CN1186820A - 高分子复合导电微球 - Google Patents

高分子复合导电微球 Download PDF

Info

Publication number
CN1186820A
CN1186820A CN97121929A CN97121929A CN1186820A CN 1186820 A CN1186820 A CN 1186820A CN 97121929 A CN97121929 A CN 97121929A CN 97121929 A CN97121929 A CN 97121929A CN 1186820 A CN1186820 A CN 1186820A
Authority
CN
China
Prior art keywords
polymer microsphere
high molecular
technology
composite conductive
molecular composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97121929A
Other languages
English (en)
Inventor
王为
郭鹤桐
高建平
唐致远
于九皋
王慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN97121929A priority Critical patent/CN1186820A/zh
Publication of CN1186820A publication Critical patent/CN1186820A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

一种高分子微球表面沉积金属的复合材料。采用分散聚合或悬浮聚合制备高分子微球,然后在高分子微球的表面用电化学方法沉积金属铜或镍制备高分子复合导电微球。该高分子复合导电微球具有很好的导电性,易于成型,可广泛用于电子技术,传感元件制备等。

Description

高分子复合导电微球
本发明属于导电高分子复合材料。
近些年导电高分子材料的发展,可将其归纳为两大类:1)通过分子设计制备出具有共轭π键的大分子,而使其具有导电性。2)通过往高分子材料中填充导电物质,而使其具有导电性。合成具有共轭π键的导电高分子材料,是目前极为活跃的一个研究领域,正从实验室研究阶段走向实用阶段。这种技术所存在的突出缺点是:1)成本高,制备工艺复杂;2)二次加工成型困难;3)制备出导电高分子材料的电导率偏低;4)可供选择的高分子材料种类极为有限,因此材料的综合性能不理想[(弘冈正明,高分子,1988;37(7):522),(D.R.Gagnon,Polymer,1987;28:567),(H.Kuzmany,N.S.Sariciftci,H.Neugebauer,A.Neckel.Phys.Reo.Lett.,1988;60:212)]。4)可供选择的高分子材料种类极为有限,因此材料的综合性能不理想。研究极为活跃的聚噻吩为例,其最佳状态的电导率不超过102S·cm-1,而金属铜的电导率约为106S·cm-1[金藤敬一,高分子,1988;37(7):526]。通过往高分子材料中填充导电物质,来制备导电高分子材料的技术,是目前研制开发导电高分子材料的另一途径,且部分种类已商品化。填充的导电物质主要呈粉末和纤维状,如金属粉末、碳纤维等。这种填充型导电高分子材料的性能,强烈依赖于基质材料和填充材料的性能以及两者的相容性和分散性。这种技术所存在的突出缺点是:1)导电填料很难在高分子材料中分散均匀,使得材料的导电性大受影响;2)为获得良好的导电性,导电填料的填充量须足够高,由于填充物与基体材料间的相容性不理想,常常伴随着机械性能降低[板野俊明,高分子,1990;39(10:747;张柏生,材料科学,1996;13(7):22]。采用不同导电填料与多种高分子材料制备出的导电涂料的电阻率均远大于金属铜(电阻率约为10-6Ω·cm)[板野俊明,高分子,1990;39(10):747]。
本发明的目的在于提供一种制备高导电率高分子复合导电材料的方法,克服已有技术存在的问题。
本发明的高分子复合导电微球是制备高分子微球后,采用化学沉积的方法在该微球上沉积铜或镍制成的。其中高分子微球是用乙烯基类化合物,如苯乙烯、甲基丙烯酸甲酯、二乙烯基苯,丙烯酸为单体;偶氮二异丁腈、偶氮二异庚腈、过氧化苯甲酰、过氧化异丙苯为引发剂;聚乙烯吡咯烷酮、聚丙烯酸、聚乙二醇为稳定剂;一元醇与水的混合液为分散介质;蒸馏水为溶剂;聚乙烯醇、明胶为悬浮剂。采用分散聚合或悬浮聚合的方法制备粒径为微米级、纳米级或毫米级的高分子微球。再经化学方法在高分子微球表面上沉积铜或镍制成高分子复合导电微球。本发明分散聚合制备高分子微球的配方为:
苯乙烯、甲基丙烯酸甲酯、二乙烯基苯任选其一:4.07~12.2%(wt%)
偶氮二异庚腈、偶氮二异丁腈(AIBN)、过氧化异丙苯、
过氧化苯甲酰任选其一:0.01~0.20%(wt%)
聚乙烯吡咯烷酮(PVP)、聚丙烯酸、聚乙二醇任选其一:0.1~1.2%(wt%)
蒸馏水:2.13~84.48%(wt%)
无水乙醇:93.69~1.92%(wt%)
将上述配比中的稳定剂加入一元醇与水的混合液中,室温下搅拌使之溶解。将上述混合液置于装有搅拌装置、温度计、回流冷凝器和氮气导管的四口反应器中,于60~70℃搅拌状态下恒温10~30分钟。然后在搅拌状态下加入引发剂和单体的混合溶液。通氮气,在保持450~600转/分的搅拌条件下,于60~67℃下反应7~12小时后,终止合成反应,得到粒径为纳米级至微米级的单分散高分子微球。
本发明悬浮聚合制备高分子微球的配方为:
苯乙烯、丙烯酸任选其一:10~30%(wt%)
聚乙烯醇、明胶任选其一:0.5~2.0%(wt%)
偶氮二异丁腈、过氧化苯甲酰任选其一:0.1~0.5%(wt%)
蒸馏水:89.4~67.5%(wt%)
将装有搅拌装置、温度计、氮气导管和回流冷凝器的四口反应器按上述配方加入蒸馏水并加热至90±5℃,然后加入悬浮剂,搅拌并使悬浮剂完全溶解,降温至60±3℃,再加入事先备好的溶有引发剂的单体。通入氮气,在450~600转/分的搅拌条件下升温至75~85℃,恒温反应2.5~4小时,然后再升温至90~98℃,恒温反应2~5小时,终止合成反应。倒出反应产物并用85±5℃的热水反复洗涤干净,制成毫米级或微米级的高分子微球。
化学沉积铜的配方为:
硫酸铜(CuSO4·5H2O):14g/L
四水合酒石酸钾钠:10~26g/L
氢氧化钠:12g/L
甲醛(36~38wt%):30~50ml/L
α,α′-联吡啶:0~30g/L
乙二胺四乙酸二钠:15~25g/L
将制得的高分子微球在室温下敏化、活化、还原处理后,用蒸馏水清洗干净,放入盛有PH值为8~14的配制好的化学沉积液的容器中。室温下,以300~500转/分搅拌速度下反应时间大于10分钟,使高分子微球表面均匀沉积出所需厚度的铜层后,经抽滤将微球取出,用蒸馏水冲洗干净,即为本发明的高分子复合导电微球。
化学沉积镍的配方为:
硫酸镍(NiSO4·6H2O):20~35g/L
次亚磷酸钠(NaH2PO2·H2O):20~35g/L
氯化铵:35g/L
柠檬酸三钠(Na3C6H5O7·2H2O):10~25g/L
焦磷酸钠(Na4P2O7·10H2O):40~60g/L
三乙醇胺:50~150ml/L
将高分子微球在室温下经胶体钯活化、解胶处理后,用蒸馏水清洗干净,放入盛有PH值为8.5~11.0的按上配方配制好的化学沉积液的容器中。室温下,在300~500转/分的搅拌速度下,反应时间大于20分钟,使高分子微球表面均匀沉积出所需厚度的镍层后,经抽滤将微球取出,用蒸馏水冲洗干净,即为本发明的高分子复合导电微球。
本发明与现有技术相比,具有突出的优点:1)可用于制备高分子复合导电微球的材料种类繁多,可供选择的范围广。高分子复合导电微球的制备工艺简单、成本低廉。2)高分子复合导电微球外形呈规则的球形,且大小均匀,粒径可从毫米、微米乃至纳米的范围内自由调整。导电微球的金属表层与高分子微球间结合牢固。3)高分子复合导电微球不仅具有与金属相当的导电率,而且具有与高分子材料相当的二次加工成型性。4)高分子复合导电微球本身质轻且具有很好的导电性,除了可直接作为导电材料加以应用,还可用于制作用于大规模集成电路中的各向异性导电薄膜、电子封装材料、导电胶等。5)由于高分子复合导电微球具有对温度、压力等的良好感知能力,它可用于制作压敏元件、热敏元件等传感元器件。6)由于高分子复合导电微球具有质量轻、易于二次加工成型的特点,可将其进一步加工成型以制备各种形状复杂的导电元器件及电磁波屏蔽材料等。由于这样制得的元器件内部的组织实际为微球与微球间的集合体,作为导电物质的金属在其中呈网络状均匀分布,因而保证了其组织的均匀性,使制得的零部件具有很好的导电性。由于这样的导电元器件内部的金属含量很低(<10%),且金属与高分子之间结合牢固,从而保证了制得的导电元器件具有很好的机械性能。7)本发明提出的制备技术可作为制备纳米级高分子复合导电微粒材料的一种有效途径。
实施例一:分散聚合粒径为纳米级大小的高分子微球制备工艺:
合成溶液配方:
苯乙烯:10.0wt%
偶氮二异丁腈(AIBN):0.15wt%
聚乙烯吡咯烷酮(PVP):0.6wt%
蒸馏水:17.25wt%
无水乙醇:72.0wt%
反应所用设备:500ml四口烧瓶、冷凝器、电动搅拌器、自动控温器、电炉、通氮设备。
合成工艺:将按配方定量的PVP加入乙醇与蒸馏水的混合溶液中,室温下搅拌使之溶解,之后将其放入装有搅拌棒、温度计、回流冷凝器和氮气导管的四口瓶中,于70℃搅拌状态下恒温15分钟。之后在保持搅拌状态下加入指定量的AIBN和苯乙烯的混合溶液。通氮气,并保持搅拌速度为455转/分的条件下,于67℃反应10小时后终止合成反应,即可得到粒径为纳米级的单分散高分子微球。
实施例二:悬浮聚合粒径为毫米级或微米级大小的高分子微球制备工艺。
合成溶液配方:
苯乙烯:12wt%
聚乙烯醇:0.8wt%
过氧化苯甲酰:0.2wt%
蒸馏水:87wt%
反应所用设备:同实施例一。
合成工艺:在装有搅拌棒、温度计、氮气导管和回流冷凝器的四口烧瓶中加入指定量的蒸馏水,并加热至90℃。随后加入按配方定量的聚乙烯醇,搅拌使之完全溶解后,降温至60℃,再加入事先准备好的溶有过氧化苯甲酰的苯乙烯溶液。通氮气,并保持搅拌速度约560转/分(转速越快,制得的高分子微球粒径越小,转速越慢,制得的高分子微球粒径越大)的条件下升温至80℃,恒温反应3小时。之后再升温至90℃以上,恒温反应3小时,终止合成反应。倒出反应产物并用85℃左右的热水反复洗涤数次后即得到所需的高分子微球。
实施例三:沉积金属铜的化学处理工艺。
化学沉积液配方:
硫酸酮(CuSO4·5H2O):14g/L
四水合酒石酸钾钠:16g/L
氢氧化钠:12g/L
甲醛(36~38wt%):45ml/L
乙二胺四乙酸二钠:18g/L
PH:13
温度:室温
反应所用设备:烧杯、磁力搅拌器、真空抽滤器、漏斗。
化学沉积工艺:将高分子微球在室温经敏化、活化、还原处理后,用蒸馏水清洗干净,放入盛有化学沉积液的烧杯中。在室温、搅拌速度为350转/分的条件下反应适当时间(t>5min),使微球表面均匀沉积出所需厚度的铜层后,即可通过抽滤将微球取出,用蒸馏水清洗干净,就得到金属铜包覆的高分子复合导电微球。
实施例四:沉积金属镍的化学处理工艺。
化学沉积液的配方:
硫酸镍(NiSO4·6H2O):30g/L
次亚磷酸钠(NaH2PO2·H2O):28g/L
氯化铵(NH4Cl):35g/L
柠檬酸三钠(Na3C6H5O7·2H2O):14g/L
焦磷酸钠(Na4P2O7·10H2O):60g/L
三乙醇胺:90ml/L
PH:8.5~9.5
温度:室温
反应所用设备:同实施例三。
化学沉积工艺:将高分子微球在室温经胶体钯活化、解胶处理后,用蒸馏水清洗干净,放入盛有化学沉积液的烧杯中。在室温、搅拌速度为350转/分的条件下,反应适当时间(t>20min)使微球表面均匀沉积出所需厚度的镍层后,即可通过抽滤将微球取出,用蒸馏水冲洗干净,就得到金属镍包覆的高分子复合导电微球。

Claims (9)

1.一种高分子复合导电微球的制备技术,本发明的特征在于采用苯乙烯、甲基丙烯酸甲酯、二乙烯基苯,丙烯酸为单体,偶氮二异丁腈、偶氮二异庚脯、过氧化苯甲酰、过氧化异丙苯为引发剂,聚乙烯吡咯烷酮、聚丙烯酸、聚乙醇为稳定剂,一元醇与水的混合液为分散介质,蒸馏水为溶剂,聚乙烯醇、明胶为悬浮剂,采用分散聚合或悬浮聚合方法制备粒径为毫米级、微米级或纳米级的高分子微球;然后经化学方法在高分子微球表面上沉积铜或镍制成高分子复合导电微球。
2.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于分散聚合法制备高分子微球的配方为:苯乙烯、甲基丙烯酸甲酯、二乙烯基苯任选其一,4.07~12.2%(wt%);偶氮二异庚腈、偶氮二异丁腈、过氧化异丙苯、过氧化苯甲酰任选其一,0.01~0.20%(wt%);聚乙烯吡咯烷铜、聚丙烯酸、聚乙烯醇任选其一,0.1~1.2%(wt%);蒸馏水,2.13~84.48%(wt%);无水乙醇,93.69~1.92%(wt%)。
3.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于分散聚合法制备高分子微球的工艺为:将权利要求2中的稳定剂加入一元醇与水的混合液中,室温下搅拌使之溶解,将上述混合液置于装有搅拌装置、温度计、回流冷凝器和氮气导管的四口反应器中,于60~70℃搅拌状态下恒温10~30分钟,然后在搅拌状态下加入引发剂和单体的混合液,通氮气并在保持450~600转/分的搅拌条件下,于60~67℃下反应7~12小时后,终止反应,制得粒径为纳米级至微米的单分散高分子微球。
4.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于悬浮聚合法制备高分子微球的配方为:苯乙烯、丙烯酸任选其一,10~30wt%;聚乙烯醇、明胶任选其一,0.5~2.0wt%,偶氮二异丁腈、过氧化苯甲酰任选其一,0.1~0.5wt%;蒸馏水,89.4~67.5wt%。
5.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于悬浮聚合法制备高分子微球的工艺为:将装有搅拌装置、温度计、氮气导管和回流冷凝器的四口反应器中按配方加入蒸馏水并加热至90±5℃,然后加入悬浮剂,搅拌并使悬浮剂完全溶解,降温至60±3℃,再加入事先备好的溶有引发剂的单体,通入氮气,在450~600转/分的搅拌条件下升温至75~85℃,恒温反应2.5~4小时,然后再升温至90~98℃,恒温反应2~5小时,终止反应,倒出反应产物并用85±5℃左右热水反复洗涤干净,制成毫米级或微米级的高分子微球。
6.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于高分子微球表面沉积铜所用配方为:硫酸铜、14g/L;四水合三酤酸钾钠,10~26g/L;氢氧化钠,12g/L;甲醛(36~38wt%),30~50ml/L;α,α′-联吡啶,0~30mg/L;乙二胺四乙酸二钠,15~25g/L。
7.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于高分子微球表面沉积铜的工艺为:将本发明制备的高分子微球在室温下敏化、活化、还原处理后,用蒸馏水清洗干净,放入盛有PH值为8~14的权利要求6配方配制好的化学沉积液的容器中,室温条件下,以300~500转/分的搅拌速度下反应时间大于10分钟,使高分子微球表面均匀沉积出需要厚度的铜层后,经抽滤将微球取出,用蒸馏水冲洗干净。
8.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于高分子微球表面沉积镍所用的配方为:硫酸镍(NiSO4·6H2O),20~35g/L;次亚磷酸钠(NaH2PO2·H2O),20~35g/L;氯化铵,35g/L;柠檬酸三钠(Na3C6H5O7·2H2O),10~25g/L;焦磷酸钠(Na4P2O7·10H2O),40~60g/L;三乙醇胺,50~150ml/L。
9.根据权利要求1所述的高分子复合导电微球的制备技术,其特征在于高分子微球表面沉积镍的工艺为:将本发明制备的高分子微球在室温下经胶体钯活化,解胶处理后,用蒸馏水清洗干净,放入盛有PH值为8.5~11.0的按权利要求8配方配制好的化学沉积液的容器中,室温下,在300~500转/分的搅拌速度下,反应时间大于20分钟,使高分子微球表面均匀沉积出所需厚度的镍层后,经抽滤将微球取出,用蒸馏水冲洗干净。
CN97121929A 1997-11-21 1997-11-21 高分子复合导电微球 Pending CN1186820A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN97121929A CN1186820A (zh) 1997-11-21 1997-11-21 高分子复合导电微球

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97121929A CN1186820A (zh) 1997-11-21 1997-11-21 高分子复合导电微球

Publications (1)

Publication Number Publication Date
CN1186820A true CN1186820A (zh) 1998-07-08

Family

ID=5176548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97121929A Pending CN1186820A (zh) 1997-11-21 1997-11-21 高分子复合导电微球

Country Status (1)

Country Link
CN (1) CN1186820A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389151C (zh) * 2006-03-01 2008-05-21 武汉化工学院 一种制备孔内含纳米光催化剂三维有序多孔聚合物的方法
CN100441613C (zh) * 2005-08-19 2008-12-10 湖北省化学研究院 各向异性导电粘结剂膜用聚合物复合导电微球的制备方法
CN101054427B (zh) * 2007-06-21 2011-10-05 北京鼎国昌盛生物技术有限责任公司 一种合成单分散微米级聚甲基丙烯酸甲酯微球的方法
CN1876688B (zh) * 2006-05-22 2012-09-19 深圳华明科技有限公司 一种单分散微米级聚合物微球的制备方法
CN103276376A (zh) * 2013-06-14 2013-09-04 苏州异导光电材料科技有限公司 一种在高分子微球表面化学镀镍的方法
CN105063619A (zh) * 2015-05-27 2015-11-18 广东欧珀移动通信有限公司 金属镀件及其制备方法
CN106041124A (zh) * 2016-07-18 2016-10-26 中北大学 粒径可调的金属及其氧化物空心微球的制备方法
CN109735257A (zh) * 2019-01-11 2019-05-10 成都其其小数科技有限公司 一种用于各向异性导电胶膜的耐热导电微球及制备方法
CN109749520A (zh) * 2019-02-20 2019-05-14 江苏奔拓电气科技有限公司 一种易储存长效导电墨水的制备方法
CN110040701A (zh) * 2019-05-22 2019-07-23 北京理工大学 一种装填密度任意调控的高密度金属叠氮化物的制备方法
CN113045960A (zh) * 2021-03-12 2021-06-29 东莞市德聚胶接技术有限公司 一种环氧电磁屏蔽涂料及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441613C (zh) * 2005-08-19 2008-12-10 湖北省化学研究院 各向异性导电粘结剂膜用聚合物复合导电微球的制备方法
CN100389151C (zh) * 2006-03-01 2008-05-21 武汉化工学院 一种制备孔内含纳米光催化剂三维有序多孔聚合物的方法
CN1876688B (zh) * 2006-05-22 2012-09-19 深圳华明科技有限公司 一种单分散微米级聚合物微球的制备方法
CN101054427B (zh) * 2007-06-21 2011-10-05 北京鼎国昌盛生物技术有限责任公司 一种合成单分散微米级聚甲基丙烯酸甲酯微球的方法
CN103276376A (zh) * 2013-06-14 2013-09-04 苏州异导光电材料科技有限公司 一种在高分子微球表面化学镀镍的方法
CN105063619A (zh) * 2015-05-27 2015-11-18 广东欧珀移动通信有限公司 金属镀件及其制备方法
CN106041124A (zh) * 2016-07-18 2016-10-26 中北大学 粒径可调的金属及其氧化物空心微球的制备方法
CN106041124B (zh) * 2016-07-18 2018-07-10 中北大学 粒径可调的金属及其氧化物空心微球的制备方法
CN109735257A (zh) * 2019-01-11 2019-05-10 成都其其小数科技有限公司 一种用于各向异性导电胶膜的耐热导电微球及制备方法
CN109735257B (zh) * 2019-01-11 2021-04-02 无锡亚星新材料科技有限公司 一种用于各向异性导电胶膜的耐热导电微球及制备方法
CN109749520A (zh) * 2019-02-20 2019-05-14 江苏奔拓电气科技有限公司 一种易储存长效导电墨水的制备方法
CN110040701A (zh) * 2019-05-22 2019-07-23 北京理工大学 一种装填密度任意调控的高密度金属叠氮化物的制备方法
CN113045960A (zh) * 2021-03-12 2021-06-29 东莞市德聚胶接技术有限公司 一种环氧电磁屏蔽涂料及其制备方法
CN113045960B (zh) * 2021-03-12 2022-02-15 东莞市德聚胶接技术有限公司 一种环氧电磁屏蔽涂料及其制备方法

Similar Documents

Publication Publication Date Title
CN1186820A (zh) 高分子复合导电微球
CN103849008A (zh) 杂化颗粒、聚合物基复合材料及其制备方法与应用
CN111132533A (zh) 一种MXene/银纳米线复合电磁屏蔽膜
CN100347201C (zh) 蒙脱土原位有机化制备聚合物/蒙脱土纳米复合材料的方法
CN102718910B (zh) 交联聚苯乙烯微球的制备方法
CA1272079A (en) Method of improving the bond strength of electrolessly deposited metal layers on plastic- material surfaces
DE69926533T2 (de) Partikel
KR20130057459A (ko) 은 피복 구상 수지, 및 그 제조 방법, 그리고 은 피복 구상 수지를 함유하는 이방성 도전 접착제, 이방성 도전 필름, 및 도전 스페이서
CN1927899A (zh) 一种微米级单分散共聚微球的制备方法
CN106832782A (zh) 一种片状填料粒子/高分子复合材料及其制备方法
CN101054483A (zh) 一种镀银石墨及其制备方法
CN101077529A (zh) 一种纳米铜粉及铜浆料的制备方法
CN102658071A (zh) 一种用于各向异性导电胶膜的导电金球的制备方法
CN109957144A (zh) 一种表面镀银导电填料的制备方法
CN104480455B (zh) 一种通过多巴胺制备各向异性导电胶膜用聚合物导电微球的方法
CN101360772B (zh) 降冰片烯系树脂成型体及其制备方法
CN101716482B (zh) 一种聚合物/贵金属纳米粒子杂化空心智能微球及其制备方法
CN1238420C (zh) 一种酚醛树脂纳米复合材料的制法及由其制备的产品
Moravskyi et al. Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride
CN1247354C (zh) 一种在水溶液中用化学还原法制备纳米铜粉的方法
CN105153453A (zh) 纳米铜/聚合物空心复合微球及其制备方法
CN104884670A (zh) 在非导电性的基底材料上制造导电结构的方法以及用于此的特定添加物和基底材料
CN102977395A (zh) 一种适于导电材料复合微球的制备方法
Liu et al. Study on the synthetic mechanism of monodispersed polystyrene-nickel composite microspheres and its application in facile synthesis of epoxy resin-based anisotropic conductive adhesives
KR20100134792A (ko) 성형품의 도금물 및 이의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication