CN117344269A - 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法 - Google Patents

一种铁基非晶、纳米晶带材表面绝缘涂层制备方法 Download PDF

Info

Publication number
CN117344269A
CN117344269A CN202210742086.XA CN202210742086A CN117344269A CN 117344269 A CN117344269 A CN 117344269A CN 202210742086 A CN202210742086 A CN 202210742086A CN 117344269 A CN117344269 A CN 117344269A
Authority
CN
China
Prior art keywords
amorphous
nanocrystalline
iron
steps
nanocrystalline strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210742086.XA
Other languages
English (en)
Inventor
刘旋
陈美艳
张悦
钟利
唐德礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghe Tongchuang Chengdu Technology Co ltd
Southwestern Institute of Physics
Original Assignee
Zhonghe Tongchuang Chengdu Technology Co ltd
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhonghe Tongchuang Chengdu Technology Co ltd, Southwestern Institute of Physics filed Critical Zhonghe Tongchuang Chengdu Technology Co ltd
Priority to CN202210742086.XA priority Critical patent/CN117344269A/zh
Publication of CN117344269A publication Critical patent/CN117344269A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于非晶合金涂层技术领域,具体涉及一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,包括如下步骤:步骤一:对待涂覆非晶、纳米晶带材表面进行化学清洗;步骤二:将待涂覆非晶、纳米晶带材装炉后进行抽真空,真空室加热烘烤除气;步骤三:对步骤二中真空室内的非晶、纳米晶带材通入一定体积比的氩气和反应气体,在带材表面沉积绝缘层;步骤四:真空室放气,取出涂覆完成的非晶、纳米晶带材。采用本发明方法制备的致密绝缘涂层膜绝缘特性良好,膜层厚度小,均匀性好,不损伤基体产品的总厚度及色泽,具有广泛的应用价值,应用范围不仅限于非晶、纳米晶带材及块材,还可作为片式高性能薄膜电阻的电阻膜。

Description

一种铁基非晶、纳米晶带材表面绝缘涂层制备方法
技术领域
本发明属于非晶合金涂层技术领域,具体涉及一种铁基非晶、纳米晶带材表面绝缘涂层制备方法。
背景技术
非晶合金由于有较高的电阻率,本身又具有一层极薄的氧化膜,通常情况下是不会采取涂层工艺的,但是随着应用领域越来越广、应用场景的频率不断升高,非晶合金磁性材料的损耗呈逐渐增大的趋势,涡流损耗所占的比例增大;此外,当非晶合金应用在脉冲功率技术中时,会遇到高频甚至超高频的工作条件,这样就会产生由于高磁化率而导致的层间高脉冲电压,若没有合适的绝缘材料在非晶带材叠片间进行绝缘,经过热处理的非晶合金铁芯会产生层间击穿而导致铁芯作废的技术问题。
纳米晶材料具有高饱和磁感应强度、高导磁率、低矫顽力、低损耗及良好的稳定性、高强韧性及耐磨耐蚀等优异特性,作为在金属软磁材料中具有最佳的性能价格比的纳米晶合金材料,可以替代硅钢、坡莫合金和铁氧体成为中高频变压器、互感器、电感元器件的理想材料。
现有技术中提出了利用聚酞胺或聚酞亚胺类树脂涂覆未定形金属磁性合金条带或晶体磁性合金条带,该方法是在非晶带材表面涂覆树脂,把非晶带材卷绕成磁芯后,再进行后续的热处理。该专利主要应用于铁基非晶软磁合金带材。但是由于涂层材料为有机物,难以耐受400℃以上的高温,对于热处理温度400℃以上非晶、纳米晶带材并不适用。
此外,目前还提出了以硅树脂、碱金属硅酸盐、胶态二氧化硅、低熔点玻璃熔结料、有机硅聚合物涂覆涂覆非取向磁钢片,Sm-Co磁铁或Fe-Nd-B磁铁的方法。但是,这些表面涂覆技术涂覆的材料只能在低频(20kHz以下)工作,而且涂层较硬,如果适用于只有20-30μm的柔软非晶纳米晶带材,则会严重影响其磁性能。
另一种铁基非晶、纳米晶带材表面绝缘涂层制备方法现有技术涂覆方法中提出了一种铁基非晶、纳米晶带材表面绝缘涂层制备方法非晶、纳米晶带材表面在线绝缘涂层的方法及装置,利用氧化镁、氮化硼等绝缘涂液在线浸涂在非晶带材表面,在表面形成绝缘层,晾干后收卷。但由于其绝缘液配制繁琐,温度需要维持在100~150℃,并且具有装置结构复杂,所得涂层均匀性不足的技术缺陷,极大的影响了其绝缘性能和磁性能。
因此,针对现有技术的不足,亟需对非晶合金带材表面设计涂覆一层薄薄的非磁性绝缘材料,从而使非晶合金带材具有良好的耐电压性能,同时能有效的遏制在高频条件下工作时产生的涡流损耗。
发明内容
本发明针对现有技术中非晶带材叠片间绝缘材料涂覆装置复杂、涂层材料无法耐高温、涂层较硬,涂层均匀性不足的技术问题,提出一种铁基非晶、纳米晶带材表面绝缘涂层制备方法铁基非晶、纳米晶带材表面绝缘涂层制备方法,用于解决当非晶合金在高频甚至超高频的工作条件下,非晶带材叠片间绝缘材料涂覆的技术问题。
本发明的技术方案:
一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,包括如下步骤:
步骤一:对待涂覆非晶、纳米晶带材表面进行化学清洗;
步骤二:将待涂覆非晶、纳米晶带材装炉后进行抽真空,真空室加热烘烤除气;
步骤三:对步骤二中真空室内的非晶、纳米晶带材通入一定体积比的氩气和反应气体,在带材表面沉积绝缘层;
步骤四:真空室放气,取出涂覆完成的非晶、纳米晶带材。
所述步骤一包括:将待涂覆的非晶、纳米晶带材在无水乙醇或异丙醇中超声清洗5-10分钟后晾干,超声频率为25-30kHz,用于避免非晶、纳米晶带材受损或加速带材点蚀。
所述步骤二包括:将步骤一中清洗过的非晶、纳米晶带材装炉后开始抽真空,真空度进入10-3Pa后开启加热电源,设置加热温度为80℃,温度达到80℃后保温30min。
所述步骤三包括:当步骤二中待涂覆非晶、纳米晶带材在真空室时的本底真空度进入9×10-4Pa后,采用射频磁控溅射的方式在非晶、纳米晶带材表面制备绝缘层,靶材是纯度为99.99%的金属靶,通入气体为氩气和反应气,氩气和反应气的体积比为1~10:1。
步骤三中通过射频磁控溅射的方式在非晶、纳米晶带材表面制备的绝缘层包括:Al2O3、AlN、BN、ZrO、SiO2
所述步骤三中反应气为氧气或氮气。
所述氩气和反应气的气体纯度均为99.99%,氩气和反应气的工作气压为0.1~1.0Pa。
所述射频磁控溅射的方式的射频溅射功率为500W~1200W,占空比为15-60%。
所述步骤三中采用射频磁控溅射的方式在非晶、纳米晶带材表面沉积绝缘层厚度为0.5~1.5μm。
所述步骤三中非晶、纳米晶带材表面沉积的绝缘层不均匀性小于10%,耐温超过400℃。
本发明的有益效果:
本发明设计的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法铁基非晶、纳米晶带材表面绝缘涂层制备方法,采用射频磁控溅射的方式在铁基非晶纳米晶带材表面制备致密的绝缘层(氧化铝、氮化铝或氮化硼),除了绝缘层自身优异的绝缘性能外,还能提升带材表面耐蚀及防氧化特性。
采用本发明制备的致密绝缘涂层膜绝缘特性良好,膜层厚度小,均匀性好,基本不损伤基体产品的总厚度及色泽,具有广泛的应用价值,应用范围不仅限于非晶、纳米晶带材及块材,还可作为片式高性能薄膜电阻的电阻膜。
附图说明
图1为本发明设计的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法铁基非晶、纳米晶带材表面绝缘涂层制备方法的流程框图;
具体实施方式
下面结合附图和实施例对本发明的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法铁基非晶、纳米晶带材表面绝缘涂层制备方法进行详细说明。
本发明提出的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法铁基非晶、纳米晶带材表面绝缘涂层的制备方法,在非晶、纳米晶带材表面制备厚度小、柔韧性高、能耐受400℃以上高温、绝缘性好的绝缘涂层(Al2O3、AlN、BN、ZrO、SiO2)。
步骤一:将非晶、纳米晶带材在无水乙醇或异丙醇中超声清洗5-10分钟后晾干,超声频率为25-30kHz,避免带材受损或加速带材点蚀。
本步骤用于去除带材表面附着的微小杂质,提升带材表面的洁净度。
步骤二:将清洗过的非晶、纳米晶带材装炉后开始抽真空,真空度进入10-3Pa后开启加热电源,设置加热温度为80℃,温度达到80℃后保温30min。
步骤二中去除真空室内壁吸附的空气,提升真空度,用于避免带材发生氧化。
步骤三:当步骤二中待涂覆非晶、纳米晶带材在真空室时的本底真空度进入9×10-4Pa后,采用射频磁控溅射的方式在非晶、纳米晶带材表面制备绝缘层,靶材是纯度为99.99%的金属靶,通入气体为氩气和反应气,氩气和反应气的体积比为1~10:1,氩气和反应气的气体纯度均为99.99%,氩气和反应气的工作气压为0.1~1.0Pa,射频溅射功率为500W~1200W,占空比为15-60%,带材表面沉积绝缘层厚度为0.5~1.5μm。
步骤三中通过射频磁控溅射的方式在非晶、纳米晶带材表面制备的绝缘层包括:Al2O3、AlN、BN、ZrO、SiO2;所述步骤三中反应气为氧气或氮气。
步骤三在非晶、纳米晶带材表面制备高均匀性、高强韧性及耐磨耐蚀性的优异绝缘涂层,所述步骤三中非晶、纳米晶带材绝缘涂层不均匀性小于10%,耐温超过400℃,符合热处理工艺要求,耐压超过250V,优于国外同款产品,且厚度小,极大的降低了涂层对带材强韧性的影响,镀有绝缘层薄膜的带材可卷绕,对涂层和基体均无损伤。
步骤四:真空室放气后取出非晶、纳米晶带材。
实施例1
以Fe73.5Cu1Nb3Si13.5B9铁基非晶、纳米晶带材为基体,利用射频磁控溅射方法在其表面制备高均匀性、高强韧性及具备良好耐磨耐蚀性的绝缘涂层。
步骤一:将80mm×5mm×0.018mm的Fe73.5Cu1Nb3Si13.5B9铁基非晶、纳米晶带材依次用无水乙醇和异丙醇低频超声清洗各8min。
步骤二:吹干后将步骤一带材装炉开始抽真空,真空度进入10-3Pa后开启加热电源,工件转动方式为连续公转,设置加热温度为80℃,温度达到80℃后保温30min。
步骤三:本底真空度进入9×10-4Pa后,采用射频磁控溅射的方式在非晶、纳米晶带材表面制备Al2O3绝缘层,靶材是纯度为99.99%的铝靶,通入气体为氩气和氧气,体积比为7:1,气体纯度均为99.99%,工作气压0.3Pa,溅射功率为1000W,占空比为20%,厚度0.8μm。
步骤四:真空室放气,取出带材,带材可卷绕或对折,其强韧性并无损伤,且耐压值达到200V。
实施例2
一种铁基非晶、纳米晶带材表面绝缘涂层制备方法以Fe73.5Cu1Nb3Si13.5B9为主要成分的铁基非晶、纳米晶带材表面绝缘涂层的制备方法,其特征在于以Fe73.5Cu1Nb3Si13.5B9铁基非晶、纳米晶带材为基体,利用射频磁控溅射方法在其表面制备高均匀性、高强韧性及具备良好耐磨耐蚀性的绝缘涂层。
步骤一:将80mm×30mm×0.021mm的Fe73.5Cu1Nb3Si13.5B9铁基非晶、纳米晶带材依次用无水乙醇和异丙醇低频超声清洗各8min。
步骤二:吹干后将带材装炉开始抽真空,真空度进入10-3Pa后开启加热电源,工件转动方式为连续公转,设置加热温度为80℃,温度达到80℃后保温30min。
步骤三:本底真空度进入9×10-4Pa后,采用射频磁控溅射的方式在非晶、纳米晶带材表面制备AlN绝缘层,靶材是纯度为99.99%的铝靶,通入气体为氩气和氧气,体积比为3:1,气体纯度均为99.99%,工作气压0.5Pa,溅射功率为600W,占空比为40%,厚度1.0μm。
步骤四:真空室放气,取出带材,带材可卷绕或对折,其强韧性并无损伤,且耐压值达到250V。
上面对本发明的实施例作了详细说明,本发明并不限于上述实例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (10)

1.一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于包括如下步骤:
步骤一:对待涂覆非晶、纳米晶带材表面进行化学清洗;
步骤二:将待涂覆非晶、纳米晶带材装炉后进行抽真空,真空室加热烘烤除气;
步骤三:对步骤二中真空室内的非晶、纳米晶带材通入一定体积比的氩气和反应气体,在带材表面沉积绝缘层;
步骤四:真空室放气,取出涂覆完成的非晶、纳米晶带材。
2.根据权利要求1所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤一包括:将待涂覆的非晶、纳米晶带材在无水乙醇或异丙醇中超声清洗5-10分钟后晾干,超声频率为25-30kHz,用于避免非晶、纳米晶带材受损或加速带材点蚀。
3.根据权利要求2所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤二包括:将步骤一中清洗过的非晶、纳米晶带材装炉后开始抽真空,真空度进入10-3Pa后开启加热电源,设置加热温度为80℃,温度达到80℃后保温30min。
4.根据权利要求3所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤三包括:当步骤二中待涂覆非晶、纳米晶带材在真空室时的本底真空度进入9×10-4Pa后,采用射频磁控溅射的方式在非晶、纳米晶带材表面制备绝缘层,靶材是纯度为99.99%的金属靶,通入气体为氩气和反应气,氩气和反应气的体积比为1~10:1。
5.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:步骤三中通过射频磁控溅射的方式在非晶、纳米晶带材表面制备的绝缘层包括:Al2O3、AlN、BN、ZrO、SiO2
6.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤三中反应气为氧气或氮气。
7.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述氩气和反应气的气体纯度均为99.99%,氩气和反应气的工作气压为0.1~1.0Pa。
8.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述射频磁控溅射的方式的射频溅射功率为500W~1200W,占空比为15-60%。
9.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤三中采用射频磁控溅射的方式在非晶、纳米晶带材表面沉积绝缘层厚度为0.5~1.5μm。
10.根据权利要求4所述的一种铁基非晶、纳米晶带材表面绝缘涂层制备方法,其特征在于:所述步骤三中非晶、纳米晶带材表面沉积的绝缘层不均匀性小于10%,耐温超过400℃。
CN202210742086.XA 2022-06-27 2022-06-27 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法 Pending CN117344269A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210742086.XA CN117344269A (zh) 2022-06-27 2022-06-27 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210742086.XA CN117344269A (zh) 2022-06-27 2022-06-27 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法

Publications (1)

Publication Number Publication Date
CN117344269A true CN117344269A (zh) 2024-01-05

Family

ID=89354408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210742086.XA Pending CN117344269A (zh) 2022-06-27 2022-06-27 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法

Country Status (1)

Country Link
CN (1) CN117344269A (zh)

Similar Documents

Publication Publication Date Title
KR100884352B1 (ko) 전기 절연 피막을 구비한 일방향성 전기 강판
US4698272A (en) Extra-low iron loss grain oriented silicon steel sheets
JP3176933B2 (ja) 絶縁被膜の密着性が優秀な無方向性電磁鋼板の製造方法
CN105331942B (zh) 钇铁石榴石薄膜材料及其制备方法
JPH11307328A (ja) 耐食性永久磁石およびその製造方法
CN113096907A (zh) 一种金属磁粉芯及其制备方法
EP0910101A1 (en) Ultra-low iron loss unidirectional silicon steel sheet
CN114959213A (zh) 一种高频低损耗铁基纳米晶磁芯的热处理方法
CN112680695B (zh) 一种同时提高烧结钕铁硼矫顽力和耐蚀性的方法
CN117344269A (zh) 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法
CN110607503B (zh) 一种高频磁芯用软磁复合膜及其制备方法
JP3210776B2 (ja) 非晶質磁性合金を用いた磁性材料、磁性材料の製造方法
CN110699648A (zh) 一种钕铁硼磁体的pvd复合膜层及制备工艺
CN111118465A (zh) 一种烧结钕铁硼磁体表面功能膜层及其制备方法
JP4206942B2 (ja) 鉄損が極めて低くかつ被膜密着性に優れた方向性電磁鋼板およびその製造方法
CN109136490A (zh) 一种取向硅钢环保加工设备及环保加工方法
CN116219378A (zh) 一种电机铁芯用硅钢-非晶复合材料及其制备和应用
JP2004027348A (ja) 被膜密着性に優れた超低鉄損一方向性珪素鋼板の製造方法
KR20120074562A (ko) 초고장력 코팅막을 갖는 방향성 전기 강판 및 그 제조 방법
KR101328704B1 (ko) 고주파 저철손 모터용 코어소재의 제조방법
JP2003342699A (ja) 被膜密着性に優れ、歪取り焼鈍後に特性劣化のない超低鉄損一方向性珪素鋼板の製造方法
CN115612789A (zh) 一种高性能铁基非晶纳米晶合金的热处理工艺
JP2000260631A (ja) ビルディングファクターが小さく、かつ実機鉄損が低い巻きトランス
JPH046264A (ja) 超低鉄損方向性珪素鋼板の製造方法
KR101461785B1 (ko) 에너지 효율이 우수한 저철손 방향성 전기 강판의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination