CN1195189A - 半导体器件的制造方法 - Google Patents

半导体器件的制造方法 Download PDF

Info

Publication number
CN1195189A
CN1195189A CN98106258A CN98106258A CN1195189A CN 1195189 A CN1195189 A CN 1195189A CN 98106258 A CN98106258 A CN 98106258A CN 98106258 A CN98106258 A CN 98106258A CN 1195189 A CN1195189 A CN 1195189A
Authority
CN
China
Prior art keywords
ion
semiconductor device
type impurity
manufacture method
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98106258A
Other languages
English (en)
Inventor
小田典明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1195189A publication Critical patent/CN1195189A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明的目的在于防止硅化钛层与P型杂质层的接触电阻增大、P型MOS晶体管的电流驱动能力降低,在用于形成P型源、漏区域7的第1P型杂质离子注入工序和用于激活的热处理工序之后,包括,第2P型杂质的离子注入工序;用于至少使源、漏区域部位的扩散层非晶化的第3杂质离子注入工序;形成硅化钛9的工序。由此,降低了硅化钛层与P型杂质层的接触电阻,提高了P型MOS晶体管的电流驱动能力。

Description

半导体器件的制造方法
本发明涉及半导体器件的制造方法,特别是涉及含有金属硅化物的半导体器件的制造方法。
以下参考图6说明这种半导体器件的制造方法。
首先,如图6(A)所示,在硅(Si)半导体衬底1上选择地形成器件分隔区域2,然后通过磷(P)的离子注入形成N-阱区域3。形成栅氧化膜4,形成多晶硅的栅电极5,在栅电极5的侧壁上形成氧化膜构成的侧壁6。例如以20keV的加速能量、3E15(=3×1015)cm-2的剂量的条件,离子注入BF2离子,例如通过在氮气氛中、1000℃下的10秒热处理进行激活,形成P型源·漏区域7。
然后,如图6(B)所示,例如在30keV、3E14cm-2的条件下离子注入砷(As),由此使P型源·漏区域7和栅电极5的表面非晶态化。
然后,如图6(C)所示,通过溅射法形成钛(Ti),通过例如700℃、30秒的热处理,至少在P型源区7和栅电极5之上形成硅化钛层9,采用以1∶1∶5的比例混合的氨∶过氧化氢∶水溶液,除去未反应的钛,之后通过例如800℃、10秒的热处理进行硅化钛层9的低电阻化。
此时,在氧化膜的器件分隔区域2、侧壁6的表面不形成硅化钛。实际上,之后形成层间绝缘膜,开出接触孔,形成布线,但是这些工序与本发明的主题无直接关系,故而省略。
采用这种已有的制造方法在半导体衬底1上形成硅化钛层9时,由于P型杂质扩散层中所含的硼(B)被吸进浓度更低的硅化钛层9,所以P型杂质扩散层表面部分的硼浓度降低了。
因此,存在硅化钛层9和P型杂质扩散层的接触电阻增大,P型MOS晶体管的电流驱动能力降低这样的问题。
作为期望消除这种问题的已有方法,例如在特开平4-150019号公报中,为了即使形成硅化钛层,也可不降低P型杂质扩散层和硅化钛层界面处的硼浓度,由此抑制两层间的接触电阻,提出了以下制造方法。
图7中展示了这种已有的制造方法的工序。首先,参看图7(A),在以硅为主要成分的半导体衬底1上形成器件分隔区域2,在形成N阱区域3之后对半导体衬底1离子注入硼并进行激活,由此在半导体衬底1表面附近形成P型源·漏区域7。
然后,如图7(B)所示,使用TiCl4作为离子源,通过以30keV的注入能量、至少1E17cm-2的注入剂量注入钛离子,在P型源·漏区域7的表面附近注入钛离子。
这样,一旦注入钛离子,则成为钛离子混在含P型杂质的硅之间的状态。而且,在这种状态下,以20keV的注入能量离子注入1E15cm-2剂量的硼。
之后,一旦采用退火法进行400℃-900℃的热退火,则如图7(C)所示,在半导体衬底的部分中钛与硅反应,形成硅化钛9。
另一方面,在器件分隔区域等的氧化膜上不形成硅化钛。在钛与硅反应形成硅化钛的过程中,硅化钛中的硼向外扩散,而对于厚约50nm的硅化物层,由于硼浓度峰值深约60nm,所以即使硅化钛中的硼扩散,硅和硅化钛中的硼浓度也极高,在后续工序中,通过加热硼向硅化钛中扩散,但由于硅与硅化钛界面处的硼浓度不降低,所以可抑制硅化钛与P型杂质扩散层的接触电阻的增大。
但是,在上述特开平4-150019号公报提出的制造方法中,由于是通过离子注入形成钛,所以存在如下问题,即难以形成具有完全组成比的硅化钛、即TiSi2。TiSi2呈现C54的结构,初始薄层电阻下降为10Ω/sq以下的电阻。
能够形成这种低电阻的TiSi2仅限于通过溅射形成Ti、以最适合的条件退火的场合。
而且,如上所述,在如图6所示的通过溅射法形成钛、进行退火形成硅化钛的已有方法中,存在硅化钛层与P型杂质层的接触电阻增大、P型MOS晶体管的电流驱动能力降低这样的问题。
其理由如下,形成硅化钛时,由于P型杂质扩散层中所含的硼被吸进浓度更低的硅化钛层,所以P型杂质扩散层表面部分的硼浓度降低了。
因此,为了解决上述问题,本发明的目的在于提供一种能防止硅化钛层与P型杂质层的接触电阻增大、电流驱动能力降低,获得高速半导体器件的制造方法。
为了达到上述目的,根据本发明的半导体器件的制造方法,包括:用于形成源·漏的第1P型杂质的离子注入工序和用于激活的热处理工序,第2P型杂质的离子注入工序,用于至少使源·漏部位的扩散层非晶化的第3杂质注入工序,和形成TiSi2的工序。
根据本发明,在源·漏区域形成后、TiSi2形成前,离子注入硼。由此,TiSi2化时无扩散层中硼的吸入,与TiSi2接触部分的硅中保持高的硼浓度,可以降低接触电阻。因此,可以增加晶体管的导通电流、提高电路工作速度。
以下说明本发明的实施方式。本发明的半导体器件的制造方法,在优选的实施方式中,包括:(a)用于形成源·漏区的第1P型杂质的离子注入工序;(b)用于激活注入的离子的热处理工序(参看图1(A)),第2P型杂质的离子注入工序(参看图1(B));(c)至少使源·漏部位的扩散层非晶化的第3杂质的离子注入工序(参看图1(C));和(d)形成硅化钛(TiSi2)的工序(参看图1(D))。
在上述工序中,第1P型杂质以BF2为好。而且上述第2P型杂质以B或BF2为好。上述第3P型杂质以As为好。
本发明的优选实施方式中,上述形成TiSi2的工序(d)包括:(d-1)通过溅射法形成Ti的工序,(d-2)第1热退火工序,(d-3)通过湿法腐蚀去除未反应的Ti的工序,和(d-4)第2热退火工序。
而且,本发明的优选实施方式中,上述第2P型杂质的离子注入是通过旋转倾斜注入的。
以下,一面对上述本发明的实施方式做更详细说明,一面参照附图说明本发明的实施例。
图1(A)、(B)是展示根据本发明的半导体器件的制造方法的第1实施例的工序的剖面图。
图2(C)、(D)是展示根据本发明的半导体器件的制造方法的第1实施例的工序的剖面图。
图3(A)、(B)是展示根据本发明的半导体器件的制造方法的第2实施例的工序的剖面图。
图4(C)、(D)是展示根据本发明的半导体器件的制造方法的第2实施例的工序的剖面图。
图5是本发明第1实施例的作用效果与已有的制造方法比较的图。
图6(A)~(C)是展示已有的半导体器件制造方法的工序的剖面图。
图7(A)~(C)是展示其他已有的半导体器件制造方法的工序的剖面图。
【实施例1】
图1和图2是用于按工序说明本发明第1实施例的制造方法的剖面图。图1和图2只是为图面处置方便而分图制做的图。
首先,参看图1(A),在硅制成的半导体衬底1上选择地形成器件分隔区域2,通过磷的离子注入(注入条件例如是1003E14cm-2)形成N阱区域3,形成膜厚例如是5nm的栅氧化膜4,形成由膜厚例如是200nm的多晶硅制成的栅电极5,在栅电极5的侧壁形成氧化膜侧壁6,以例如20keV加速电压和3E15cm-2剂量的条件离子注入BF2离子,以非氧化气氛例如氮气氛中的1000℃、10秒的条件进行热处理施以激活,由此形成P型源·漏区域7。
其次,如图1(B)所示,在包含P型源·漏区域7的区域,以光刻胶8等作为掩模选择地侧向注入BF2离子。此时的离子注入条件例如是加速电压20keV,剂量1E15cm-2,注入角度0°。
然后,如图2(C)所示,以例如30keV、13E14cm-2的剂量的条件离子注入砷,由此使P型源·漏区域7的区域和栅电极5的表面非晶化。
然后,如图2(D)所示,通过溅射法形成钛,通过例如700℃下30秒的热处理,至少在P型源·漏区域7的区域和栅电极5上形成硅化钛9,采用以1∶1∶5的比例混合的氨∶过氧化氢∶水溶液,除去未反应的钛,之后通过例如800℃下10的秒热处理进行硅化钛层9的低电阻化。
此时,在氧化膜的器件分隔区域2、侧壁6的表面不形成硅化钛。实际上,之后形成层间绝缘膜,开出接触孔,形成布线,但是这些工序与本发明的主题无直接关系,故而省略。
以下,说明本发明第1实施例的作用效果。本发明的第1实施例中,由于在源·漏的杂质激活之前、TiSi2化之前,在P型源·漏区域再次注入BF2,所以硅化钛化之时即使硅中的硼被吸收,但由于硅中存在足够量的硼,硅化钛层与硅的接触电阻降低,提高了晶体管的导通电流。
本发明的第1实施例中,由于是利用溅射法形成钛,所以在硅化钛的形成中存在足够浓度的钛原子,因而获得了低电阻的硅化钛层。
图5中展示了本实施例与作为比较例参考图6说明的第1已有例和参考图7说明的第2已有例的P型MOS晶体管的导通电流进行的比较。
参看图5,根据本实施例,可以实现导通电流比第1已有例提高约5%、比第2已有例提高约8%。
其原因是由于与第1已有例相比,P型源·漏区域的硅与硅化钛之间的接触电阻降低,而且与第2已有例相比,硅化钛的薄层电阻降低。
【实施例2】
以下,参考图3和图4说明本发明的第2实施例。形成器件分隔区域、栅氧化膜、栅电极等,通过离子注入和激活形成源·漏区域,与上述第1实施例相同,所以省略其说明。图3(A)相当于上述第1实施例中的图1(A)。而且,图3和图4只是为图面处置方便而分图制做的图。
然后,如图3(B)所示,在包含P型源·漏区域7的区域,以光刻胶8作为掩模选择地离子注入硼。此时的离子注入条件例如是加速电压5keV、剂量1E15cm-2、注入角度7°~15°的旋转注入条件。
然后,如图4(C)所示,以例如30keV、3E14cm-2的剂量的条件离子注入砷,由此使P型源·漏区域7的区域和栅电极5的表面非晶化。
然后,如图4(D)所示,通过溅射法形成钛,通过例如700℃下30秒的热处理,至少在P型源·漏区域7的区域和栅电极5上形成硅化钛9,采用以1∶1∶5的比例混合的氨∶过氧化氢∶水溶液,除去未反应的钛,之后通过例如800℃下10的秒热处理进行硅化钛层9的低电阻化。实际上,之后形成层间绝缘膜,开出接触孔,形成布线,但是这些工序与本发明的主题无直接关系,故而省略。
本实施例中,由于是以倾斜角度旋转注入硼,所以与源·漏端附近的TiSi2接触的部分的硅中的硼浓度更高,具有可进一步提高P型MOS晶体管的导通电流的优点。
而且,上述实施例中,作为金属硅化物举例说明了TiSi2,但是本发明并不限于此,也可使用例如Co、Ni、Mo和Pt各金属的硅化物。
如上所述,根据本发明可实现降低TiSi2与硅的接触电阻、提高晶体管导通电流的效果。
其原因在于即使TiSi2化时硅中的硼被吸收,由于硅表面中的存在足够量的硼,所以可降低硅与TiSi2的接触电阻。

Claims (9)

1.一种半导体器件的制造方法,其特征在于包括:用于形成源·漏的第1P型杂质的离子注入工序;
用于激活注入离子的热处理工序;
第2P型杂质的离子注入工序;
用于至少使源·漏部位的扩散层非晶化的第3杂质注入工序;
形成硅化钛(TiSi2)的工序。
2.根据权利要求1的半导体器件的制造方法,其特征在于所述第1P型杂质是BF2
3.根据权利要求1的半导体器件的制造方法,其特征在于所述第2P型杂质是B或BF2
4.根据权利要求1的半导体器件的制造方法,其特征在于所述第2P型杂质的离子注入是倾斜旋转注入的。
5.根据权利要求1的半导体器件的制造方法,其特征在于所述第3杂质是As。
6.根据权利要求1的半导体器件的制造方法,其特征在于所述形成TiSi2的工序包括:
通过溅射法形成Ti的工序;
第1热退火工序;
通过湿法腐蚀去除未反应的Ti的工序;
第2热退火工序。
7.一种半导体器件的制造方法,其特征在于包括:
(a)在形成源·漏的区域离子注入第1P型杂质之后,进行热处理激活该离子的源·漏区形成工序;
(b)在包含所述源·漏区域的区域离子注入第2P型杂质的工序;
(c)离子注入第3杂质,至少使源·漏区域表面非晶化的的工序;
(d)通过溅射法形成金属,通过热处理形成金属硅化物的工序;
(e)通过腐蚀去除未反应的所述金属之后,通过热处理使所述金属硅化物低电阻化的工序。
8、根据权利要求7的半导体器件的制造方法,其特征在于所述金属是Co、Ni、Mo和Pt中的任一种。
9.根据权利要求7的半导体器件的制造方法,其特征在于所述工序(b)中通过倾斜旋转注入进行第2P型杂质的离子注入。
CN98106258A 1997-01-24 1998-01-24 半导体器件的制造方法 Pending CN1195189A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09026203A JP3119190B2 (ja) 1997-01-24 1997-01-24 半導体装置の製造方法
JP26203/97 1997-01-24

Publications (1)

Publication Number Publication Date
CN1195189A true CN1195189A (zh) 1998-10-07

Family

ID=12186918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98106258A Pending CN1195189A (zh) 1997-01-24 1998-01-24 半导体器件的制造方法

Country Status (4)

Country Link
US (1) US6313036B1 (zh)
JP (1) JP3119190B2 (zh)
KR (1) KR100350748B1 (zh)
CN (1) CN1195189A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442478C (zh) * 2004-06-17 2008-12-10 尔必达存储器股份有限公司 具有多晶硅插头的半导体器件的制造方法
CN104838504A (zh) * 2012-12-07 2015-08-12 三菱电机株式会社 半导体装置的制造方法
CN105280704A (zh) * 2014-06-23 2016-01-27 台湾积体电路制造股份有限公司 半导体器件及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341588B1 (ko) * 1999-12-28 2002-06-22 박종섭 실리사이드층의 저항 및 누설전류 감소를 위한 반도체소자 제조 방법
US6440806B1 (en) * 2001-04-30 2002-08-27 Advanced Micro Devices, Inc. Method for producing metal-semiconductor compound regions on semiconductor devices
KR100620235B1 (ko) 2004-12-29 2006-09-08 동부일렉트로닉스 주식회사 타이타늄 실리사이드 제조 방법
US20100112788A1 (en) * 2008-10-31 2010-05-06 Deepak Ramappa Method to reduce surface damage and defects
KR101669470B1 (ko) 2009-10-14 2016-10-26 삼성전자주식회사 금속 실리사이드층을 포함하는 반도체 소자
JP2022032659A (ja) * 2020-08-13 2022-02-25 東京エレクトロン株式会社 半導体装置の電極部及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874920A (en) * 1973-06-28 1975-04-01 Ibm Boron silicide method for making thermally oxidized boron doped poly-crystalline silicon having minimum resistivity
JPS55154768A (en) 1979-05-22 1980-12-02 Fujitsu Ltd Manufacture of semiconductor device
US4753897A (en) * 1986-03-14 1988-06-28 Motorola Inc. Method for providing contact separation in silicided devices using false gate
JPH01283965A (ja) 1988-05-11 1989-11-15 Fujitsu Ltd Mosトランジスタの製造方法
US5286678A (en) * 1991-10-31 1994-02-15 Intel Corporation Single step salicidation process
JP2819918B2 (ja) 1992-02-13 1998-11-05 日本電気株式会社 半導体集積回路装置の製造方法
US5753530A (en) * 1992-04-21 1998-05-19 Seiko Instruments, Inc. Impurity doping method with diffusion source of boron-silicide film
US5313084A (en) * 1992-05-29 1994-05-17 Sgs-Thomson Microelectronics, Inc. Interconnect structure for an integrated circuit
JPH07263682A (ja) 1994-03-24 1995-10-13 Oki Electric Ind Co Ltd サリサイド構造を有するmosfetの製造方法
US5516711A (en) * 1994-12-16 1996-05-14 Mosel Vitelic, Inc. Method for forming LDD CMOS with oblique implantation
JP2630290B2 (ja) * 1995-01-30 1997-07-16 日本電気株式会社 半導体装置の製造方法
JP2827962B2 (ja) 1995-04-28 1998-11-25 日本電気株式会社 半導体装置の製造方法
JP3329128B2 (ja) * 1995-03-28 2002-09-30 ソニー株式会社 半導体装置の製造方法
US5759901A (en) * 1995-04-06 1998-06-02 Vlsi Technology, Inc. Fabrication method for sub-half micron CMOS transistor
US6376372B1 (en) 1995-06-02 2002-04-23 Texas Instruments Incorporated Approaches for mitigating the narrow poly-line effect in silicide formation
US5841173A (en) * 1995-06-16 1998-11-24 Matsushita Electric Industrial Co., Ltd. MOS semiconductor device with excellent drain current
US5940699A (en) * 1996-02-26 1999-08-17 Sony Corporation Process of fabricating semiconductor device
JP2956583B2 (ja) * 1996-05-31 1999-10-04 日本電気株式会社 半導体装置とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442478C (zh) * 2004-06-17 2008-12-10 尔必达存储器股份有限公司 具有多晶硅插头的半导体器件的制造方法
CN104838504A (zh) * 2012-12-07 2015-08-12 三菱电机株式会社 半导体装置的制造方法
CN105280704A (zh) * 2014-06-23 2016-01-27 台湾积体电路制造股份有限公司 半导体器件及其制造方法
US10084063B2 (en) 2014-06-23 2018-09-25 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
CN105280704B (zh) * 2014-06-23 2019-07-16 台湾积体电路制造股份有限公司 半导体器件及其制造方法

Also Published As

Publication number Publication date
JP3119190B2 (ja) 2000-12-18
KR100350748B1 (ko) 2002-11-18
US6313036B1 (en) 2001-11-06
KR19980070583A (ko) 1998-10-26
JPH10209078A (ja) 1998-08-07

Similar Documents

Publication Publication Date Title
US6287906B1 (en) Semiconductor device having MOS transistor and method of manufacturing the same
US5393676A (en) Method of fabricating semiconductor gate electrode with fluorine migration barrier
US20060081926A1 (en) Method of forming shallow doped junctions having a variable profile gradation of dopants
GB2124428A (en) Schottky-barrier mos devices
CN1725490A (zh) 半导体装置及其制造方法
KR19980053140A (ko) 반도체 소자의 제조방법
JP2005524243A (ja) シリサイドを使用する金属ゲート電極およびこれを形成する方法
CN1081832C (zh) 制造金属氧化物半导体场效应晶体管的方法
CN1195189A (zh) 半导体器件的制造方法
CN1421909A (zh) 半导体装置的制造方法
CN1519901A (zh) 具有由氨气中侧氮化处理的多金属栅结构的栅电极的半导体器件
CN1416166A (zh) 制造具有浅结的集成电路的方法
CN1901164A (zh) 半导体装置的制造方法
CN1259729C (zh) 半导体器件及其制造方法
CN1085407C (zh) 生产半导体集成电路的方法
CN1087498C (zh) 半导体器件的制造方法
JPH0684824A (ja) 半導体装置の製造方法
JPH06333943A (ja) Mos半導体装置の製造方法
CN1113416C (zh) 具有纵向型和横向型双极晶体管的半导体器件
CN1188982A (zh) 半导体器件及其制造方法
CN1266280A (zh) 包括高温热处理的半导体器件制造方法
KR100396691B1 (ko) 반도체 소자의 살리사이드층 형성 방법
CN1127765C (zh) 互补型金属氧化物晶体管半导体器件及其制造方法
CN1118863C (zh) 防止硅化物滋长的半导体器件制造方法
CN1202729A (zh) 半导体器件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NIPPON ELECTRIC CO., LTD.

Effective date: 20030321

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20030321

Address after: Kawasaki, Kanagawa, Japan

Applicant after: NEC Corp.

Address before: Tokyo, Japan

Applicant before: NEC Corp.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication