CN117089343A - 一种近红外发光的铟基双钙钛矿制备方法 - Google Patents

一种近红外发光的铟基双钙钛矿制备方法 Download PDF

Info

Publication number
CN117089343A
CN117089343A CN202311076034.4A CN202311076034A CN117089343A CN 117089343 A CN117089343 A CN 117089343A CN 202311076034 A CN202311076034 A CN 202311076034A CN 117089343 A CN117089343 A CN 117089343A
Authority
CN
China
Prior art keywords
near infrared
double perovskite
based double
indium
inx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311076034.4A
Other languages
English (en)
Inventor
邱建备
赵春力
高源�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311076034.4A priority Critical patent/CN117089343A/zh
Publication of CN117089343A publication Critical patent/CN117089343A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,将NaX、InX3、CrX3置于玻璃容器中,滴入浓盐酸或浓硝酸,使用磁力搅拌子,在磁力搅拌器上搅拌至原料完全溶解至透明;加入CsX,反应出现絮状产物下沉至底部,此时继续在室温搅拌,搅拌完毕后静置;然后使用有机溶剂洗涤,所得产物在烘箱干燥一段时间,烘干所得的粉末状产物,即为近红外发光的铟基双钙钛矿。本发明制备的近红外铟基双钙钛矿相对于传统的铅基卤化物钙钛矿无毒,且具有良好的结晶性和均匀性;在夜视照明等领域具有极佳的应用效果和广泛的应用潜力;制备过程采用溶液共沉淀法,与高温固相法相比不需要消耗巨大的热量,能够进行批量制备。

Description

一种近红外发光的铟基双钙钛矿制备方法
技术领域
本发明属于近红外发光材料领域,具体涉及一种近红外发光的铟基双钙钛矿制备方法。
背景技术
近红外光源(NIR)由于其热效应低和穿透深度大,其在食品安全、夜视安防监控、医疗和生物成像等众多方面显示出巨大的应用潜力,这使得探寻高效近红外荧光粉材料用作新一代近红外光源的近红外荧光转换发光二极管成为研究热点。
目前无铅金属卤化物钙钛矿研究领域主要限制在单色可见光范围和稀土离子的特征4f-4f窄带近红外发光,因此迫切需要探索合适的金属卤化物钙钛矿材料和适宜的宽带近红外发光材料掺杂策略,以得到高效的宽带近红外发光材料。过渡金属离子:三价铬离子(Cr3+)是最热门的宽带近红外发光激活剂,其3d能级受周围配位环境的影响很大,特别是在弱八面体晶体场的六配位中,在650-1350nm范围内具有宽发射带,但是其在金属卤化物钙钛矿宿主中的掺杂策略实现高效宽带近红外发光的研究依旧稀少。所以有必要研究一种新的近红外发光材料的制备方法,来拓展过渡金属离子在双钙钛矿宽带近红外发光领域的应用范围,为以后的过渡金属离子掺杂不同维度的金属卤化物钙钛矿体系的近红外发光材料的设计与制备提供全新的思路和策略。
因此,为了解决上述技术问题,本发明提供了一种近红外发光的铟基双钙钛矿制备方法。
发明内容
为了解决上述技术问题,本发明的目的是提供可用于批量制造的且产物具有无毒、良好的结晶性和均匀性的一种近红外发光的铟基双钙钛矿制备方法。
为了达到上述技术效果,本发明是通过以下技术方案实现的:一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,包括以下步骤:
S1:按下列摩尔百分比称量CsX:NaX:InX3:CrX3=(45~55mol%):(20~30mol%):(20~25mol%):(0~10mol%)的比例称量CsX、NaX、InX3、CrX3;准备玻璃容器、带有磁力搅拌子的磁力搅拌器、烘箱、有机溶剂、浓盐酸或浓硝酸;其中X为Cl、Br、I、F元素中的一种或多种;
S2:将NaX、InX3、CrX3置于玻璃容器中,滴入浓盐酸或浓硝酸,使用磁力搅拌子,在磁力搅拌器上搅拌120~180min至原料完全溶解至透明;
S3:加入按比例称量的CsX,此时反应出现絮状产物下沉至底部,此时继续在室温搅拌40~60min,搅拌完毕后静置1~12h以确保反应完全;
S4:然后使用有机溶剂洗涤2~4次,所得产物在60~80℃烘箱干燥10~12h,烘干所得的粉末状产物,即为近红外发光的铟基双钙钛矿。
进一步的,S1中:S1中:CsX、NaX、InX3、CrX3原料纯度均为99.99%。
进一步的,S1中:有机溶剂为乙醇或异丙醇。
进一步的,S2中:CsX、NaX、InX3、CrX3原料的质量与浓盐酸或浓硝酸的比例为1g/(10~20ml)。
与现有技术相比,本发明的有益效果是:
1)、本发明的过渡金属离子掺杂的近红外发光的铟基双钙钛矿相对于传统的铅基卤化物钙钛矿没有毒性,并且具有良好的结晶性和均匀性;
2)、本发明采用简易的溶液共沉淀法,由于其合成过程在环境温度下进行,简单方便,并不像高温固相法需要消耗巨大的热量,能够进行批量制备,工业化生产;
3)、本发明可匹配商业紫外芯片发射出发射中心在960nm附近的800-1350nm宽带近红外光,另外利用本发明铟基双钙钛矿粉末封装制备成的荧光转换型发光二极管由于其无毒、发射近红外光的特性,在夜视照明、生物医疗成像等诸多领域有着广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例不同浓度过渡金属离子Cr3+掺杂铟基双钙钛矿的X射线衍射图(XRD);
图2为本发明实施例过渡金属离子Cr3+掺杂铟基双钙钛矿的SEM扫描电镜图;
图3为本发明实施例过渡金属离子Cr3+掺杂铟基双钙钛矿的EDS能谱图;
图4为本发明实施例过渡金属离子Cr3+掺杂前后铟基双钙钛矿的XPS表征图;
图5为本发明实施例过渡金属离子Cr3+掺杂铟基双钙钛矿的高分辨XPS表征图;
图6为本发明实施不同浓度过渡金属离子Cr3+掺杂铟基双钙钛矿的漫反射光谱;
图7为本发明实施不同浓度过渡金属离子Cr3+掺杂铟基双钙钛矿在室温下以300nm的氙灯作为激发光源下的光致发光图(PL);
图8为本发明实施例过渡金属离子Cr3+掺杂铟基双钙钛矿的低温变温光谱图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种实施例双钙钛矿荧光材料,按如下比例称取CsCl 50mol%、NaCl 25mol%、InCl3(25-x)mol%、CrCl3x mol%(x=0,1,3,5,10)原料,首先将原料NaCl、InCl3、CrCl3置于玻璃容器中,加入浓盐酸,使用磁力搅拌子,在磁力搅拌器上搅拌120min至原料完全溶解至透明,加入按比例称量的CsCl,此时反应出现絮状产物下沉至底部,此时继续在室温搅拌60min,搅拌完毕后静置12h以确保反应完全,然后使用乙醇洗涤3次,所得产物在80℃烘箱干燥12h,烘干所得的粉末状产物,即为近红外发光的铟基双钙钛矿。
通过日本Rigaku Smart Lab SE X射线衍射仪测试出不同浓度过渡金属离子掺杂下的铟基双钙钛矿的XRD图谱,结果见图1,其中浓度为0的铟基双钙钛矿XRD作为参考进行对比,可以看出通过简易的溶液共沉淀法可以得到结晶性好的不同浓度过渡金属离子Cr3+掺杂下的铟基双钙钛矿。
通过捷克TESCAN MIRALMS扫描电子显微镜(SEM)分析粉末状产物的形貌,结果见图2,可以看出合成的过渡金属离子掺杂铟基双钙钛矿荧光材料呈现出大小和形状均不规则的微米块状,并且由EDS mapping可以看出各元素都呈现均匀分布的状态,没有出现明显的富集或偏聚的情况。图3显示出该过渡金属离子掺杂铟基双钙钛矿荧光材料的EDS能谱图可以看出不同元素含量与实际投料比很好的吻合,表示其可以成功的合成并且合成过程具有良好的均匀性。
通过ESCALAB 250photoelectron spectrometerX射线光电子能谱分析得到的XPS和高分辨XPS可以看出在过渡金属离子掺杂前后的元素组成和电子性质变化,图4可以看出在过渡金属离子掺杂后除了特征Cs 3d、Na 1s、Sc 2p和Cl 2p信号峰,还出现了过渡金属离子Cr3+2p的典型信号峰。图5为高分辨的Cr2p光谱,585.7和576.0eV的峰可归属于Cr 2p1/2和Cr 2p3/2,未发现与Cr4+相关的峰,支持Cr仍处于+3价态。
在室温条件下使用Shimadzu UV-3600i Plus紫外可见近红外分光光度计进行了不同浓度过渡金属离子Cr3+掺杂铟基双钙钛矿的紫外/可见/近红外漫反射测试,其结果如图6,显示了以300、420和600nm为中心的三个主要激发带,这归因于双钙钛矿基质主体的吸收和4A24T14A24T2的Cr3+d–d跃迁。进一步测试不同浓度过渡金属离子浓度掺杂铟基双钙钛矿的光致发光光谱(PL),氙灯光源选定300nm,结果见图7,不同过渡金属离子浓度下的PL光谱均显示出以960nm为中心的由800-1350nm宽带近红外发光,在双钙钛矿主体基质中,Cr3+离子位于弱晶体场中,因此,发射显然可归因于八面体配位的Cr3+的室温下的宽自旋允许的4T24A2跃迁。因此,可匹配商业紫外芯片发射出发射中心在960nm附近的800-1350nm宽带近红外光。图8显示了过渡金属离子掺杂铟基双钙钛矿的低温变温光谱,其表现出随着温度升高,光谱强度减弱,这归因于高温下基质的晶格热振动的增强、热激活声子的增加以及电子与声子之间的相互作用的加强,半峰宽随着温度的增加线性升高的原因归因于声子展宽。

Claims (4)

1.一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,包括以下步骤:
S1:按下列摩尔百分比称量CsX:NaX:InX3:CrX3=(45~55mol%):(20~30mol%):(20~25mol%):(0~10mol%)的比例称量CsX、NaX、InX3、CrX3;准备玻璃容器、带有磁力搅拌子的磁力搅拌器、烘箱、有机溶剂、浓盐酸或浓硝酸;其中X为Cl、Br、I、F元素中的一种或多种;
S2:将NaX、InX3、CrX3置于玻璃容器中,滴入浓盐酸或浓硝酸,使用磁力搅拌子,在磁力搅拌器上搅拌120~180min至原料完全溶解至透明;
S3:加入按比例称量的CsX,此时反应出现絮状产物下沉至底部,此时继续在室温搅拌40~60min,搅拌完毕后静置1~12h以确保反应完全;
S4:然后使用有机溶剂洗涤2~4次,所得产物在60~80℃烘箱干燥10~12h,烘干所得的粉末状产物,即为近红外发光的铟基双钙钛矿。
2.根据权利要求1所述的一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,S1中:CsX、NaX、InX3、CrX3原料纯度均为99.99%。
3.根据权利要求1所述的一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,S1中:有机溶剂为乙醇或异丙醇。
4.根据权利要求1所述的一种近红外发光的铟基双钙钛矿的制备方法,其特征在于,S2中:CsX、NaX、InX3、CrX3原料的质量与浓盐酸或浓硝酸的比例为1g/(10~20ml)。
CN202311076034.4A 2023-08-25 2023-08-25 一种近红外发光的铟基双钙钛矿制备方法 Pending CN117089343A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311076034.4A CN117089343A (zh) 2023-08-25 2023-08-25 一种近红外发光的铟基双钙钛矿制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311076034.4A CN117089343A (zh) 2023-08-25 2023-08-25 一种近红外发光的铟基双钙钛矿制备方法

Publications (1)

Publication Number Publication Date
CN117089343A true CN117089343A (zh) 2023-11-21

Family

ID=88778354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311076034.4A Pending CN117089343A (zh) 2023-08-25 2023-08-25 一种近红外发光的铟基双钙钛矿制备方法

Country Status (1)

Country Link
CN (1) CN117089343A (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544028A (zh) * 2016-11-08 2017-03-29 河北大学 一种可被x射线激发的长余辉材料及其应用
CN109830550A (zh) * 2019-01-16 2019-05-31 暨南大学 一种无铅双钙钛矿单晶的紫外光探测器及其制备方法
US20190330074A1 (en) * 2018-04-27 2019-10-31 Huazhong University Of Science And Technology Multi-element perovskite material as well as preparation and luminescent application thereof
CN111205861A (zh) * 2020-01-13 2020-05-29 广西大学 一种Sb掺杂Cs2AInCl6双钙钛矿材料及其制备方法和应用
CN111253939A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 三维非铅无机铋掺杂银铟基双钙钛矿材料及合成与应用
CN112358870A (zh) * 2020-10-28 2021-02-12 深圳大学 无铅铟基双钙钛矿材料及其制备方法与应用
CN113372905A (zh) * 2021-05-07 2021-09-10 中山大学 一种增强Er离子光致发光的无铅双钙钛矿及其制备方法和应用
CN113861980A (zh) * 2021-10-29 2021-12-31 北京科技大学 铬掺杂的镓或铟锑酸盐近红外发光材料及制备方法和应用
CN114196404A (zh) * 2021-09-30 2022-03-18 云南民族大学 一种双钙钛矿型近红外发光材料及其制备方法
CN114507522A (zh) * 2022-01-19 2022-05-17 深圳大学 稀土掺杂钙钛矿红光发光材料及其制备方法和应用
CN114591741A (zh) * 2022-03-30 2022-06-07 河南大学 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
CN115838593A (zh) * 2023-01-06 2023-03-24 福州大学 一种反应条件温和制备掺杂卤素双钙钛矿荧光粉的方法
CN115948802A (zh) * 2022-12-20 2023-04-11 广西大学 一种宽带黄光发射有机无机杂化双钙钛矿单晶/粉末材料及其制备方法和应用
CN116120932A (zh) * 2022-12-27 2023-05-16 昆明理工大学 一种层状双钙钛矿荧光材料及其制备方法
CN116332223A (zh) * 2023-03-01 2023-06-27 吉林大学 一种锑掺杂的Cs2NaInCl6双钙钛矿空心纳米球及其制备方法
CN116554875A (zh) * 2023-05-15 2023-08-08 昆明理工大学 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法
CN116554874A (zh) * 2023-05-12 2023-08-08 昆明理工大学 一种可调控发光效率的钙钛矿荧光材料的制备方法
CN116606653A (zh) * 2023-05-26 2023-08-18 昆明理工大学 一种三价铬离子掺杂的宽带近红外荧光材料的制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106544028A (zh) * 2016-11-08 2017-03-29 河北大学 一种可被x射线激发的长余辉材料及其应用
US20190330074A1 (en) * 2018-04-27 2019-10-31 Huazhong University Of Science And Technology Multi-element perovskite material as well as preparation and luminescent application thereof
CN111253939A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 三维非铅无机铋掺杂银铟基双钙钛矿材料及合成与应用
CN109830550A (zh) * 2019-01-16 2019-05-31 暨南大学 一种无铅双钙钛矿单晶的紫外光探测器及其制备方法
CN111205861A (zh) * 2020-01-13 2020-05-29 广西大学 一种Sb掺杂Cs2AInCl6双钙钛矿材料及其制备方法和应用
CN112358870A (zh) * 2020-10-28 2021-02-12 深圳大学 无铅铟基双钙钛矿材料及其制备方法与应用
CN113372905A (zh) * 2021-05-07 2021-09-10 中山大学 一种增强Er离子光致发光的无铅双钙钛矿及其制备方法和应用
CN114196404A (zh) * 2021-09-30 2022-03-18 云南民族大学 一种双钙钛矿型近红外发光材料及其制备方法
CN113861980A (zh) * 2021-10-29 2021-12-31 北京科技大学 铬掺杂的镓或铟锑酸盐近红外发光材料及制备方法和应用
CN114507522A (zh) * 2022-01-19 2022-05-17 深圳大学 稀土掺杂钙钛矿红光发光材料及其制备方法和应用
CN114591741A (zh) * 2022-03-30 2022-06-07 河南大学 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
CN115948802A (zh) * 2022-12-20 2023-04-11 广西大学 一种宽带黄光发射有机无机杂化双钙钛矿单晶/粉末材料及其制备方法和应用
CN116120932A (zh) * 2022-12-27 2023-05-16 昆明理工大学 一种层状双钙钛矿荧光材料及其制备方法
CN115838593A (zh) * 2023-01-06 2023-03-24 福州大学 一种反应条件温和制备掺杂卤素双钙钛矿荧光粉的方法
CN116332223A (zh) * 2023-03-01 2023-06-27 吉林大学 一种锑掺杂的Cs2NaInCl6双钙钛矿空心纳米球及其制备方法
CN116554874A (zh) * 2023-05-12 2023-08-08 昆明理工大学 一种可调控发光效率的钙钛矿荧光材料的制备方法
CN116554875A (zh) * 2023-05-15 2023-08-08 昆明理工大学 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法
CN116606653A (zh) * 2023-05-26 2023-08-18 昆明理工大学 一种三价铬离子掺杂的宽带近红外荧光材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANRAN ZHANG等: "Dopant and Compositional Modulation Triggered Broadband and Tunable Near-Infrared Emission in Cs2Ag1-xNaxInCl6:Cr3+ Nanocrystals", CHEM. MATER., vol. 34, 29 March 2022 (2022-03-29), pages 3006 - 3012 *

Similar Documents

Publication Publication Date Title
Gupta et al. Rare earth (RE) doped phosphors and their emerging applications: A review
Li et al. A far-red-emitting NaMgLaTeO6: Mn4+ phosphor with perovskite structure for indoor plant growth
Hua et al. Broadband near-ultraviolet excited La2Mo2O9: Eu3+ red-emitting phosphors with high color purity for solid-state lighting
Du et al. Self-activated multicolor emissions in Ca2NaZn2 (VO4) 3: Eu3+ phosphors for simultaneous warm white light-emitting diodes and safety sign
Cao et al. Li3Mg2NbO6: Mn4+ red phosphor for light-emitting diode: synthesis and luminescence properties
Ju et al. Reddish orange long afterglow phosphor Ca2SnO4: Sm3+ prepared by sol–gel method
Chen et al. A four-mode high-sensitive optical thermometer based on Ca3LiZnV3O12: Sm3+ phosphors
Song et al. Synthesis, photoluminescence properties and potential applications of Eu3+ and Mn4+ activated SrLaMgNbO6 phosphors
CN112457847B (zh) 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
Xia et al. Improving the luminescence performance of far-red-emitting Sr2ScSbO6: Mn4+ phosphor with charge compensation and its application in plant growth LEDs
Wang et al. 3D-hierachical spherical LuVO4: Tm3+, Dy3+, Eu3+ microcrystal: synthesis, energy transfer, and tunable color
Yang et al. Luminescent ionic lattice occupation and wide tunable emission spectra of La2MgZrO6: Bi3+, Eu3+ double perovskite phosphors for white light LED
Zhao et al. A novel high thermal stability Ba2CaWO6: Mn4+ far-red emitting phosphor with a double-perovskite structure for plant growth LEDs
Song et al. The hydrothermally synthesis of K3AlF6: Cr3+ NIR phosphor and its performance optimization based on phase control
Siwach et al. Structural and optical behavior of nano-scaled luminous green-emitting Ca9Y (PO4) 7: Tb3+ phosphor for competent lighting devices
CN116606653A (zh) 一种三价铬离子掺杂的宽带近红外荧光材料的制备方法
CN107418560B (zh) 一种高效硫掺杂氧化锌纳米材料的制备方法
Ding et al. Mn4+ activated phosphors in photoelectric and energy conversion devices
Zhou et al. Design of highly efficient deep-red emission in the Mn 4+ doped new-type structure CaMgAl 10 O 17 for plant growth LED light
Guo et al. Strategy to enhance the red-emission of CaWO4: Eu3+ phosphors assisted by poly acrylic acid (PAA)
Abdelrehman et al. Luminescence properties of Yb3+ and Er3+ co-doped into Gd2O3: Bi3+ phosphor powder
Liao et al. Co-doping of stibium and rare earth (Nd, Yb) in lead-free double perovskite for efficient near-infrared emission
Wang et al. Ultra wideband NIR emission in all-inorganic lead-free metal halides through Sb3+ doping
Zhao et al. Achieving nearly quantitative (∼ 100%) IQE and 42.3% EQE across NIR‐I and NIR‐II regions with Cr3+‐doped Cs2NaScCl6 under 300 nm excitation
CN113667475A (zh) 一种锑掺杂无铅锆基钙钛矿衍生物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination