Kentucky-Tennessee Clay Company,Mayfield,KY)和-氧化铝的混合物挤成管。在1050℃下素烧1小时后,按如下方式将管转化成氟黄玉:在真空下加热至950℃,然后在真空下冷却至650℃。然后将SiF4气体引入管中至730托的气压并且在650下反应2小时40分钟。然后将反应器撤出并冷却至室温。此时管已转变成氟黄玉。
通过将管的内壁在短时间内置于以与实施例1中描述的相同的方法制备的、含按重量计4%的MULCR莫来石粉的粉浆中,管的内壁沉积了一层莫来石粉(MULCR,Biakowski international,Charlotte,NC)。在120℃下干燥一整夜后,该管在550℃下烧1小时。然后在真空下以每分钟10℃将该管加热至650℃,以每分钟4℃加热至1015℃,以每分钟1℃加热至1040℃,然后在1040℃下温度保持40分钟,然后以每分钟1℃直至SiF4的变化达到了每克黄玉0.43SCCM。在580托的恒压下操作维持SiF4恒速释放的过程中升温直至反应完全。然后将反应器撤出并冷却至室温。该实施例得到的莫来石管的SEM显微照片示于图4。

Claims (29)

1.一种制备莫来石合成物的方法,该方法包括:
a)形成一种或多种具有存在于莫来石中的元素的前体化合物的混合物,
b)使该混合物成型为多孔的初形,
c)向多孔初形的一部分添加成核控制剂固体颗粒和
d)在一种气氛下加热步骤(c)的多孔初形,并且温度达到足以形成基本上由实质上是化学结合的莫来石晶粒组成的莫来石合成物,其中该合成物有至少两个微观结构实质上不同的相邻区域并且至少一个区域由莫来石晶须组成。
2.如权利要求1的方法,其中所述前体化合物选自粘土、氧化铝、二氧化硅、氟黄玉、沸石、AlF3及其混合物。
3.如权利要求2的方法,其中所述前体化合物选自粘土、氧化铝、二氧化硅、氟黄玉、沸石及其混合物。
4.如权利要求3的方法,其中所述前体化合物是粘土和氧化铝的混合物。
5.如权利要求1的方法,其中所述固体颗粒是莫来石、平均粒度与多孔的初形中的前体化合物的平均粒度有一个数量级的差别的前体化合物、或其混合物。
6.如权利要求5的方法,其中所述固体颗粒是莫来石。
7.如前述权利要求任一项所述的方法,其加热至形成氟黄玉的第一温度然后加热至形成莫来石的第二温度。
8.如权利要求7的方法,其中在第一温度形成的所述氟黄玉在由SiF4组成的气氛中形成。
9.如权利要求7的方法,其中所述第一温度是500℃-950℃。
10.如权利要求9的方法,其中所述第一温度是725℃-750℃。
11.如权利要求10的方法,其中所述第二温度是1000℃-1700℃。
12.一种莫来石合成物,它基本上由实质上是化学结合的莫来石晶粒组成,其中该合成物有至少两个微观结构实质上不同的相邻区域并且至少一个区域由莫来石晶须组成。
13.如权利要求12的莫来石合成物,其中基本上所有的晶粒是晶须。
14.如权利要求12的莫来石合成物,其中Al2O3与SiO2的化学计量是1.3-3。
15.如权利要求14的莫来石合成物,其中所述化学计量是从1.3到2.5。
16.如权利要求15的莫来石合成物,其中所述化学计量是1.6-1.85。
17.如权利要求13的莫来石合成物,其中所述两个相邻区域的平均孔尺寸至少有一个数量级的差别。
18.如权利要求13的莫来石合成物,其中所述两个相邻区域之间的界面至多是2mm。
19.如权利要求18的莫来石合成物,其中所述界面至多是0.1mm。
20.一种汽车催化式排汽净化器,其特征是它由权利要求12的莫来石合成物组成。
21.如权利要求20的汽车催化式排汽净化器,其中在莫来石晶粒的至少一部分表面上有贵金属涂料层。
22.如权利要求21的汽车催化式排汽净化器,其中所述贵金属涂料层的厚度至多是被覆晶粒的平均最小尺寸的厚度的一半。
23.一种颗粒捕获-氧化催化剂,其含有权利要求12的莫来石合成物,其中所述莫来石合成物的至少一部分被覆有催化剂。
24.权利要求23的颗粒捕获-氧化催化剂,其中基本上所有的莫来石合成物被覆有催化剂。
25.权利要求23的颗粒捕获-氧化催化剂,其中所述莫来石合成物由两个相邻区域组成。
26.权利要求23的颗粒捕获-氧化催化剂,其中所述催化剂是贵金属涂料层。
27.权利要求26的颗粒捕获-氧化催化剂,其中所述贵金属涂料层的厚度至多是被覆晶粒的平均最小尺寸的厚度的一半。
28.一种颗粒捕获器,其特征是含有权利要求12-19的任何一种莫来石合成物。
29.一种颗粒捕获器,其含有权利要求1-11所得到的任何一种莫来石合成物。
CNB008120641A 1999-08-27 2000-08-17 莫来石坯体和形成莫来石坯体的方法 Expired - Lifetime CN1213961C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/384,639 US6306335B1 (en) 1999-08-27 1999-08-27 Mullite bodies and methods of forming mullite bodies
US09/384,639 1999-08-27

Publications (2)

Publication Number Publication Date
CN1371343A CN1371343A (zh) 2002-09-25
CN1213961C true CN1213961C (zh) 2005-08-10

Family

ID=23518130

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008120641A Expired - Lifetime CN1213961C (zh) 1999-08-27 2000-08-17 莫来石坯体和形成莫来石坯体的方法

Country Status (14)

Country Link
US (2) US6306335B1 (zh)
EP (1) EP1218311B1 (zh)
JP (1) JP5068909B2 (zh)
KR (1) KR100692114B1 (zh)
CN (1) CN1213961C (zh)
AT (1) ATE249400T1 (zh)
AU (1) AU7062000A (zh)
BR (1) BR0013566B1 (zh)
CA (1) CA2382312C (zh)
DE (1) DE60005203T2 (zh)
ES (1) ES2200923T3 (zh)
MX (1) MXPA02002109A (zh)
WO (1) WO2001016050A1 (zh)
ZA (1) ZA200201222B (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080219A (en) * 1998-05-08 2000-06-27 Mott Metallurgical Corporation Composite porous media
CA2480167C (en) * 2002-03-25 2011-03-08 Dow Global Technologies Inc. Mullite bodies and methods of forming mullite bodies
US7528087B2 (en) * 2003-04-24 2009-05-05 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
US8661794B2 (en) * 2003-08-29 2014-03-04 Dow Global Technologies Llc Diesel exhaust filter
JP2007512133A (ja) * 2003-11-24 2007-05-17 ダウ グローバル テクノロジーズ インコーポレイティド ディーゼル微粒子フィルター用触媒
CN1925912A (zh) * 2004-02-27 2007-03-07 陶氏环球技术公司 从液体反应剂形成产物的改进的催化方法
US7341970B2 (en) * 2004-03-31 2008-03-11 Corning Incorporated Low thermal expansion articles
JP5144256B2 (ja) * 2004-04-21 2013-02-13 ダウ グローバル テクノロジーズ エルエルシー 多孔質セラミック物体の強度の増大方法及びこの方法から製造された物体
US20070152364A1 (en) * 2005-11-16 2007-07-05 Bilal Zuberi Process for extruding a porous substrate
KR20070047322A (ko) * 2004-07-26 2007-05-04 다우 글로벌 테크놀로지스 인크. 개선된 촉매된 매연 필터
GB0420245D0 (en) * 2004-09-13 2004-10-13 Johnson Matthey Plc Improvements in catalyst coatings
EP1683629A1 (en) * 2005-01-21 2006-07-26 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." A composed substrate and method of production thereof
US20080110147A1 (en) * 2005-03-28 2008-05-15 Beall Douglas M Low thermal expansion articles
KR101360630B1 (ko) * 2005-08-23 2014-02-07 다우 글로벌 테크놀로지스 엘엘씨 세라믹 벌집체의 개선된 결합제 제거 방법
US7485594B2 (en) * 2005-10-03 2009-02-03 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
KR100716369B1 (ko) * 2005-11-10 2007-05-11 현대자동차주식회사 디젤매연촉매여과필터의 제조방법
US7938876B2 (en) * 2005-11-16 2011-05-10 GE02 Technologies, Inc. Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture
US8038759B2 (en) * 2005-11-16 2011-10-18 Geoz Technologies, Inc. Fibrous cordierite materials
US20090166910A1 (en) * 2005-11-16 2009-07-02 Geo2 Technologies, Inc. System and Method for Twin Screw Extrusion of a Fibrous Porous Substrate
US7640732B2 (en) * 2005-11-16 2010-01-05 Geo2 Technologies, Inc. Method and apparatus for filtration of a two-stroke engine exhaust
US7938877B2 (en) * 2005-11-16 2011-05-10 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US20100048374A1 (en) * 2005-11-16 2010-02-25 James Jenq Liu System and Method for Fabricating Ceramic Substrates
US8039050B2 (en) * 2005-12-21 2011-10-18 Geo2 Technologies, Inc. Method and apparatus for strengthening a porous substrate
CN100378027C (zh) * 2006-07-06 2008-04-02 武汉科技大学 一种多孔莫来石陶瓷材料的制备方法
WO2008011146A1 (en) * 2006-07-21 2008-01-24 Dow Global Technologies Inc. Improved zone catalyzed soot filter
US7879126B2 (en) 2006-07-21 2011-02-01 Dow Global Technologies Inc. Diesel particulate filter
US20080095690A1 (en) * 2006-10-24 2008-04-24 Wei Liu Nano-sized needle crystal mullite film and method of making
CA2667980C (en) 2006-11-01 2016-06-14 Dow Global Technologies Inc. Shaped porous bodies of alpha-alumina and methods for the preparation thereof
EP2097154A2 (en) * 2006-12-21 2009-09-09 Dow Global Technologies Inc. Improved soot filter
JP5714897B2 (ja) * 2007-05-04 2015-05-07 ダウ グローバル テクノロジーズ エルエルシー 改良されたハニカムフィルタ
US7781372B2 (en) * 2007-07-31 2010-08-24 GE02 Technologies, Inc. Fiber-based ceramic substrate and method of fabricating the same
WO2009048994A2 (en) * 2007-10-12 2009-04-16 Dow Global Technologies Inc. Improved thermal shock resistant soot filter
CA2701486A1 (en) * 2007-12-21 2009-07-09 Dow Global Technologies Inc. Improved catalyzed soot filter and method (s) to make these
JP5683452B2 (ja) 2008-03-20 2015-03-11 ダウ グローバル テクノロジーズ エルエルシー 耐熱衝撃性セラミックハニカム構造を作製するための改善されたセメントおよびその作製方法
KR101679883B1 (ko) * 2008-06-27 2016-11-25 다우 글로벌 테크놀로지스 엘엘씨 다공성 바늘형 뮬라이트체의 제조 방법
GB0903262D0 (en) 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
WO2011005535A1 (en) 2009-06-22 2011-01-13 Dow Global Technologies, Inc. Ceramic-polymer composites
EP2448674B1 (en) 2009-06-29 2016-03-16 Dow Global Technologies LLC Cement containing multi-modal fibers for making thermal shock resistant ceramic honeycomb structures
CN102625787A (zh) 2009-06-29 2012-08-01 陶氏环球技术有限责任公司 具有涂敷的无机表皮的陶瓷蜂窝结构体
US9174158B2 (en) 2009-11-11 2015-11-03 Dow Global Technologies Llc Cement to make thermal shock resistant ceramic honeycomb structures and method to make them
WO2011077168A1 (en) 2009-12-24 2011-06-30 Johnson Matthey Plc Exhaust system for a vehicular positive ignition internal combustion engine
EP2519482B1 (en) 2009-12-31 2018-10-17 Dow Global Technologies LLC Method of making polymeric barrier coating to mitigate binder migration in a diesel particulate filter to reduce filter pressure drop and temperature gradients
GB201100595D0 (en) 2010-06-02 2011-03-02 Johnson Matthey Plc Filtration improvements
US9321694B2 (en) 2010-09-01 2016-04-26 Dow Global Technologies Llc Method for applying discriminating layer onto porous ceramic filters via gas-borne prefabricated porous assemblies
US9745227B2 (en) 2010-09-01 2017-08-29 Dow Global Technologies Llc Method for applying discriminating layer onto porous ceramic filters
JP6041874B2 (ja) * 2011-07-06 2016-12-14 ダウ グローバル テクノロジーズ エルエルシー 多孔質針状ムライト体の製造方法
CN103827055B (zh) 2011-09-27 2016-04-27 陶氏环球技术有限责任公司 用于陶瓷蜂窝结构体的胶接剂和表皮材料
DE112012004833T5 (de) 2011-11-21 2014-09-04 Dow Global Technologies Llc Verfahren zur Herstellung von porösen mullithaltigen Verbundstoffen
KR20140104482A (ko) 2011-12-15 2014-08-28 다우 글로벌 테크놀로지스 엘엘씨 수-팽윤성 점토에 기반한 시멘트 및 스키닝 물질, 및 세그먼트화 또는 스키닝된 세라믹 허니컴 구조의 제조 방법
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
GB2513364B (en) 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
US9066717B2 (en) 2012-05-18 2015-06-30 Coopersurgical, Inc. Suture passer guides and related kits and methods
GB2503243A (en) 2012-06-18 2013-12-25 Johnson Matthey Plc Combined particulate filter and hydrocarbon trap
DE112013005815T5 (de) 2012-12-05 2015-09-24 Dow Global Technologies Llc Poröse Mullitkörper mit verbesserter thermischer Beständigkeit
WO2014088619A1 (en) 2012-12-05 2014-06-12 Dow Global Technologies Llc Porous mullite bodies having improved thermal stability
GB201302686D0 (en) 2013-02-15 2013-04-03 Johnson Matthey Plc Filter comprising three-way catalyst
DE102013204276A1 (de) 2013-03-12 2014-09-18 Hug Engineering Ag Verfahren zur Herstellung eines Formkörpers und Formkörper
GB2512648B (en) 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
GB2583581B (en) 2019-03-29 2022-06-15 Johnson Matthey Plc A catalyst article and the use thereof for filtering fine particles
EP3738663A1 (en) 2019-05-14 2020-11-18 Johnson Matthey Public Limited Company Exhaust system including paticulate filter with oxidation zone capable of generating no2 under lean conditions
CN111807817B (zh) * 2020-07-23 2022-07-05 明光市铭垚凹凸棒产业科技有限公司 一种高比表面积莫来石晶须-凹凸棒多孔陶瓷及其制备方法
JP2023544487A (ja) 2020-09-29 2023-10-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 微粒子を濾過するための触媒物品及びその使用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546338A (en) * 1978-09-28 1980-04-01 Ngk Insulators Ltd Heat and shock resistant, revolving and heat-regenerating type ceramic heat exchanger body and its manufacturing
JPS577215A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Preparation of ceramic honeycomb filter
JPS5939782A (ja) 1982-08-30 1984-03-05 株式会社デンソー 多孔質セラミツク担体の製造方法
JPS5954683A (ja) * 1982-09-20 1984-03-29 日本碍子株式会社 セラミツクハニカム構造体の開口端面封止方法
US4628042A (en) * 1983-06-20 1986-12-09 Engelhard Corporation Porous mullite
US4608357A (en) * 1984-02-06 1986-08-26 Engelhard Corporation Catalytic cracking with mullite composition promoted combustion of carbon monoxide
DE3437641A1 (de) 1984-10-13 1986-04-17 Kanthal GmbH, 6082 Mörfelden-Walldorf Abgas-katalysator
JPS63122535A (ja) * 1986-11-12 1988-05-26 株式会社デンソー 多孔質セラミツク構造体
US4911902A (en) 1987-07-06 1990-03-27 The United States Of America As Represented By The Secretary Of The Navy Mullite whisker preparation
US4948766A (en) 1988-08-05 1990-08-14 The United States Of America As Represented By The Secretary Of The Navy Rigid mullite=whisker felt and method of preparation
US4893465A (en) * 1988-08-22 1990-01-16 Engelhard Corporation Process conditions for operation of ignition catalyst for natural gas combustion
US4910172A (en) 1989-02-08 1990-03-20 The United States Of America As Represented By The Secretary Of The Navy Preparation of mullite whiskers from AlF3, SiO2, and Al2 O3 powders
CA2020453A1 (en) 1989-07-28 1991-01-29 Bulent O. Yavuz Thermal shock and creep resistant porous mullite articles
US5252272A (en) 1989-07-28 1993-10-12 Engelhard Corporation Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
US5340516A (en) * 1989-07-28 1994-08-23 Engelhard Corporation Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
JP2748961B2 (ja) 1989-10-24 1998-05-13 佐賀県 表面改質アルミナセラミックスの製造方法
JPH03150276A (ja) 1989-11-02 1991-06-26 Kitagawa Iron Works Co Ltd セラミックス多層体及びその製造方法
US5229093A (en) * 1990-03-15 1993-07-20 Chichibu Cement Co., Ltd. Method for making mullite whiskers using hydrofluoric acid
JPH0465372A (ja) 1990-07-02 1992-03-02 Saga Pref Gov 高強度多孔質セラミックスの製造方法
JPH0478447A (ja) 1990-07-20 1992-03-12 Matsumoto Kokan Kk 触媒メタル担体とその製造方法
JP2952994B2 (ja) 1990-08-20 1999-09-27 セイコーエプソン株式会社 インクジェットヘッド
JP2593740B2 (ja) 1990-11-27 1997-03-26 東芝モノフラックス株式会社 ムライト多孔質体の製造方法
US5098455A (en) 1990-12-21 1992-03-24 The Dow Chemical Company Regenerable exhaust gas filter element for diesel engines
JP3118035B2 (ja) 1991-09-05 2000-12-18 東芝モノフラックス株式会社 ムライト質針状結晶及びムライト多孔質体
US5194154A (en) 1991-12-05 1993-03-16 The Dow Chemical Company Structure for filter or heat exchanger, composed of a fused single crystal acicular ceramic
US5198007A (en) 1991-12-05 1993-03-30 The Dow Chemical Company Filter including a porous discriminating layer on a fused single crystal acicular ceramic support, and method for making the same
GB9203394D0 (en) * 1992-02-18 1992-04-01 Johnson Matthey Plc Coated article
JP3269533B2 (ja) 1992-05-26 2002-03-25 トヨタ自動車株式会社 排気ガス浄化用触媒コンバータの製造方法
JPH06134307A (ja) * 1992-10-27 1994-05-17 Matsushita Electric Ind Co Ltd 触媒付きセラミックスシートとその製造方法
US20010048971A1 (en) * 1997-09-17 2001-12-06 Sridhar Komarneni Method of producing a porous ceramic with a zeolite coating

Also Published As

Publication number Publication date
ATE249400T1 (de) 2003-09-15
AU7062000A (en) 2001-03-26
KR100692114B1 (ko) 2007-03-12
US20020014723A1 (en) 2002-02-07
ZA200201222B (en) 2003-07-30
BR0013566B1 (pt) 2009-05-05
EP1218311A1 (en) 2002-07-03
WO2001016050A1 (en) 2001-03-08
DE60005203T2 (de) 2004-07-15
JP5068909B2 (ja) 2012-11-07
DE60005203D1 (de) 2003-10-16
MXPA02002109A (es) 2002-09-18
ES2200923T3 (es) 2004-03-16
EP1218311B1 (en) 2003-09-10
BR0013566A (pt) 2002-07-02
JP2003508329A (ja) 2003-03-04
CN1371343A (zh) 2002-09-25
CA2382312A1 (en) 2001-03-08
CA2382312C (en) 2009-05-26
US6306335B1 (en) 2001-10-23
KR20020037040A (ko) 2002-05-17
US6596665B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
CN1213961C (zh) 莫来石坯体和形成莫来石坯体的方法
KR100965042B1 (ko) 멀라이트체 및 멀라이트체의 형성 방법
EP1452512B1 (en) Method for producing porous ceramic article
US7473465B2 (en) Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1261564B1 (en) Fabrication of ultra-thinwall cordierite structures
EP1493724B1 (en) Porous material and method for production thereof
US6565797B2 (en) Method for production of silicon nitride filter
CN1856398A (zh) 高孔隙率蜂窝体和方法
EP2957548B1 (en) Honeycomb structure
CN1346697A (zh) 陶瓷催化剂体,陶瓷载体和它们的生产方法
US20120021895A1 (en) Honeycomb catalyst substrate and method for producing same
CN1213962C (zh) 孔径分布窄的低热膨胀性堇青石体及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050810