CN110607503B - 一种高频磁芯用软磁复合膜及其制备方法 - Google Patents

一种高频磁芯用软磁复合膜及其制备方法 Download PDF

Info

Publication number
CN110607503B
CN110607503B CN201910994095.6A CN201910994095A CN110607503B CN 110607503 B CN110607503 B CN 110607503B CN 201910994095 A CN201910994095 A CN 201910994095A CN 110607503 B CN110607503 B CN 110607503B
Authority
CN
China
Prior art keywords
sio
film
frequency
substrate
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910994095.6A
Other languages
English (en)
Other versions
CN110607503A (zh
Inventor
郭韦
张明
倪经
周俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Original Assignee
SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTHWEST INSTITUTE OF APPLIED MAGNETICS filed Critical SOUTHWEST INSTITUTE OF APPLIED MAGNETICS
Priority to CN201910994095.6A priority Critical patent/CN110607503B/zh
Publication of CN110607503A publication Critical patent/CN110607503A/zh
Application granted granted Critical
Publication of CN110607503B publication Critical patent/CN110607503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition

Abstract

本发明公开了一种高频磁芯用软磁复合膜,属于软磁薄膜技术领域,其化学组成为[(Ni100‑ xFex)100‑y(SiO2)y/SiO2]n,其结构为:包括基片,所述基片上沉积有3‑5个薄膜单元,所述薄膜单元由颗粒膜层和所述颗粒膜层之上的SiO2薄膜层组成,还公开了其制备方法;本发明的复合膜同时具有下述性能:优良的软磁性能:饱和磁化强度4πMs≥9000Gs、各向异性场Hk:40‑80Oe,具有优良的高频性能:截止频率fr≥1GHz、磁导率实部(100MHz下)μr≥100,具有较高的电阻率:ρ≥4000μΩ·cm,单轴各向异性方向平行膜面,这有利于增加薄膜电感的感值稳定性和抗直流偏置能力,是一种应用于高频薄膜电感中的理想材料。

Description

一种高频磁芯用软磁复合膜及其制备方法
技术领域
本发明涉及软磁薄膜技术领域,尤其涉及一种高频磁芯用软磁复合膜及其制备方法。
背景技术
随着电子通信系统向着高频段、小型化、集成化的发展,相关电子元器件对其支撑材料也提出了新的要求。对于应用在高频领域的薄膜电感,它对磁芯材料有四方面的要求:
1:薄膜磁芯需要具备高饱和磁化强度,这有利于提高起始磁导率,降低矫顽力;
2:还需要适中的各向异性场,提高各向异性场有利于提高材料的截止频率,但是,过高的各向异性场也会导致起始磁导率降低,所以需要一个适中的值;
3:另外,还需要高电阻率,这有利于降低涡流损耗。
4:最后,薄膜的单轴各向异性方向应平行膜面,以利于增加薄膜电感的感值稳定性和抗直流偏置能力。
而目前,公开文献中还没有能够同时满足上述要求的薄膜。比如,现有技术中,已经报道了各种磁性金属与氧化物组成的各类单层颗粒膜,如:FeCo-SiO2、NiFe-NZFO等材料,但是,仅仅是这些单层颗粒膜,并不能同时满足上述需求,比如涡流损耗较大、磁膜厚度超过200nm后的垂直各向异性较高。又比如,现有技术中报道了一种NiFe/Al2O3磁芯膜,但是,NiFe合金共振频率低,这导致了其高频(≥100MHz)损耗较大,品质因数小于2。
发明内容
本发明的目的之一,就在于提供一种高频磁芯用软磁复合膜,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种高频磁芯用软磁复合膜,包括基片,所述基片上沉积有3-5个薄膜单元,所述基片可以是Si基片、GaN基片等等;
所述薄膜单元由颗粒膜层和所述颗粒膜层之上的SiO2薄膜层组成;其结构如图1所示。
所述颗粒膜层是由镍铁合金与SiO2复合而成,其化学组成为:(Ni100-xFex)100-y(SiO2)y,其中,x=35-60,y=15-30。
本发明的发明人通过大量试验,一方面采用合适的镍铁与二氧化硅复合,明显提高了材料的截止频率,另一方面,采用复合颗粒膜与二氧化硅叠层,相互协同,降低了磁膜的垂直各向异性和抑制涡流损耗。
尤其是,本发明的复合膜,同时具备颗粒膜高截止频率(大于1GHZ)和多层膜结构降低垂直各向异性这两个特点。
本发明的目的之二,在于提供一种上述的高频磁芯用软磁复合膜的制备方法,采用的技术方案为,包括以下步骤:
1)制备溅射用SiO2-Ni100-xFex复合靶;
2)清洗衬底基片,装入磁控溅射台;
3)沉积第一层(Ni100-xFex)100-y(SiO2)y颗粒膜;
4)沉积第二层SiO2薄膜;
5)重复3)与4)中的步骤,以制备[(Ni100-xFex)100-y(SiO2)y/SiO2]单元;
6)从磁控溅射台取出基片;
7)退火,即得。
作为优选的技术方案,其步骤为:
1)溅射靶材采用高纯度的SiO2-Ni100-xFex复合靶结构,边长10mm、厚度0.5mm的SiO2片子用导电银胶对称的粘贴于2英寸Ni100-xFex靶的刻蚀轨道位置,SiO2片子数量为1-4,SiO2片子的数量越多,Ni100-xFe与SiO2的成分比越小,也可通过x值的大小调节镍铁合金靶材的磁性能,x为35-60,准备完毕后装入磁控溅射台阴极,如图4所示;
2)用去离子水、丙酮、酒精超声清洗衬底基片,用氮气吹干得到样品,在环境温度:16-28℃;环境湿度:<61%RH的条件下将样品装入样品托,送入磁控溅射台,沉积室中夹持基片的夹具两端需有永磁体,以提供平行于基片表面的磁场,用于在薄膜沉积中感生出面内单轴各向异性场;
3)将溅射室真空度抽至5×10-5Pa,向溅射室通入Ar气,溅射气压调整到0.5-1Pa。打开射频电源,控制SiO2-Ni100-xFex复合靶的射频溅射功率为100-200W,起辉。待辉光稳定后,调节工作气压为0.15Pa-0.3Pa,预溅射1-5分钟,去除复合靶的表面杂质。预溅射完毕后,打开挡板,开始沉积第一层(Ni100-xFex)1-y(SiO2)y颗粒膜,溅射时间为5-30分钟,膜厚为150-250nm,溅射时基片不加热;
4)当(Ni100-xFex)1-y(SiO2)y颗粒膜沉积完毕后,关闭挡板,射频电源,将溅射气压调整到1.5-2.5Pa,打开射频电源,控制SiO2靶的射频溅射功率为100-200W,起辉。待辉光稳定后,调节工作气压为1.5Pa-2Pa,预溅射1-5分钟,去除SiO2靶的表面杂质。预溅射完毕后,打开挡板,开始沉积第二层SiO2薄膜,溅射时间为1-5分钟,膜厚为15-25nm,溅射时基片不加热;
5)重复3)与4)中的步骤3-5次以制备(Ni100-xFex)1-y(SiO2)y颗粒膜与SiO2薄膜组成的[(Ni100-xFex)100-y(SiO2)y/SiO2]单元;
6)溅射完毕后,关闭挡板,射频电源,Ar气阀,将基片由成膜室传出至预真空室,给预真空室充气,从磁控溅射台取出基片;
7)用N2气清洁基片,放入坩埚,在压强低于5×10-4Pa的真空退火炉中进行150-350℃的高温退火处理,保温时间为15-30分钟,退火时所加的磁场大小为4000-6000Oe,方向和溅射时施加的沿薄膜表面的磁场方向一致,退火完毕后取出基片,即得。
与现有技术相比,本发明的优点在于:本发明的复合膜是应用于高频薄膜电感中的理想材料,其理由基于:
1)具有优良的软磁性能:饱和磁化强度4πMs≥9000Gs、各向异性场Hk:40-80Oe,如图2所示;
2)具有优良的高频性能:截止频率fr≥1GHz、磁导率实部(100MHz下)μr≥100,如图3所示;
3)具有较高的电阻率:ρ≥4000μΩ·cm,这有利于降低高频下的涡流损耗;
4)它的单轴各向异性方向平行膜面,这有利于增加薄膜电感的感值稳定性和抗直流偏置能力。
附图说明
图1为本发明的高频磁芯用软磁复合膜的结构示意图;
图2为本发明的高频磁芯用软磁复合膜的M-H曲线;
图3为本发明的高频磁芯用软磁复合膜的磁谱;
图4为本发明的SiO2-Ni100-xFex复合靶示意图;
图中,1、基片;2、(Ni100-xFex)100-y(SiO2)y颗粒膜层;3、SiO2薄膜层。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1
一种高频磁芯用软磁复合膜,其化学通式为:[(Ni45Fe55)80(SiO2)20/SiO2]3,其制备方法为,包括以下步骤:
1)准备SiO2-Ni45Fe55溅射靶材,SiO2片子数量为3,溅射的衬底基片为Si基片,装片时的环境条件为温度:22℃,湿度:55%RH;
2)溅射时SiO2-Ni45Fe55复合靶的射频溅射功率为150W,起辉气压为0.5Pa,工作气压为0.17Pa,预溅射时间为3分钟,溅射时间为20分钟,该条件下沉积出膜厚为200nm的(Ni45Fe55)80(SiO2)20颗粒膜;
3)SiO2靶的射频溅射功率为150W,起辉气压为2Pa,工作气压为1.9Pa,预溅射时间为3分钟,溅射时间为2分钟,该条件下沉积出膜厚为20nm的SiO2薄膜;
4)重复上述溅射步骤3次得到[(Ni45Fe55)80(SiO2)20/SiO2]3复合膜;
5)高温退火处理的压强为4×10-4Pa,退火温度为200℃,保温时间为20分钟,退火时所加的磁场大小为5000Oe。
上述工艺条件下获得的[(Ni45Fe55)80(SiO2)20/SiO2]3复合膜厚度为660nm、4πMs=10300Gs、Hk=65Oe、fr=1.9GHz、μr(100MHz)=238、ρ=4100μΩ·cm、单轴各向异性方向平行膜面。
实施例2
一种高频磁芯用软磁复合膜,其化学通式为:[(Ni50Fe50)79(SiO2)21/SiO2]4,其制备方法为,包括以下步骤:
1)准备SiO2-Ni50Fe50溅射靶材,SiO2片子数量为2,溅射的衬底基片为Si基片,装片时的环境条件为温度:23℃,湿度:54%RH;
2)溅射时SiO2-Ni50Fe50复合靶的射频溅射功率为120W,起辉气压为0.6Pa,工作气压为0.2Pa,预溅射时间为4分钟,溅射时间为22分钟,该条件下沉积出膜厚为190nm的(Ni50Fe50)79(SiO2)21颗粒膜;
3)SiO2靶的射频溅射功率为120W,起辉气压为2.1Pa,工作气压为2Pa,预溅射时间为4分钟,溅射时间为2.1分钟,该条件下沉积出膜厚为19nm的SiO2薄膜。
4)重复上述溅射步骤4次得到[(Ni50Fe50)79(SiO2)21/SiO2]4复合膜。
5)高温退火处理的压强为4.5×10-4Pa,退火温度为220℃,保温时间为18分钟,退火时所加的磁场大小为4800Oe。
上述工艺条件下获得的[(Ni50Fe50)79(SiO2)21/SiO2]4复合膜厚度为836nm、4πMs=10000Gs、Hk=60Oe、fr=1.8GHz、μr(100MHz)=236、ρ=4500μΩ·cm、单轴各向异性方向平行膜面。
实施例3
一种高频磁芯用软磁复合膜,其化学通式为:[(Ni45Fe55)75(SiO2)25/SiO2]3,其制备方法为,包括以下步骤:
1)准备SiO2-Ni45Fe55溅射靶材,SiO2片子数量为4,溅射的衬底基片为Si基片,装片时的环境条件为温度:23℃,湿度:55%RH;
2)溅射时SiO2-Ni45Fe55复合靶的射频溅射功率为180W,起辉气压为0.5Pa,工作气压为0.18Pa,预溅射时间为3分钟,溅射时间为15分钟,该条件下沉积出膜厚为220nm的(Ni45Fe55)75(SiO2)25颗粒膜;
3)SiO2靶的射频溅射功率为150W,起辉气压为2Pa,工作气压为1.9Pa,预溅射时间为3分钟,溅射时间为2.2分钟,该条件下沉积出膜厚为22nm的SiO2薄膜;
4)重复上述溅射步骤3次得到[(Ni45Fe55)75(SiO2)25/SiO2]3复合膜;
5)高温退火处理的压强为4.5×10-4Pa,退火温度为200℃,保温时间为20分钟,退火时所加的磁场大小为5000Oe。
上述工艺条件下获得的[(Ni45Fe55)75(SiO2)25/SiO2]3复合膜厚度为726nm、4πMs=9700Gs、Hk=70Oe、fr=2.23GHz、μr(100MHz)=180、ρ=5500μΩ·cm、单轴各向异性方向平行膜面。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种高频磁芯用软磁复合膜,包括基片,其特征在于:
所述基片上沉积有3-5个薄膜单元,
所述薄膜单元由颗粒膜层和所述颗粒膜层之上的SiO2薄膜层组成;
所述颗粒膜层是由镍铁合金与SiO2复合而成,其化学组成为:(Ni100-xFex)100-y(SiO2)y,其中,x=35-60,y=15-30;
所述颗粒膜层的厚度为150-250nm,所述SiO2薄膜层的厚度为15-25nm。
2.权利要求1所述的高频磁芯用软磁复合膜的制备方法,其特征在于,包括以下步骤:
1)制备溅射用SiO2-Ni100-xFex复合靶;
2)清洗衬底基片,装入磁控溅射台;
3)沉积第一层(Ni100-xFex)100-y(SiO2)y颗粒膜;
4)沉积第二层SiO2薄膜;
5)重复3)与4)中的步骤,以制备[(Ni100-xFex)100-y(SiO2)y/SiO2]单元;
6)从磁控溅射台取出基片;
7)退火,即得。
3.根据权利要求2所述的高频磁芯用软磁复合膜的制备方法,其特征在于:
步骤3)中,沉积(Ni100-xFex)100-y(SiO2)y颗粒膜层时的射频溅射功率为100-200W,溅射时间为5-30分钟。
4.根据权利要求2所述的高频磁芯用软磁复合膜的制备方法,其特征在于,步骤4)中,沉积SiO2膜层时的射频溅射功率为100-200W,溅射时间为1-5分钟。
5.根据权利要求2所述的高频磁芯用软磁复合膜的制备方法,其特征在于,步骤7)中,在真空退火炉中加磁场退火。
CN201910994095.6A 2019-10-18 2019-10-18 一种高频磁芯用软磁复合膜及其制备方法 Active CN110607503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910994095.6A CN110607503B (zh) 2019-10-18 2019-10-18 一种高频磁芯用软磁复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910994095.6A CN110607503B (zh) 2019-10-18 2019-10-18 一种高频磁芯用软磁复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110607503A CN110607503A (zh) 2019-12-24
CN110607503B true CN110607503B (zh) 2021-11-05

Family

ID=68893097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910994095.6A Active CN110607503B (zh) 2019-10-18 2019-10-18 一种高频磁芯用软磁复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110607503B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612988A (zh) * 2022-10-18 2023-01-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高磁性能FeGaB磁电薄膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591533A (en) * 1993-12-14 1997-01-07 International Business Machines Corporation Thin film magnetic transducer having a stable soft film for reducing asymmetry variations
US6165329A (en) * 1992-12-03 2000-12-26 Commissariat A L'energie Atomique Multilayer magnetic transducer and structure having a high magnetoresistance and process for the production of the structure
CN1750184A (zh) * 2004-09-17 2006-03-22 太阳诱电株式会社 叠层磁性薄膜及其制造方法
CN101046978A (zh) * 2006-03-31 2007-10-03 富士通株式会社 垂直磁记录介质和磁存储装置
CN103022018A (zh) * 2012-12-07 2013-04-03 中国电子科技集团公司第五十五研究所 电流调谐的集成磁膜微电感的制作方法和电感调谐方法
CN103795347A (zh) * 2013-12-27 2014-05-14 中国电子科技集团公司第五十五研究所 一种电流调谐的集成磁膜单片混频器及其调谐制作方法
CN104733179A (zh) * 2015-02-11 2015-06-24 西南应用磁学研究所 铁氧体基板FePt永磁薄膜的制备方法
CN106252813A (zh) * 2016-08-30 2016-12-21 电子科技大学 一种自偏置的自旋波波导及其制备方法
CN108022714A (zh) * 2016-10-31 2018-05-11 北京北方华创微电子装备有限公司 一种软磁薄膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346113A (ja) * 1989-07-13 1991-02-27 Sharp Corp 薄膜磁気ヘッド
US5589221A (en) * 1994-05-16 1996-12-31 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head
CN106504891B (zh) * 2016-12-19 2018-02-13 电子科技大学 一种准各向同性磁芯膜的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165329A (en) * 1992-12-03 2000-12-26 Commissariat A L'energie Atomique Multilayer magnetic transducer and structure having a high magnetoresistance and process for the production of the structure
US5591533A (en) * 1993-12-14 1997-01-07 International Business Machines Corporation Thin film magnetic transducer having a stable soft film for reducing asymmetry variations
CN1750184A (zh) * 2004-09-17 2006-03-22 太阳诱电株式会社 叠层磁性薄膜及其制造方法
CN101046978A (zh) * 2006-03-31 2007-10-03 富士通株式会社 垂直磁记录介质和磁存储装置
CN103022018A (zh) * 2012-12-07 2013-04-03 中国电子科技集团公司第五十五研究所 电流调谐的集成磁膜微电感的制作方法和电感调谐方法
CN103795347A (zh) * 2013-12-27 2014-05-14 中国电子科技集团公司第五十五研究所 一种电流调谐的集成磁膜单片混频器及其调谐制作方法
CN104733179A (zh) * 2015-02-11 2015-06-24 西南应用磁学研究所 铁氧体基板FePt永磁薄膜的制备方法
CN106252813A (zh) * 2016-08-30 2016-12-21 电子科技大学 一种自偏置的自旋波波导及其制备方法
CN108022714A (zh) * 2016-10-31 2018-05-11 北京北方华创微电子装备有限公司 一种软磁薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
magnetic and electrical properties of [NiFe/SiO2]xN multilayer thin films;urse,M et al;《journal of optoelectronics and advanced materials》;20040612;第7卷(第2期);第759-762页 *
纳米复合永磁材料的研究进展;彭龙等;《磁性材料及器件》;20060430;第37卷(第2期);第5-8、13页 *

Also Published As

Publication number Publication date
CN110607503A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN105331942B (zh) 钇铁石榴石薄膜材料及其制备方法
CN108000973B (zh) 一种梯度多层磁性电磁波吸收薄膜及其制备方法
CN113549884B (zh) 一种具有垂直磁各向异性的磁性薄膜制备方法及磁性薄膜
CN110607503B (zh) 一种高频磁芯用软磁复合膜及其制备方法
CN101311374B (zh) 钇铁石榴石薄膜结构及制备方法
CN115313012A (zh) 一种提高陶瓷嵌套铁氧体基片表面金属电路附着力的方法
CN112680695B (zh) 一种同时提高烧结钕铁硼矫顽力和耐蚀性的方法
CN110777342A (zh) 一种磁致伸缩薄膜及其制备方法
CN104733179B (zh) 铁氧体基板FePt永磁薄膜的制备方法
JP3305790B2 (ja) 薄膜永久磁石の製造方法
JPWO2014038022A1 (ja) Nd−Fe−B薄膜磁石およびその製造方法
CN108022714B (zh) 一种软磁薄膜及其制备方法
KR100227449B1 (ko) 자성 박막 및 그를 사용한 박막 자기 소자
CN113192720B (zh) 一种纳米颗粒复合磁芯膜及其制备方法
CN113930733A (zh) 用于铁氧体加工的磁控溅射方法
CN114678202A (zh) 一种钕铁硼磁体晶界扩散方法
CN109234678B (zh) 一种铜掺杂钛酸钡/镍锌铁氧体复相薄膜材料及制备方法
CN112899629B (zh) 一种高熵氧化物薄膜及其制备方法和应用
KR100270605B1 (ko) 철계연자성박막합금및그의제조방법
CN108950505B (zh) 具有强铁磁性的CaB6薄膜的制备方法
TWI754592B (zh) 磁性薄膜疊層結構的沉積方法
CN103714942A (zh) 一种自偏置非均质微波铁磁薄膜材料及其制备方法
KR100430671B1 (ko) 자기소자용 FeTaN계 연자성 박막의 제조방법
CN117344269A (zh) 一种铁基非晶、纳米晶带材表面绝缘涂层制备方法
AU2021100764A4 (en) Method for Improving Coercivity and Thermal Stability of Sintered Nd-Fe-B Magnet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant