CN117594779B - 一种碳硅复合材料及在锂电池中的应用 - Google Patents

一种碳硅复合材料及在锂电池中的应用 Download PDF

Info

Publication number
CN117594779B
CN117594779B CN202410083288.7A CN202410083288A CN117594779B CN 117594779 B CN117594779 B CN 117594779B CN 202410083288 A CN202410083288 A CN 202410083288A CN 117594779 B CN117594779 B CN 117594779B
Authority
CN
China
Prior art keywords
carbon
silicon
composite material
silicon composite
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410083288.7A
Other languages
English (en)
Other versions
CN117594779A (zh
Inventor
彭晓慧
张慎然
湛中魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Rongli New Material Technology Co ltd
Original Assignee
Hunan Rongli New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Rongli New Material Technology Co ltd filed Critical Hunan Rongli New Material Technology Co ltd
Priority to CN202410083288.7A priority Critical patent/CN117594779B/zh
Publication of CN117594779A publication Critical patent/CN117594779A/zh
Application granted granted Critical
Publication of CN117594779B publication Critical patent/CN117594779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂电池技术领域,具体为一种碳硅复合材料及在锂电池中的应用,所述碳硅复合材料包括硅碳核体,以及包覆在所述硅碳核体上的热解碳层,所述热解碳层中嵌入有MXene量子点,本发明所制备的碳硅复合材料表现出良好的电化学性能,且循环稳定性能良好。

Description

一种碳硅复合材料及在锂电池中的应用
技术领域
本发明涉及锂电池技术领域,具体为一种碳硅复合材料及在锂电池中的应用。
背景技术
目前,锂离子电池多采用碳材料作为负极材料,然而,碳材料的储锂容量值小(376mAh/g),与锂的电极电位接近,当电池过充电时,碳表面会析出锂枝晶,从而引起电池短路,会有爆炸的危险,严重威胁用户的人身安全。
因此,理论容量高达4200mAh/g的硅基材料吸引了人们的注意,被认为是最具发展潜力的锂离子电池负极材料。但硅在嵌锂过程中会发生合金化反应,在循环过程中产生巨大体积变化,导致硅颗粒粉碎,与集流体脱离失去电化学性能,而且由于硅导电性较差,影响了硅负极材料在锂离子电池中的循环性能。基于硅的以上缺点,将硅与碳进行复合作为锂离子电池负极材料成为目前的研究热点。
发明内容
发明目的:针对上述技术问题,本发明提出了一种碳硅复合材料及在锂电池中的应用。
所采用的技术方案如下:
一种碳硅复合材料,包括硅碳核体;
以及包覆在所述硅碳核体上的热解碳层;
所述热解碳层中嵌入有MXene量子点。
进一步地,所述的碳硅复合材料的制备方法如下:
S1:纳米硅粉经表面活性剂改性后分散在有机溶剂中,再加入水溶性锌盐、2-甲基咪唑和氨水,冰浴下搅拌反应3-6h,撤去冰浴,继续搅拌反应1-5h,滤出产物后洗涤、干燥得到硅碳核体前驱体;
S2:将硅碳核体前驱体、聚乙烯吡咯烷酮加入到有机溶剂中,超声振荡分散,再将MXene量子点和苯乙烯加入,加热至回流后,再将自由基引发剂加入,保温反应5-10h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于惰性气体氛围下,加热至800-1000℃碳化处理2-6h即可。
进一步地,所述表面活性剂为聚苯乙烯磺酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠中的任意一种或多种组合。
进一步地,所述MXene量子点经过硅烷偶联剂改性处理。
进一步地,所述硅烷偶联剂为KH-570、A-151、A-171中的任意一种或多种组合。
进一步地,所述硅碳核体前驱体、MXene量子点和苯乙烯的重量比为10-20:0.01-0.1:1。
进一步地,所述有机溶剂为甲醇和/或乙醇。
进一步地,所述自由基引发剂为过氧化环己酮、过氧化二苯甲酰、叔丁基过氧化氢、偶氮二异丁腈、偶氮二异庚腈中的任意一种或多种组合。
进一步地,碳化处理时的加热速度为1-5℃/min。
本发明的有益效果:
本发明提供了一种碳硅复合材料,先利用表面改性剂使纳米硅粉带负电荷,然后在纳米硅粉表面原位生长ZIF-8粒子得到硅碳核体前驱体,特殊的三维网络结构及硅碳材料的复合不仅能抑制硅的体积膨胀,碳化后还可以改善硅的导电性,提高电化学活性;
发明人进一步嵌入有MXene量子点的热解碳层对硅碳核体前驱体进行包覆,这样即使硅颗粒在长周期的脱嵌锂过程中破裂粉碎,也有热解碳层作为隔绝层,可有效减低硅颗粒因结构坍塌与电解液发生的副反应,保证了循环稳定性,反应生成的聚苯乙烯长链会进入到MXene量子点的层间结构中,热解时汽化可以扩大层间距,改善MXene量子点的材料结构,有助于电化学性能的提高,而MXene量子点的嵌入则可以形成更多的导电通路,提高热解碳层垂直于层结构方向上的电子和离子运输能力,避免因锂浓度梯度引起的不均匀体积变化,本发明所制备的碳硅复合材料表现出良好的电化学性能,且循环稳定性能良好。
附图说明
图1为实施例1所制备碳硅复合材料的SEM图。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。本发明未提及的技术均参照现有技术,除非特别指出,以下实施例和对比例为平行试验,采用同样的处理步骤和参数。
实施例1
一种碳硅复合材料,包括硅碳核体,以及包覆在所述硅碳核体上的热解碳层,热解碳层中嵌入有MXene量子点;
制备方法具体如下:
S1:将1g纳米硅粉分散在250ml去离子水和5ml聚苯乙烯磺酸钠组成的混合溶液中,室温搅拌1h后离心,收集固体并干燥,再重新分散在500ml甲醇中,再加入36g六水合硝酸锌、40g 2-甲基咪唑和56ml 25%氨水,冰浴下搅拌反应5h,撤去冰浴,继续搅拌反应5h,滤出产物后用去离子水和甲醇反复洗涤、干燥得到硅碳核体前驱体;
S2:将2g的LiF与40ml 9mol/L的盐酸混合搅拌30min,再将2g的MAX相陶瓷-Ti3AlC2加入其中,35℃水浴搅拌反应24h后,以3500rpm离心10min,再用去离子水多次洗涤,直至离心后倒出的上清液pH值为5,得到MXene粉末,取1g MXene粉末分散于40ml无水乙醇中,超声振荡30min后10000rpm离心10min,收集悬浮的MXene纳米片,最后将MXene纳米片分散于无水乙醇中,并放入细胞破碎装置中在80%功率下破碎24h得到MXene量子点;
S3:将0.01g硅烷偶联剂KH-570加入到10ml乙醇中,用10wt%醋酸水溶液调节pH值至5,室温下搅拌水解30min,再将0.1g MXene量子点加入到水解后的溶液中,60℃水浴反应2h后离心,产物用乙醇和去离子水反复洗涤后干燥得到改性后的MXene量子点;
S4:将15g硅碳核体前驱体、聚乙烯吡咯烷酮加入到乙醇中,超声振荡分散30min,再将0.05g MXene量子点和1g苯乙烯加入,加热至回流后,再将0.01g过氧化二苯甲酰加入,保温反应8h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于氩气保护下,以2.5℃/min的速度加热至850℃碳化处理3h即可。
实施例2
与实施例1基本相同,区别在于,S4具体如下:
将20g硅碳核体前驱体、聚乙烯吡咯烷酮加入到乙醇中,超声振荡分散30min,再将0.1g MXene量子点和1g苯乙烯加入,加热至回流后,再将0.01g过氧化二苯甲酰加入,保温反应10h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于氩气保护下,以5℃/min的速度加热至1000℃碳化处理3h即可。
实施例3
与实施例1基本相同,区别在于,S4具体如下:
将10g硅碳核体前驱体、聚乙烯吡咯烷酮加入到乙醇中,超声振荡分散30min,再将0.01g MXene量子点和1g苯乙烯加入,加热至回流后,再将0.01g过氧化二苯甲酰加入,保温反应5h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于氩气保护下,以1℃/min的速度加热至800℃碳化处理3h即可。
对比例1:与实施例1基本相同,区别在于,不含包覆的热解碳层,S4具体如下:
S4:于氩气保护下,将15g硅碳核体前驱体以2.5℃/min的速度加热至850℃碳化处理3h即可。
对比例2:与实施例1基本相同,区别在于,不加入MXene量子点,S4具体如下:
S4:将15g硅碳核体前驱体、聚乙烯吡咯烷酮加入到乙醇中,超声振荡分散30min,再将1g苯乙烯加入,加热至回流后,再将0.01g过氧化二苯甲酰加入,保温反应8h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于氩气保护下,以2.5℃/min的速度加热至850℃碳化处理3h即可。
对比例3:与实施例1基本相同,区别在于,不包括S3,即MXene量子点不经过硅烷偶联剂KH-570改性处理。
性能测试:分别将本发明本发明实施例1-3及对比例1-3中所制备的碳硅复合材料组装成扣式电池在蓝电测试仪进行性能测试;
其中,正极:锂片;
负极:分别将本发明本发明实施例1-3及对比例1-3中所制备的碳硅复合材料、羟甲基纤维素钠(CMC)、丁苯橡胶(SBR)、导电炭黑按质量比94:1.5:2.5:2在水中充分混合制备成浆料后,均匀涂覆在铜箔上,涂覆厚度为200±5μm,并于130℃干燥、辊压;
隔膜:聚丙烯微孔膜;
电解液:体积比为1:1:1的EC(碳酸乙烯酯)、EDC(碳酸二乙酯)和EMC(碳酸甲乙酯)为溶剂,浓度1.0M的LiPF6为溶质;
电压范围为0.001-3V,电流密度为1A·g-1,测试结果如表1所示:
表1:
由表1可知,本发明所制备的碳硅复合材料表现出良好的电化学性能,且通过实施例1和对比例1-3的对比可知,嵌入MXene量子点的热解碳层对于提升碳硅复合材料的循环稳定性起到了积极作用。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种碳硅复合材料,其特征在于,包括硅碳核体;
以及包覆在所述硅碳核体上的热解碳层;
所述热解碳层中嵌入有MXene量子点;
所述碳硅复合材料的制备方法如下:
S1:纳米硅粉经表面活性剂改性后分散在有机溶剂中,再加入水溶性锌盐、2-甲基咪唑和氨水,冰浴下搅拌反应3-6h,撤去冰浴,继续搅拌反应1-5h,滤出产物后洗涤、干燥得到硅碳核体前驱体;
所述表面活性剂为聚苯乙烯磺酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠中的任意一种或多种组合;
S2:将硅碳核体前驱体、聚乙烯吡咯烷酮加入到有机溶剂中,超声振荡分散,再将MXene量子点和苯乙烯加入,加热至回流后,再将自由基引发剂加入,保温反应5-10h,减压蒸馏除去有机溶剂,所得产物洗涤后干燥,再于惰性气体氛围下,加热至800-1000℃碳化处理2-6h即可。
2.如权利要求1所述的碳硅复合材料,其特征在于,所述MXene量子点经过硅烷偶联剂改性处理。
3.如权利要求2所述的碳硅复合材料,其特征在于,所述硅烷偶联剂为KH-570、A-151、A-171中的任意一种或多种组合。
4.如权利要求1所述的碳硅复合材料,其特征在于,所述硅碳核体前驱体、MXene量子点和苯乙烯的重量比为10-20:0.01-0.1:1。
5.如权利要求1所述的碳硅复合材料,其特征在于,所述有机溶剂为甲醇和/或乙醇。
6.如权利要求1所述的碳硅复合材料,其特征在于,所述自由基引发剂为过氧化环己酮、过氧化二苯甲酰、叔丁基过氧化氢、偶氮二异丁腈、偶氮二异庚腈中的任意一种或多种组合。
7.如权利要求1所述的碳硅复合材料,其特征在于,碳化处理时的加热速度为1-5℃/min。
8.如权利要求1-7中任一项所述的碳硅复合材料在生产锂电池中的应用。
CN202410083288.7A 2024-01-19 2024-01-19 一种碳硅复合材料及在锂电池中的应用 Active CN117594779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410083288.7A CN117594779B (zh) 2024-01-19 2024-01-19 一种碳硅复合材料及在锂电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410083288.7A CN117594779B (zh) 2024-01-19 2024-01-19 一种碳硅复合材料及在锂电池中的应用

Publications (2)

Publication Number Publication Date
CN117594779A CN117594779A (zh) 2024-02-23
CN117594779B true CN117594779B (zh) 2024-03-29

Family

ID=89922806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410083288.7A Active CN117594779B (zh) 2024-01-19 2024-01-19 一种碳硅复合材料及在锂电池中的应用

Country Status (1)

Country Link
CN (1) CN117594779B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539181A (zh) * 2018-05-03 2018-09-14 东莞理工学院 一种锂离子负极复合材料及其制备方法
CN111384381A (zh) * 2020-03-23 2020-07-07 北京化工大学 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
CN111916717A (zh) * 2020-07-22 2020-11-10 溧阳紫宸新材料科技有限公司 富氮掺杂硅/石墨/导电聚合物复合材料及制备方法
CN112652770A (zh) * 2020-12-21 2021-04-13 溧阳紫宸新材料科技有限公司 低比表面积的硅碳负极材料及其制备方法
KR20210049430A (ko) * 2019-10-25 2021-05-06 울산대학교 산학협력단 전극 합제용 복합체 바인더 재료, 이를 포함하는 전극 페이스트 조성물 및 에너지 저장 장치용 전극 구조체
WO2021142249A1 (en) * 2020-01-09 2021-07-15 Battelle Memorial Institute Electrolytes for lithium ion batteries with carbon and/or silicon anodes
CN113571683A (zh) * 2021-08-05 2021-10-29 山东大学 一种碳硅负极材料及其制备方法与在锂离子电池中的应用
WO2022084545A1 (en) * 2020-10-23 2022-04-28 Wacker Chemie Ag Process for preparing silicon-containing composite particles
WO2022121137A1 (zh) * 2020-12-10 2022-06-16 广东凯金新能源科技股份有限公司 一维多孔硅碳复合负极材料、制备方法及其应用
CN115458715A (zh) * 2021-06-08 2022-12-09 恒大新能源技术(深圳)有限公司 硅碳负极材料及其制备方法和锂离子电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200028205A1 (en) * 2018-07-18 2020-01-23 Nanotek Instruments, Inc. Fast-chargeable lithium battery electrodes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539181A (zh) * 2018-05-03 2018-09-14 东莞理工学院 一种锂离子负极复合材料及其制备方法
KR20210049430A (ko) * 2019-10-25 2021-05-06 울산대학교 산학협력단 전극 합제용 복합체 바인더 재료, 이를 포함하는 전극 페이스트 조성물 및 에너지 저장 장치용 전극 구조체
WO2021142249A1 (en) * 2020-01-09 2021-07-15 Battelle Memorial Institute Electrolytes for lithium ion batteries with carbon and/or silicon anodes
CN111384381A (zh) * 2020-03-23 2020-07-07 北京化工大学 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
CN111916717A (zh) * 2020-07-22 2020-11-10 溧阳紫宸新材料科技有限公司 富氮掺杂硅/石墨/导电聚合物复合材料及制备方法
WO2022084545A1 (en) * 2020-10-23 2022-04-28 Wacker Chemie Ag Process for preparing silicon-containing composite particles
WO2022121137A1 (zh) * 2020-12-10 2022-06-16 广东凯金新能源科技股份有限公司 一维多孔硅碳复合负极材料、制备方法及其应用
CN112652770A (zh) * 2020-12-21 2021-04-13 溧阳紫宸新材料科技有限公司 低比表面积的硅碳负极材料及其制备方法
CN115458715A (zh) * 2021-06-08 2022-12-09 恒大新能源技术(深圳)有限公司 硅碳负极材料及其制备方法和锂离子电池
CN113571683A (zh) * 2021-08-05 2021-10-29 山东大学 一种碳硅负极材料及其制备方法与在锂离子电池中的应用

Also Published As

Publication number Publication date
CN117594779A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
CN107507972B (zh) 硅碳负极材料的制备方法、硅碳负极材料以及锂离子电池
CN109216686B (zh) 一种锂离子电池硅碳复合材料及其制备方法
CN105489855B (zh) 高容量型锂离子电池用核壳硅碳复合负极材料及其制备方法
CN108550827B (zh) 一种三维多孔状硅碳负极材料的制备方法与应用
CN110289408B (zh) 基于切割硅废料的纳米硅和硅/碳复合材料及制法和应用
CN110504435B (zh) 一种低温等离子体制备硅碳复合负极材料的方法
CN109449385B (zh) 碳包覆的无定型硅/石墨烯复合负极材料及其制备方法与锂离子电池
WO2012126338A1 (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
CN108682820B (zh) 一种硅碳复合负极材料和负极片及其制备方法以及锂离子电池
CN101859886A (zh) 一种锂离子电池负极材料及其制备方法
CN113363473B (zh) 一种高首效SiO石墨复合负极材料的制备方法
CN111689500A (zh) 一种低膨胀性的SiO/石墨复合电极材料的制备方法
CN114079045B (zh) 以多孔聚合物微球为模板原位合成的多孔硅/碳复合材料及制备方法和锂离子电池
CN113823781A (zh) 一种复合负极材料及其制备方法
CN114388738B (zh) 一种硅基负极材料及其制备方法和应用
CN110190258B (zh) 硅碳复合材料水性复合浆料及其制备方法、锂离子电池
CN111313012A (zh) 多壁碳纳米管石墨锂离子电池负极材料及其制备方法
CN110380057A (zh) 一种耐过充锂离子电池
CN113644243A (zh) 氮掺杂中空结构石墨微球、复合负极材料及其制备方法
CN111600005B (zh) 一种锂离子电池负极材料多孔Si/C复合材料的制备方法
CN117594779B (zh) 一种碳硅复合材料及在锂电池中的应用
CN115295785B (zh) 一种纳米硅碳复合电极材料及其锂电池
CN114843483A (zh) 一种硬碳复合材料及其制备方法和应用
CN113809282A (zh) 一种高容量氮掺杂炭包覆SiOx纳米束锂离子电池负极材料的制备方法
CN109004188B (zh) 一种多孔碳硅复合材料的绿色制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant