CN117682568B - 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用 - Google Patents

一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用 Download PDF

Info

Publication number
CN117682568B
CN117682568B CN202410153597.7A CN202410153597A CN117682568B CN 117682568 B CN117682568 B CN 117682568B CN 202410153597 A CN202410153597 A CN 202410153597A CN 117682568 B CN117682568 B CN 117682568B
Authority
CN
China
Prior art keywords
positive electrode
electrode material
spherical
acetate tetrahydrate
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410153597.7A
Other languages
English (en)
Other versions
CN117682568A (zh
Inventor
张壮壮
乔亚茹
李苞
代冬梅
贾梦敏
王亮
范嘉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202410153597.7A priority Critical patent/CN117682568B/zh
Publication of CN117682568A publication Critical patent/CN117682568A/zh
Application granted granted Critical
Publication of CN117682568B publication Critical patent/CN117682568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用,首先按照预设比例将四水合乙酸锰、四水合乙酸镍、尿素和十六烷基三甲基溴化铵进行混合,搅拌均匀后进行溶剂热反应得到绿色粉末状前驱体;将前驱体在马弗炉中烧结后得到黑色的锰镍氧化物;再与KF混合均匀后在O2/N2混合气氛中烧结后得到球形的K0.44Mn0.78Ni0.22O1.8F0.2正极材料。本发明制备的正极材料中球形结构不仅可以缓解K+嵌入和脱嵌过程中的体积变化,稳定结构,而且可以增大与电解质的接触面积,加速K+的传输动力学。此外,引入的F可以抑制高活性Ni4+的出现,减少副反应的发生。

Description

一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用
技术领域
本发明属于钾离子电池正极材料的制备及应用技术领域,具体涉及一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用。
背景技术
储能技术的研究与发展是能源革命的重大推力。锂离子电池由于长循环寿命、高功率和能量密度已经被成功商业应用于各种便携式电子设备和电动汽车。然而,锂资源在地壳中含量低且地理分布不均匀(主要集中在南美洲),随着能源市场的快速发展,其价格持续走高。同族的钠、钾资源丰富、分布广泛且价格低廉,最重要的是与锂具有相似的物理化学性质。因此,以钠离子电池和钾离子电池为代表的低成本二次电池受到了普遍关注。尽管K+的离子半径大于Na+,但是K+溶剂化半径却比Li+和Na+都小,表明它拥有较高的动力学特性。另外,石墨作为一种负极材料在锂离子电池中广泛应用,我国控制着全球约70%的石墨产量。研究表明酯类电解液中Na+由于热力学原因无法与石墨形成稳定的插层化合物,而K+可以像Li+一样在石墨中进行可逆脱嵌从而有效储能。基于上述优势,钾离子电池在大规模储能领域的应用前景广阔。
高性能正极材料的短缺是钾离子电池目前面临的重要障碍之一。与其它正极材料相比,含K+的层状过渡金属氧化物(KxTMO2;TM=Mn、Co、Fe、Ni、Mg、Ti等)由于高的理论容量、合适的电压平台和方便的合成工艺而具有极大的吸引力。特别是绿色廉价的锰基层状氧化物在钾离子电池中的应用得到了广泛的探索。
锰基层状氧化物作为钾离子电池正极材料存在的问题主要包括:(1)结构稳定性差,原因包括Mn3+引起的Jahn-Teller效应以及在充放电过程中层的滑移引发相变;(2)发生副反应,高压下高活性过渡金属易脱离溶解到电解液中引发不可逆的副反应;(3)材料表现出较差的空气稳定性。晶体结构调控是解决上述技术问题最有效的策略之一,例如:过渡金属层掺杂、钾含量优化、形貌设计、涂层技术等。这些方法虽然有一定的效果,但对生产工艺要求较高,生产成本相对较高,难以实现大规模生产,仍然需要进一步开发新的改善策略。
发明内容
本发明针对目前锰基层状氧化物结构稳定性差、循环寿命短的问题,提供了一种球形正极材料制备方法,该方法通过简单的溶剂热以及高温煅烧法成功引入氟离子制备了非金属氟掺杂的球形层状过渡金属氧化物钾离子电池正极材料,其优势在于:(1)球形结构不仅可以缓解/>嵌入和脱嵌过程中的体积变化,稳定结构,而且可以增大与电解质的接触面积,加速/>的传输动力学;(2)引入的/>可以抑制高活性的出现,有效减少副反应的发生。因此,制备得到的正极材料显示出更高的循环稳定性,更快的钾离子迁移动力学,因而能够较好地用作钾离子电池正极材料。
本发明为解决上述技术问题采用如下技术方案,一种球形正极材料制备方法,其特征在于具体步骤为:
步骤S1:将四水合乙酸锰、四水合乙酸镍和尿素加入到反应容器中,再加入高纯水进行搅拌,待混合物溶解后再加入十六烷基三甲基溴化铵和丙三醇,继续搅拌使其充分溶解,然后将所得溶液转移至反应釜中进行溶剂热反应,反应结束后冷却至室温,将得到的产物分别用去离子水和乙醇离心洗涤,再经过烘干后得到粉末状前驱体;
步骤S2:将步骤S1得到的粉末状前驱体于400~500℃煅烧3~5h,再自然冷却后得到锰镍氧化物微球前驱体;
步骤S3:将步骤S2得到的锰镍氧化物微球前驱体加入到KF溶液中,加热搅拌蒸发溶剂得到均匀混合物;
步骤S4:将步骤S3得到的均匀混合物转移至瓷舟中,在混合气氛中于750~850℃煅烧8~10h得到球形的/>正极材料。进一步限定,步骤S1中四水合乙酸锰、四水合乙酸镍和尿素的投料配比为2mmol:1mmol:500mg。
进一步限定,步骤S1中溶剂热反应温度为170~190℃,反应时间为10~12h。
进一步限定,步骤S1中烘干温度为80~100℃。
进一步限定,步骤S3中KF溶液的摩尔浓度为0.5~1mol L-1,该KF溶液与锰镍氧化物微球前驱体的投料配比为5mL:400mg,加热搅拌的温度为80~100℃。
进一步限定,步骤S4中混合气氛为/>体积百分浓度为30%的/>混合气氛。
本发明制备得到的球形正极材料用于钾离子电池正极材料。
本发明与现有技术相比具有以下优点和有益效果:
1.本发明利用溶剂热法制备的层状过渡金属氧化物为球形形貌,所构建的球形颗粒不仅可以缩短扩散路径,还可以承受内部应变,防止活性物质的开裂和失活,进一步提高钾离子电池的倍率性能和循环稳定性。
2.本发明中使用氟化钾作为反应物,不仅得到了层状氧化物正极材料,并且实现氟元素掺杂。
3.本发明中氟阴离子的掺杂,限制了高活性的出现,减少了副反应的发生,同时增强正极材料的结构稳定性。
4.本发明正极材料的制备原料来源丰富,合成方法简便、安全、绿色,不需要复杂的处理过程和高端仪器、成本较低,具有广阔的应用前景。
附图说明
图1为实施例1制备的球形正极材料的扫描电镜图;
图2为实施例1制备的球形正极材料的XRD精修图;
图3为实施例1制备的球形正极材料的EDS图;
图4为对比例1制备的未掺杂氟的球形正极材料的扫描电镜图;
图5为对比例2制备的无规则形正极材料的扫描电镜图;
图6为实施例1制备的球形正极材料的循环伏安图;
图7为对比例1制备的未掺杂氟的球形正极材料的循环伏安图;
图8为实施例1制备的球形正极材料的充放电曲线;
图9为对比例1制备的未掺杂氟的球形正极材料的充放电曲线;
图10为实施例1和对比例1、对比例2制备的正极材料组装的钾离子电池在/>电流密度下的循环性能图;
图11为实施例1和对比例1、对比例2制备的正极材料组装的钾离子电池在不同电流密度下的倍率性能图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
球形正极材料的制备:
(1)首先称取2mmol四水合乙酸锰、1mmol四水合乙酸镍和500mg尿素转移至烧杯中,再加入8mL高纯水搅拌混合均匀,待混合物溶解后加入250mg十六烷基三甲基溴化铵和25mL丙三醇,继续搅拌2h使其充分溶解,随后将所得溶液转移至反应釜中于180℃进行溶剂热反应12h,反应结束后冷却至室温,将得到的产物分别用去离子水和乙醇离心洗涤,再于100℃烘干后得到绿色粉末状前驱体;
(2)将步骤(1)得到的粉末状前驱体置于马弗炉中于450℃煅烧4h,再自然冷却后得到黑色粉末状中间产物;
(3)称取步骤(2)得到的粉末状中间产物400mg加入到5mL摩尔浓度为0.7mol L-1的KF溶液中,再于100℃加热搅拌蒸发溶剂得到均匀混合物;4)将步骤(3)得到的均匀混合物转移至瓷舟中,在O2体积百分浓度为30%的O2/N2混合气氛中以2℃ min−1的升温速率升温至850℃保持10h,煅烧结束后,自然冷却至200℃时转移至充满氩气的手套箱中即获得球形正极材料。
材料的表征:
图1为本实施例制备的球形正极材料的SEM图,图1显示制备的正极材料为均匀的球形结构;图2为本实施例制备的球形/>正极材料的XRD光谱图,由图表明该正极材料是P3相的层状金属氧化物,空间群为R3m;图3为本实施例制备的球形/>正极材料的EDS谱图,由图显示K、Mn、Ni、O和F元素的存在且含量与化学式基本一致。
电化学性能测试:
以N-甲基吡咯烷酮作为溶剂,将本实施例制得的球形正极材料与super-p、聚偏二氟乙烯以70:20:10的质量比研磨混合均匀,再将所得的均匀浆体涂抹在Al箔上并将其于80℃真空干燥12h。使用摩尔浓度为0.8mol L−1KPF6的碳酸二乙酯(DEC)溶液作为钾离子电池电解液,玻璃纤维和金属钾分别作为钾离子电池隔膜和对电极。电化学性能的测试采用CR2032电池,电池组装在充满氩气气氛的手套箱中进行,水和氧浓度均小于0.1ppm。电池的恒电流充放电测试在室温下进行,用蓝电CT2001A多通道电池测试系统,在1.5~4.0V(vs. K+/K)固定电压范围内进行,具体的性能见图6-图11。
对比例1
未掺杂氟的球形正极材料的制备:
(1)称取2mmol四水合乙酸锰、1mmol四水合乙酸镍和500mg尿素至烧杯中,加入8mL高纯水搅拌混合均匀,待混合物溶解后再加入250mg十六烷基三甲基溴化铵和25mL丙三醇,继续搅拌2h使其充分溶解;将所得到的绿色均匀溶液转移至反应釜中进行溶剂热反应,溶剂热反应温度设定为180℃,溶剂热反应时间设定为12h,反应结束后冷却至室温,将得到的产物分别用去离子水、乙醇离心三次,将其中杂质洗出后再于100℃烘干后得到绿色粉末状前驱体;
(2)将步骤(1)所得粉末状前驱体置于马弗炉中于450℃煅烧4h,再自然冷却后得到黑色粉末状中间产物;
(3)称取步骤(2)得到的粉末状中间产物400mg加入到5mL摩尔浓度为0.7mol L-1的KOH溶液中,再于100℃加热搅拌蒸发溶剂得到均匀混合物;
(4)将步骤(3)得到的均匀混合物转移至瓷舟中,在体积百分浓度为30%的混合气氛中以/>的升温速率升温至850℃后保持10h,煅烧结束后,自然冷却至200℃时转移至充满氩气的手套箱中即获得未掺杂氟的球形/>正极材料,缩写为S-KMNO。
按照与实施例1相同的方法对所制得的未掺杂氟的球形正极材料进行结构表征与电化学性能测试,其形貌如图4所示,其电化学性能测试结果见表1。
对比例2
无规则形极材料的制备:
(1)按照化合物的化学计量比分别称取原料K2CO3、MnO2、NiO、KF,将称取的原料混合均匀后,以丙酮为溶剂将混合粉末湿磨6h,转速为500r/min;
(2)球磨后,再将得到的粉末使用20MPa的压力压制成0.6~0.8g的圆片后置于管式炉中,在体积百分浓度为30%的/>混合气氛中以/>的升温速率升温至850℃后保持10h,煅烧结束后,自然冷却至200℃时转移至充满氩气的手套箱中即获得无规则形/>正极材料,缩写为L-KMNOF。
采用固相法所制得的无规则形正极材料进行结构表征与电化学性能测试,其形貌如图5所示,其呈现出层状堆叠而成的颗粒,与实施例1和对比例1相比,该对比例制备的正极材料是无规则的片状颗粒,其电化学性能测试结果见表1。
图6和图7分别是电极在电压区间,扫描速率为0.1mV s−1时前三圈的循环伏安曲线。由图可知实施例1制备的球形/>正极材料有4对氧化还原峰(图6),而对比例1制备的未掺杂氟的球形/>正极材料却有5对(图7)。多出的3.85/3.68V对应于/>的氧化还原,由此可见F的掺杂抑制了Ni3+向Ni4+的氧化还原;图8和图9分别为实施例1制备的球形/>正极材料和对比例1制备的未掺杂氟的球形/>正极材料在1.5~4.0 V(vs. K+/K)电压区间的充/放电曲线图,电流密度为20mA g−1,球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料首次放电比容量为89.7 mAh g−1,此后循环的库伦效率维持在98%以上(图8),而未掺杂氟的球形K0.44Mn0.78Ni0.22O2正极材料由于高活性Ni4+的出现库伦效率逐渐降低(图9);图10为实施例1与对比例1、对比例2制备的K0.44Mn0.78Ni0.22O2正极材料组装的钾离子电池在20mA g−1电流密度下的循环性能图,由图可以看出,实施例1制备的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料循环100圈后容量保持率达83%,远高于对比例1、对比例2制备的K0.44Mn0.78Ni0.22O1.8F0.2正极材料。图11为实施例1与对比例1、对比例2制备的K0.44Mn0.78Ni0.22O1.8F0.2正极材料组装的钾离子电池在不同电流密度下的倍率性能,由图可知即使在500mA g−1的高电流密度下,实施例1制备的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料的容量仍能达到52mAh g−1,明显优于对比例1、对比例2制备的K0.44Mn0.78Ni0.22O1.8F0.2正极材料。
表1电化学性能数据
对比实施例1、对比例1和对比例2制备的K0.44Mn0.78Ni0.22O1.8F0.2正极材料组装的钾离子电池的电化学性能,通过对比可知实施例1中掺杂氟离子制得的球形层状氧化物,球形结构不仅可以缓解K+嵌入和脱嵌过程中的体积变化,稳定结构,而且可以增大与电解质的接触面积,加速K+的传输动力学;此外,引入的F可以抑制高活性Ni4+的出现,减少副反应的发生;两者协同作用能够有效提升锰基层状金属氧化物正极材料的储钾性能。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (5)

1.一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法,其特征在于具体步骤为:
步骤S1:将四水合乙酸锰、四水合乙酸镍和尿素加入到反应容器中,再加入高纯水进行搅拌,待混合物溶解后再加入十六烷基三甲基溴化铵和丙三醇,继续搅拌使其充分溶解,然后将所得溶液转移至反应釜中进行溶剂热反应,溶剂热反应温度为170~190℃,反应时间为10~12h,反应结束后冷却至室温,将得到的产物分别用去离子水和乙醇离心洗涤,再经过烘干后得到粉末状前驱体,所述四水合乙酸锰、四水合乙酸镍和尿素的投料配比为2mmol:1mmol:500mg;
步骤S2:将步骤S1得到的粉末状前驱体于400~500℃煅烧3~5h,再自然冷却后得到锰镍氧化物微球前驱体;
步骤S3:将步骤S2得到的锰镍氧化物微球前驱体加入到KF溶液中,加热搅拌蒸发溶剂得到均匀混合物;
步骤S4:将步骤S3得到的均匀混合物转移至瓷舟中,在O2/N2混合气氛中于750~850℃煅烧8~10h得到球形的K0.44Mn0.78Ni0.22O1.8F0.2正极材料。
2.根据权利要求1所述的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法,其特征在于:步骤S1中烘干温度为80~100℃。
3. 根据权利要求1所述的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法,其特征在于:步骤S3中KF溶液的摩尔浓度为0.5~1mol L-1,该KF溶液与锰镍氧化物微球前驱体的投料配比为5mL:400mg,加热搅拌的温度为80~100℃。
4.根据权利要求1所述的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法,其特征在于:步骤S4中O2/N2混合气氛为O2体积百分浓度为30%的O2/N2混合气氛。
5.根据权利要求1~4中任意一项所述的方法制备得到的球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料用于钾离子电池正极材料。
CN202410153597.7A 2024-02-04 2024-02-04 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用 Active CN117682568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410153597.7A CN117682568B (zh) 2024-02-04 2024-02-04 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410153597.7A CN117682568B (zh) 2024-02-04 2024-02-04 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用

Publications (2)

Publication Number Publication Date
CN117682568A CN117682568A (zh) 2024-03-12
CN117682568B true CN117682568B (zh) 2024-04-19

Family

ID=90128633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410153597.7A Active CN117682568B (zh) 2024-02-04 2024-02-04 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用

Country Status (1)

Country Link
CN (1) CN117682568B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224090A (zh) * 2020-03-12 2020-06-02 河南电池研究院有限公司 一种复合型富锂锰基正极材料及其制备方法
CN112042015A (zh) * 2018-05-04 2020-12-04 尤米科尔公司 包含氟化电解质的Ni基锂离子二次蓄电池
CN114420920A (zh) * 2022-01-20 2022-04-29 北京理工大学重庆创新中心 一种氟离子梯度掺杂富锂锰基正极材料及其制备方法和应用
CN115188959A (zh) * 2022-07-26 2022-10-14 南开大学 一种具备空气稳定性的氟离子掺杂锰基层状氧化物正极材料与制备方法及应用
CN115241450A (zh) * 2022-08-01 2022-10-25 中山大学 一种掺杂型钠离子镍铁锰基单晶电池正极材料的制备及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884552B2 (en) * 2020-10-23 2024-01-30 The Regents Of The University Of California Fluorinated cation-disordered rocksalt materials and methods of making thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112042015A (zh) * 2018-05-04 2020-12-04 尤米科尔公司 包含氟化电解质的Ni基锂离子二次蓄电池
CN111224090A (zh) * 2020-03-12 2020-06-02 河南电池研究院有限公司 一种复合型富锂锰基正极材料及其制备方法
CN114420920A (zh) * 2022-01-20 2022-04-29 北京理工大学重庆创新中心 一种氟离子梯度掺杂富锂锰基正极材料及其制备方法和应用
CN115188959A (zh) * 2022-07-26 2022-10-14 南开大学 一种具备空气稳定性的氟离子掺杂锰基层状氧化物正极材料与制备方法及应用
CN115241450A (zh) * 2022-08-01 2022-10-25 中山大学 一种掺杂型钠离子镍铁锰基单晶电池正极材料的制备及其应用

Also Published As

Publication number Publication date
CN117682568A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CA2623636C (en) Method of producing positive electrode active material and nonaqueous electrolyte battery using same
CN113845158B (zh) 一种多孔球形结构镍锰酸钠正极材料的制备方法
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
CN104241626A (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN115347182B (zh) 一种长循环稳定和高倍率的钠离子电池正极材料
CN114864896A (zh) 一种原位碳包覆纳米磷酸铁锂正极材料及其制备方法
CN113788500A (zh) 一种富锂锰基正极材料表面改性方法及富锂锰基正极材料
CN115010186A (zh) 一种高容量氧变价钠离子电池正极材料及其制备方法
CN108390050B (zh) 一种锂电池用尖晶石型锰酸锂正极材料的包覆方法
CN110649263A (zh) 镍离子电池磷酸钒锂正极材料及溶胶凝胶制备方法与应用
CN112018355B (zh) 一种三维棒状钛酸钾材料的制备方法
CN116514071A (zh) 钠离子电池多维度异质结构负极材料
CN114597370B (zh) 一种空气稳定、高电压和长循环寿命钠离子电池正极材料及制备方法
CN117682568B (zh) 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用
CN113292065B (zh) 一种大层间距单分散纳米硬碳材料、合成方法及其应用
CN114824221A (zh) 一种二氧化钛包覆的CoSe2基纳米材料及其制备方法和应用
CN114639808A (zh) 一种氮掺杂碳包覆富钠态钴铁氰化钠材料的制备方法及其应用
CN108281632B (zh) 空心球状锂离子电池负极材料磷酸钒/碳的制备方法
CN112607790A (zh) 一种锂离子导体包覆富锂锰基正极材料的制备方法
CN112678874A (zh) N掺杂FeMnO3电极材料的制备方法及其应用
CN114590849B (zh) 一种高镍三元锂离子电池正极材料的制备方法及其产品
CN102769137A (zh) 一种尖晶石或层状结构锂离子电池正极材料液相制备方法
CN116565190A (zh) 一种铝掺杂层状氧化物材料及其制备方法和应用
CN117393717A (zh) 一种锂离子电池正极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant