KR100270605B1 - 철계연자성박막합금및그의제조방법 - Google Patents

철계연자성박막합금및그의제조방법 Download PDF

Info

Publication number
KR100270605B1
KR100270605B1 KR1019980014602A KR19980014602A KR100270605B1 KR 100270605 B1 KR100270605 B1 KR 100270605B1 KR 1019980014602 A KR1019980014602 A KR 1019980014602A KR 19980014602 A KR19980014602 A KR 19980014602A KR 100270605 B1 KR100270605 B1 KR 100270605B1
Authority
KR
South Korea
Prior art keywords
thin film
soft magnetic
flux density
heat treatment
iron
Prior art date
Application number
KR1019980014602A
Other languages
English (en)
Other versions
KR19990080976A (ko
Inventor
김희중
한석희
김종렬
송재용
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019980014602A priority Critical patent/KR100270605B1/ko
Priority to US09/225,808 priority patent/US20020017341A1/en
Publication of KR19990080976A publication Critical patent/KR19990080976A/ko
Application granted granted Critical
Publication of KR100270605B1 publication Critical patent/KR100270605B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/138Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Magnetic Films (AREA)

Abstract

본 발명은 수십 MHz 이상의 고주파 영역에서 높은 포화자속밀도와 우수한 연자기 특성을 가지며 추가적인 열처리 공정 등을 거치지 않는 새로운 Fe-Hf-C-N계 및 Fe-Hf-N계 재료 및 상기 재료의 제조방법을 제공하기 위해, 철계 연자성 박막의 증착 중에 형성되는 비정질화를 막고 조직을 결정화하기 위하여 입자의 에너지를 증가시킨다. 본 발명의 철계 연자성 박막합금의 조성은 다음과 같고 미세구조는 초미세결정립으로 이루어져 있으며 그 조성은 다음과 같다: FexHfyCzNv; 이때, x, y, z, v는 각각 원자 %로서, 68 ≤ x ≤ 85; 4 ≤ y ≤ 10; 0 ≤ z ≤ 12; 3 ≤ v≤ 20; 15 ≤ y + z + v ≤ 32; (단, x + y + z + v = 100). 또한, 순철, Fe-Hf계 합금, Fe-Hf-C계 합금 등에 Hf, Hf의 질화물 및 탄화물 그리고 C의 소편을 배치하여 불활성 가스 분위기나 C나 N을 함유하고 있는 분위기 하에서 나노(nano) 크기의 초미세 결정립 조직을 얻기 위해 냉각속도의 조절 또는 입자에너지를 조절하는 증착조건으로 전력의 양이 4~8W/㎠, N2분량은 2~20%이며 ([C]+[N])/[Hf]의 성분비를 1.5~2.5로 유지함으로써, 열처리 공정 없이 증착 상태에서 초미세 결정립 구조를 갖는 철계 연자성 박막합금의 제조방법을 제공한다.

Description

철계 연자성 박막합금 및 그의 제조방법
본 발명은 Fe-Hf의 2원계를 기본 조성으로 하는 철계 연자성 박막재료에 관한 것으로, 특히 수백 MHz 대역까지의 고주파 영역에서 고포화자속밀도와 고투자율 및 내열성을 나타내는 우수한 연자기 특성의 Fe-Hf-C-N계 및 Fe-Hf-N계 박막합금에 관한 것이다.
최근 정보산업기기의 고주파화 및 고집적화 추세에 따라 이에 사용되는 각종 전자부품의 소형화 및 표면실장화가 계속적으로 이루어지고 있으나, 컴퓨터 등 각종 정보기록 기기에 사용되고 있는 자기헤드는 자기코어로 사용되는 연자성재료 특성의 한계로 인해 고기능화 및 고주파화에 많은 제약이 있다. 특히 각종 전자부품에 사용되는 변압기, 인덕터 등의 자기소자들은 아직까지도 대부분 용적이 큰 코어 형태를 사용되고 있어 이러한 기술발전에 큰 장애가 되고 있는 실정이다. 따라서 고주파 특성이 우수한 연자성 박막재료의 개발은 이러한 자기소자의 경박단소화를 위해서는 반드시 필요하다.
종래에 사용하는 대표적 연자성 재료로는 Fe-Al-Si계의 센더스트 합금, Ni-Fe계의 퍼말로이 합금 및 Co계 비정질 합금 등이 있다. 그러나 이들 재료들은 포화자속밀도가 낮고 고주파 특성이 좋지 않아 고주파용 박막자기소자에의 응용에는 한계가 있다.
발명자 등은 MHz 대역에서 높은 포화자속밀도를 가지면서 우수한 연자기 특성를 갖고 있는 새로운 Fe-Hf-C-N계 박막에 대해 한국특허공고 제96-4664호에 발표하였다. 그러나 이 박막 재료에서는 우수한 연자기 특성과 높은 포화자속밀도를 얻기 위해서 반드시 열처리공정을 거쳐야 한다. 이러한 열처리공정은 전체 자기소자의 제조공정에 많은 제약을 가져올 뿐만 아니라 자성박막 이외의 다른 박막이나 소자에 영향을 미쳐 부품의 특성을 열화시킬 가능성이 많다. 또한 이 재료는 10 MHz 이상의 주파수 영역에서는 와전류손실이 커져서 실효투자율이 급속하게 감소하는 현상이 발생한다.
현재 고주파용 연자성 재료로 금속과 세라믹상이 혼합된 구조를 갖는 연자성 박막이 개발되어 보고되고 있으나 아직까지는 실효투자율이 수백 정도로 연자기 특성이 좋지 않아 응용하기에는 어려운 실정이다. 현재 수십 MHz 이상의 고주파 영역에서는 Mn-Zn 훼라이트 등이 사용되고 있으나 포화자속밀도가 매우 낮아 소자의 고기능화에는 한계가 있다.
따라서, 본 발명은 수십 MHz 이상의 고주파 영역에서 높은 포화자속밀도와 우수한 연자기 특성을 가지며 추가적인 열처리 공정 등을 거치지 않는 새로운 Fe-Hf-C-N계 및 Fe-Hf-N계 재료 및 상기 재료의 제조방법을 제공하는데 목적이 있다. 이러한 목적을 달성하기 위하여 철계 연자성 박막의 증착 중에 형성되는 비정질화를 막고 조직을 결정화하기 위하여 입자의 에너지를 증가시키는 방법을 이용하였다.
도 1은 본 발명 Fe-Hf-(C)-N계의 N2분압에 따른 포화자속밀도의 변화를 나타낸 그래프이다.
도 2는 본 발명 Fe-Hf-(C)-N계의 N2분압에 따른 보자력의 변화를 나타낸 그래프이다.
도 3은 본 발명 Fe-Hf-(C)-N계의 N2분압에 따른 실효투자율의 변화를 나타낸 그래프이다.
도 4는 본 발명 Fe-Hf-(C)-N계의 투입전력에 따른 포화자속밀도의 변화를 나타낸 그래프이다.
도 5는 본 발명 Fe-Hf-(C)-N계의 투입전력에 따른 보자력의 변화를 나타낸 그래프이다.
도 6은 본 발명 Fe-Hf-(C)-N계의 투입전력에 따른 실효투자율의 변화를 나타낸 그래프이다.
도 7은 본 발명 Fe-Hf-(C)-N계의 초미세 결정 구조를 투과 전자 현미경으로 관찰한 사진이다.
상기 본 발명의 목적을 달성하는 철계 연자성 박막합금의 조성은 다음과 같고 미세구조는 초미세결정립으로 이루어져 있으며 그 조성은 다음과 같다.
FexHfyCzNv
이때, x, y, z, v는 각각 원자 %로서,
68 ≤ x ≤ 85
4 ≤ y ≤ 10
0 ≤ z ≤ 12
3 ≤ v≤ 20
15 ≤ y + z + v ≤ 32
(단, x + y + z + v = 100)
위의 조성식 및 성분한정 범위를 벗어나는 경우에는 고포화자속밀도와 고투자율 및 내열성을 동시에 구비한 철계 연자성 박막합금을 얻을 수 없게 되는데, 그 이유는 상기 조성범위 이외의 조성에서는 철계 연자성 박막에서 요구되는 초미세 결정이 형성되지 않기 때문이다.
본 발명의 Fe-Hf-C-N계 및 Fe-Hf-N계 연자성 박막합금은 다음과 같은 제조공정을 통하여 얻어진다. 본 발명의 연자성 박막합금은 스퍼터링 방법이나 그 외의 물리적인 기상증착법에 의하여 제조되는데, 스퍼터링 방법에 의한 제조공정을 개략적으로 설명하면 다음과 같다.
스퍼터링 장치 내부의 순철, Fe-Hf계 합금 또는 Fe-Hf-C계 합금 등의 타게트 위에 Hf 및 C의 소편을 배치하여 불활성 스퍼터링 가스 중에 N2를 함유하는 분위기 하에서 스퍼터링함으로써 박막이 형성된다. 이와 같이 스퍼터링하여 얻어진 박막합금은 열처리하였을 경우 열처리 이전의 연자기 특성과 거의 유사한 값을 나타내는 것으로 보아 열처리에 의한 연자기 특성의 향상도 없지만 열처리에 따른 열화현상이 나타나지 않은 것으로 보아 열적 안정성도 우수한 것으로 나타났다.
스퍼터링에 의하여 제조된 이 박막은 증착 상태에서 α-Fe, Hf의 질화물과 탄화물이 나노(nano) 크기의 결정립으로 형성되어 우수한 연자기 특성을 나타내고 있으며, 또한 형성된 미세조직은 α-Fe 결정립을 Hf의 질화물과 탄화물이 둘러싼 형태를 이루고 있어 같은 크기의 결정립 조직을 갖는 다른 철계 연자성 합금보다 월등히 우수한 고주파 투자율을 나타내었다. 따라서, 본 실험에서의 가장 핵심되는 실험조건은 정확한 성분조절과 증착상태에서 나노 크기의 결정립을 형성할 수 있는 스퍼터링 조건이다.
이와 같은 제조공정을 이용하여 얻어진 철계 연자성 박막합금은 고포화자속밀도 및 수백 MHz 대역의 고주파 영역에서 고투자율을 보유하며 열처리로 인한 자기적 성질의 열화 현상이 나타나지 않으므로 기존의 연자성 박막재료에 비해서는 상당히 광범위한 분야에서 응용 가능하다.
바람직한 실시예의 설명
이하 본 발명을 실시예에서 구체적으로 설명하겠다.
실시예 1
고주파 2극 마그네트론 스퍼터링 장치에 의해 각종 조성의 Fe-Hf-C-N계 박막을 1㎛ 두께로 제조하였다. 박막의 조성을 변화시키기 위하여 Fe 타게트 위에 Hf과 C의 소편을 핀 홀형으로 배치하고 각 소편의 수를 변화시켜 Fe, Hf, C의 조성비를 조절하였다. N2의 양은 Ar가스에 혼합되는 N2의 유량비를 조절하여 반응성 스퍼터링을 실시하여 조절하였다. 이때 투입되는 전력량과 혼합가스 중의 N2양을 조절하여 증착 상태에서 나노 크기의 초미세결정립 구조를 갖는 박막을 제조하였으며 이때 형성된 초미세결정립조직에 의하여 박막은 우수한 연자기 특성을 나타내었다. 증착 상태에서 박막이 나노 크기의 초미세결정립의 미세구조를 나타내며 우수한 연자기 특성을 갖기 위해서는 투입되는 전력 밀도가 4 ~ 8 W/㎠, N2분량은 2 ~ 20 %이며 ([C]+[N])/[Hf]의 성분비를 1.5 ~ 2.5로 유지하여야 한다. 제조된 조건과 제조된 시편의 자기적 특성을 표 1에 나타내었다. 보자력(Hc)과 포화자속밀도(Ms)는 진동시료형자속계(VSM)로 측정장치를 이용하여 측정하였다. N2분압에 따른 포화자속밀도와 보자력의 변화는 도 1 및 도 2에 나타내었고, 실효투자율의 변화는 도 3에 나타내었다. 또한, 투입전력에 따른 포화자속밀도, 보자력 및 실효투자율의 변화를 도 4, 도 5 및 도 6에 각각 나타내었다. 상기 도면에서, Fe-Hf-C-N (I)은 Fe 함량이 약 70 원자%인 박막계열을 나타낸다. 도 7은 증착 상태에서 초미세 결정구조를 갖는 Fe-Hf-(C)-N 계 박막을 투과 전자 현미경(TEM)으로 관찰한 것이다. 각 도면에서 Fe-Hf-C-N(I)은 Fe 함량이 약 70원자%인 박막계열을 나타내고, Fe-Hf-C-N(Ⅱ)은 Fe 함량이 약 80원자%인 박막계열을 나타낸다.
실시예 시료 박막조성(원자%) 포화자속밀도(kG) 실효투자율 보자력(Oe) 투입전력밀도 (W/cm2)
Fe Hf C N 10 MHz 100 MHz
1 80.1 8.5 3.3 8.2 15.6 3230 2090 0.50 5.7
2 80.5 7.8 2.8 8.9 16.1 3980 3010 0.55 5.7
3 77.0 9.6 10.1 3.3 8.8 1670 1490 1.35 5.7
4 74.6 9.3 10.2 5.9 10.7 1880 1870 0.88 5.7
5 72.2 9.1 10.6 8.1 14.0 2430 2270 0.31 5.7
6 71.2 9.5 10.3 9.0 13.0 2940 2720 0.47 5.7
7 70.9 8.6 9.7 10.8 13.2 3490 2940 0.42 5.7
8 69.1 8.7 10.6 11.6 13.2 2890 2480 0.36 5.7
9 69.5 8.1 10.0 12.3 12.1 2570 2400 0.48 5.7
10 71.5 8.5 8.9 11.1 13.8 2730 2600 0.50 5.7
11 69.0 8.3 9.9 12.8 13.2 2440 2230 0.7 5.7
12 70.6 6.9 8.7 13.8 13.4 2500 2150 1.0 5.7
13 69.1 5.7 7.5 17.7 12.0 2270 1740 0.1 5.7
14 84.8 6.9 2.0 6.3 15.1 350 480 3.7 5.7
15 81.6 6.5 2.6 9.3 15.7 1370 1450 1.18 5.7
16 80.1 7.1 2.7 10.1 16.4 2970 2970 0.56 5.7
17 79.8 6.9 2.5 10.8 17.3 3010 2800 0.69 5.7
18 81.0 5.5 2.0 11.5 17.1 2490 1730 1.15 5.7
19 80.9 6.0 2.4 10.7 17.3 1540 1420 1.5 5.7
20 81.1 6.8 2.3 9.8 17.6 3660 2510 0.75 5.7
21 80.0 7.2 2.0 10.8 16.8 3290 3160 0.73 5.7
22 80.4 5.6 2.0 12.0 16.6 1010 1160 2.09 5.7
23 80.8 4.7 1.8 12.7 200 300 1.9
24 80.0 6.3 1.6 12.1 17.0 600 790 3.2 3.8
25 79.8 6.9 2.5 10.8 17.3 3010 2800 0.7 5.7
26 80.2 6.9 2.4 10.5 16.5 2820 2980 0.7 7
실시예 2
고주파 2극 마그네트론 스퍼터링 장치에 의해 각종 조성의 Fe-Hf-N계 박막을 1 ㎛ 두께로 제조하였다. 박막의 조성을 변화시키기 위하여 Fe 타게트 위에 Hf의 소편을 핀홀형으로 배치하고 Hf 소편의 수를 변화시켜 Fe와 Hf의 조성비를 조절하였다. N2의 양은 Ar가스에 혼합되는 N2의 유량비를 조절하여 반응성 스퍼터링을 실시하여 조절하였다. 이때 투입되는 전력량과 혼합가스 중의 N2양에 의하여 제조된 박막의 증착상태에서의 미세조직이 달라지며 이와 연관되어 연자기 특성에도 커다란 영향을 나타낸다. 증착상태에서 나노 크기의 초미세결정립 구조를 나타내며 박막이 연자기 특성을 갖기 위해서는 투입되는 전력 밀도가 4 ~ 8 W/㎠ 이며 N2분량은 6 ~ 10%를 유지하여야 하며 [N]/[Hf]의 성분비는 1.5 ~ 2.5로 유지하여야 한다. 제조된 조건과 제조된 시편의 가지적 특성을 표 2에 나타내었다. N2분압에 따른 포화자속밀도와 보자력의 변화는 도 1 및 도 2에 나타내었고, 실효투자율의 변화는 도 3에 나타내었다. 또한, 투입전력에 따른 포화자속밀도, 보자력 및 실효투자율의 변화를 도 4, 도 5 및 도 6에 각각 나타내었다. 상기 도면에서, Fe-Hf-C-N (Ⅱ)은 Fe 함량이 약 80 원자%인 박막계열을 나타낸다.
실시예 시료 박막조성(원자%) 포화자속밀도(kG) 실효투자율 보자력(Oe) 공급전력(W)
Fe Hf N 10MHz 100MHz
1 82.1 7.3 10.6 14.3 1370 1250 2.8 450
2 78.9 7.2 13.9 15.5 2040 1880 1.3 450
3 80.1 7.3 12.6 16.5 2720 2750 0.4 450
4 80.6 6.0 13.4 16.4 3190 3250 0.7 450
5 79.0 7.0 14.0 16.2 3040 3060 0.4 450
6 80.5 6.3 13.2 16.5 3240 2240 0.9 450
7 80.0 6.4 13.6 16.4 2380 1690 0.6 450
8 78.7 5.9 15.4 16.6 1210 1200 1.5 450
9 78.1 4.1 17.8 14.0 300 150 13.0 150
10 79.9 6.0 14.1 16.0 590 530 6.0 300
11 80.6 6.0 13.4 16.4 3180 3250 0.7 450
12 79.0 7.5 13.5 16.0 1570 1690 0.9 550
상기 실시예 1 및 실시예 2에 제시된 결과에 의하면 비교적 높은 포화자속밀도(13 ~ 17.5 kG)와 고주파에서도 높은 실효투자율을 갖고 우수한 내열성을 갖는 Fe-Hf-C-N계 및 Fe-Hf-N계 박막합금이 열처리 과정 없이 얻어짐을 알 수 있다.
비교예 1
Fe-Hf계 합금 타게트를 이용하여 질소를 함유한 아르곤가스 분위기 중에서 고주파 스퍼터링을 이용하여 Fe-Hf-N계 박막을 증착하고 열처리하여 양호한 특성을 갖는 박막을 제조하였다. [일본공개특허공보 제 2-275605호] 그 자기적 특성은 아래와 같다.
비교예 시료 박막조성(원자%) 열처리온도(℃) 포화자속밀도(kG) 투자율 보자력(Oe)
Fe Hf N
1 81.3 7.5 11.2 550 16.3 - 2.0
2 74.6 10.9 14.5 550 13.6 - 0.85
비교예 2
Fe 타게트 위에 Hf와 C의 소편을 배치하거나 Fe 타게트위에 Hf을 배치하고 Ar+CH4분위기 중에서 스퍼터링을 하여 Fe-Hf-C 박막을 제조하였다. [일본공개특허공보 제 3-20444호] 그 자기적 특성은 아래와 같다.
비교예 시료 박막조성(원자%) 열처리온도(℃) 포화자속밀도(kG) 투자율(5MHz) 보자력(Oe)
Fe Hf N
1 81.3 7.5 11.2 550 15.6 1790 -
550 15.6 1100 -
비교예 3
Fe 타게크 위에 Hf 및 C의 소편을 핀홀형으로 배치하고 Ar가스와 N2가스의 혼합가스 분위기 중에서 투입전력 300W, 혼합가스의 총압력은 1 mtorr에서 반응성스퍼터링을 실시하여 Fe-Hf-C-N 박막을 제조하였다. [한국특허공고 제96-4664호] 그 자기적 특성은 아래와 같다.
비교예 시료 박막조성(원자%) 열처리온도(℃) 포화자속밀도(kG) 실효투자율 보자력(Oe)
Fe Hf C N 1MHz 5MHz
1 71.4 10.7 4.7 13.2 550 14.8 2780 2720 0.18
650 15.2 2070 2020 0.27
2 80.7 6.7 6.4 6.2 550 17.1 6310 6160 0.17
650 17.5 4990 4840 0.32
이상의 실시예 및 비교예를 통하여 상기의 철계 초미세 결정은 반드시 열처리 과정이 필요하고 또한 10MHz 이하의 주파수 영역에서만 높은 실효투자율을 가지나 본 발명에서는 열처리 없이 우수한 연자기 특성을 얻을 수 있으며, 또한 100 MHz까지의 높은 주파수에서도 투자율 감소가 크게 일어나지 않아 실효투자율 2000~3000 이상의 우수한 연자기 특성을 나타내었다.
본 발명은 상기 실시예에 의해 구체적으로 기술하였지만, 본 발명이 이들 실시예에 의해 제한되는 것으로 해석되는 것은 아니며, 특허청구범위에 기재된 발막재료의 조성과 증착상태에서 나노 크기의 초미세결정립을 갖는 다양한 제조방법을 변형 및 변화시킬 수 있다.

Claims (2)

  1. 다음의 조성식
    FexHfyCzNv
    (이때, x, y, z, v는 각각 원자 %로서, 68≤x≤85, 4≤y≤10, 0≤z≤12, 3≤v≤20, 15≤y+z+v≤32, 단 x+y+z+v=100)으로 이루어지고, 그 미세조직은 α-Fe 및 Hf의 질화물 내지 탄화물이 나노 크기의 결정립으로 형성되는 것을 특징으로 하는 철계 연자성 박막합금.
  2. 순철, Fe-Hf계 합금, Fe-Hf-C계 합금 등에 Hf, Hf의 질화물 및 탄화물 그리고 C의 소편을 배치하여 불활성 가스 분위기나 C나 N을 함유하고 있는 분위기 하에서 나노(nano) 크기의 초미세 결정립 조직을 얻기 위해 냉각속도의 조절 또는 입자에너지를 조절하는 증착조건으로 전력의 양이 4~8W/㎠, N2분량은 2~20%이며 ([C]+[N])/[Hf]의 성분비를 1.5~2.5로 유지함으로써, 열처리 공정 없이 증착 상태에서 초미세 결정립 구조를 갖는 철계 연자성 박막합금의 제조방법.
KR1019980014602A 1998-04-23 1998-04-23 철계연자성박막합금및그의제조방법 KR100270605B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980014602A KR100270605B1 (ko) 1998-04-23 1998-04-23 철계연자성박막합금및그의제조방법
US09/225,808 US20020017341A1 (en) 1998-04-23 1999-01-05 Iron-based soft magnetic thin film alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980014602A KR100270605B1 (ko) 1998-04-23 1998-04-23 철계연자성박막합금및그의제조방법

Publications (2)

Publication Number Publication Date
KR19990080976A KR19990080976A (ko) 1999-11-15
KR100270605B1 true KR100270605B1 (ko) 2000-12-01

Family

ID=19536642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980014602A KR100270605B1 (ko) 1998-04-23 1998-04-23 철계연자성박막합금및그의제조방법

Country Status (2)

Country Link
US (1) US20020017341A1 (ko)
KR (1) KR100270605B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042938A1 (en) * 2004-09-01 2006-03-02 Heraeus, Inc. Sputter target material for improved magnetic layer
US20060286414A1 (en) * 2005-06-15 2006-12-21 Heraeus, Inc. Enhanced oxide-containing sputter target alloy compositions
US20070253103A1 (en) * 2006-04-27 2007-11-01 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target
CN110660554B (zh) * 2019-09-29 2021-06-11 苏州科技大学 一种高磁导率高频率平面电感及其制备方法

Also Published As

Publication number Publication date
KR19990080976A (ko) 1999-11-15
US20020017341A1 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
US5998048A (en) Article comprising anisotropic Co-Fe-Cr-N soft magnetic thin films
KR910003977B1 (ko) Fe-기본 연질 자성합금 및 이의 제조방법
US5725685A (en) Soft magnetic alloy thin film with nitrogen-based amorphous phase
Desai et al. Anomalous variation of coercivity with annealing in nanocrystalline NiZn ferrite films
Jin et al. High frequency properties of Fe–Cr–Ta–N soft magnetic films
US5104464A (en) Soft magnetic alloy film
US5302469A (en) Soft magnetic thin film
US6350323B1 (en) High permeability metal glassy alloy for high frequencies
KR100394993B1 (ko) FeCoNiN계 연자성 박막합금 조성물
KR100272980B1 (ko) 자성체 박막 및 그것을 사용한 자기 헤드
KR100270605B1 (ko) 철계연자성박막합금및그의제조방법
Chen et al. Soft-magnetic properties of Fe–Co–B thin films for ultra-high-frequency applications
Makino et al. Soft Magnetic Properties of bcc Fe–Zr–B Sputtered Films with Nanoscale Grain Size
JPWO2004061876A1 (ja) グラニュラー物質、磁性薄膜、磁気素子
US6117282A (en) Method of producing amorphous Co-Tb magnetic recording thin films
Jin et al. Fe-Cr-N soft magnetic thin films
KR100473620B1 (ko) 철-지르코늄-붕소-은 계 연자성 재료 및 박막의 제조방법
Kataoka et al. Soft Magnetic Properties of Nonequilibrium bcc Fe–Hf Alloys Produced by rf Sputtering
KR100596491B1 (ko) FeSmO계 연자성 박막 및 그 제조방법
JP3810881B2 (ja) 高周波軟磁性膜
KR0169583B1 (ko) 에피택셜 이트륨-아이언-가넷 박막의 제조방법
Chen et al. Fe-Cr-Hf-N and Fe-Cr-Ta-N soft magnetic thin films
Harris et al. Magnetic and microwave properties of ion‐beam‐sputtered amorphous Fe x Co80− x B15Si5 films
KR0140788B1 (ko) 극박형 철계 초미세 결정 합금 및 극박형 박대의 제조 방법
KR20020078705A (ko) FeTiN계 연자성 박막합금 조성물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060731

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee