CN116554875A - 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法 - Google Patents

一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法 Download PDF

Info

Publication number
CN116554875A
CN116554875A CN202310538784.2A CN202310538784A CN116554875A CN 116554875 A CN116554875 A CN 116554875A CN 202310538784 A CN202310538784 A CN 202310538784A CN 116554875 A CN116554875 A CN 116554875A
Authority
CN
China
Prior art keywords
rare earth
fluorescent material
layered double
earth ion
double perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310538784.2A
Other languages
English (en)
Inventor
邱建备
赵春力
高源�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310538784.2A priority Critical patent/CN116554875A/zh
Publication of CN116554875A publication Critical patent/CN116554875A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,包括以下步骤:原料混合置于烧杯中滴入去离子水,通过磁力搅拌子搅拌后再加热搅拌,搅拌干燥后的产物研磨至粉末,置于加热炉升温、保温、降温至室温即得。本发明原料廉价易得,环境友好,较低的反应温度节约能源,产品材料结晶性好,具备良好的稳定性,具有接近100%的超高近红外荧光量子产率,且其近红外发光范围覆盖近红外一区和二区,适合于工业化生产,在食品安全、血氧检测、夜视安防监控和智能设备等领域有广泛的应用前景。

Description

一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法
技术领域
本发明属于荧光材料技术领域,具体涉及一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法。
背景技术
金属卤化物钙钛矿因其独特的光致发光性能,包括高的量子产率、大的吸收系数、长的载流子扩散距离、可调谐的带隙,在众多研究领域引起了越来越多的关注,特别地,全无机卤化铅钙钛矿(CsPbX3,X=Cl、Br、I)显示出可调谐的发射光谱和高效的荧光量子产率。然而,卤化铅钙钛矿的毒性和固有的不稳定性阻碍了其大规模应用,因此无铅金属卤化物钙钛矿作为替代品引起了广泛的研究,但是目前研究的领域主要限制在单色单模可见光范围。最近,镧系离子(Ln3+)因其具有涵盖紫外(UV)、可见(Vis)、近红外(NIR)和中红外(MIR)区域的特征发射能级,其掺杂的方法被提出用于拓展金属卤化物钙钛矿光学性能的应用。
但是由于稀土离子特征4f-4f跃迁与众多金属卤化物钙钛矿能级不匹配导致稀土离子发光效率不高,因此通过中间能量传递过程敏化稀土离子的发光策略被广泛研究。目前主要的稀土离子敏化手段主要依靠自限激子(Selftrappedexciton,STE)能量转移并且从自限激子(STE)到Ln3+的低效能量传递(ET),NIRPL效率依旧较低,因此寻找多样的稀土离子敏化媒介是具有重大意义的。
因此,本发明提供一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法。
发明内容
为了解决上述技术问题,本发明的目的是提供一种简易、无毒且稳定的稀土离子掺杂层状双钙钛矿荧光材料及制备方法,该荧光材料可以拓展稀土离子在金属卤化物近红外发光领域的应用范围,为以后的稀土离子掺杂层状双钙钛矿体系的近红外发光材料的设计与制备提供全新的思路和策略。
为了达到上述技术效果,本发明是通过以下技术方案实现的:一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于,包括以下步骤:
Step1:按比例称量原料CsX、MnX2、BiX3、TmX3原料后置于烧杯中,加入去离子水或无水乙醇,然后将烧杯放置于带有搅拌功能的加热台上并加入磁力搅拌子,在室温下搅拌30~60min;
Step2:搅拌完毕后将加热台温度调至80℃~110℃继续搅拌,直至烧杯中的水分完全挥发,片状物体附着于烧杯底部;
Step3:取出烧杯底部附着物至玛瑙研钵继续研磨至物料为粉末状,研磨后的混合物置于刚玉坩埚中,然后置于加热炉中以10℃/min的速率升温,在200~450℃下保温2~5h后,自然降温至室温后取出坩埚,研磨得到粉末状产物,即目标产物。
进一步的,所述的原料摩尔百分比为:
CsX:50~60mol%;
MnX2:10~20mol%;
BiX3:20~30mol%;
TmX3:0.5~3mol%;
其中,X为Cl、Br、I、F元素中的一种或多种。
进一步的,所述的CsX、MnX2、BiX3、TmX3原料纯度均为99.99%。
进一步的,所述的CsX、MnX2、BiX3、TmX3原料的质量与去离子水或无水乙醇的比例为1g/(3~6ml)。
进一步的,所述加热台为整体式或分体式加热台。
进一步的,所述加热炉为管式炉或厢式炉。
进一步的,所述加热炉中气氛条件为空气、氮气、氩气中的一种或组合。
与现有技术相比,本发明的有益效果是:
本发明的稀土离子掺杂的层状双钙钛矿相对于传统的铅基卤化物钙钛矿不具有毒性,并且具有良好的结晶性和对光、热、湿稳定性;本发明采用改进的固相法,其原料廉价易得,并且没有污染环境的强酸溶剂,没有有害废物,样品仅需在一个较低的反应温度下就能够合成,合成的样品也不需要进一步纯化,这是一个简易、低成本、绿色环保的合成稀土离子掺杂层状双钙钛矿荧光粉的合成方法;本发明的稀土离子掺杂层状双钙钛矿荧光粉可匹配商业紫外芯片发射出发射中心在801nm、1220nm、1432nm附近的特征稀土离子近红外光,其近红外PLQY接近100%,该荧光粉封装制备成的荧光转换型发光二极管在夜视照明、生物医疗成像等诸多领域有着广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例不同浓度稀土离子掺杂层状双钙钛矿荧光材料的X射线衍射图(X-rayDiffraction,XRD)与ICSD#14996标准卡片XRD对比图;
图2为本发明实施例不同浓度稀土离子掺杂层状双钙钛矿荧光材料于室温下在波长为360nm氙灯作为光源激发下的光致发光图(Photoluminescence,PL);
图3为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料在监控发光中心为698、801、1220、1432nm条件下的激发光谱图(Photoluminescenceexcitation,PLE);
图4为本发明实施例不同浓度稀土离子掺杂层状双钙钛矿荧光材料的光致发光量子产率(Photoluminescencequantumyield,PLQY);
图5为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料的(Scanningelectronmicroscopy,SEM)扫描电镜照片;
图6为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料的(Energydispersemicroscopy,SEM)EDS能谱图;
图7为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料的(Transmissionelectronmicroscopy,TEM)透射电镜图;
图8为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料的(Thermogravimetric,TG)图;
图9为本发明实施例稀土离子掺杂层状双钙钛矿荧光转换型发光二极管在近红外相机拍摄下的实物照片。
图10为本发明实施例稀土离子掺杂层状双钙钛矿荧光材料的荧光转换型发光二极管的近红外静脉成像的应用图片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种实施例层状双钙钛矿荧光材料,按如下比例称取CsCl57mol%、MnCl214mol%、BiCl3(29-x)mol%、TmCl3xmol%(x=0,0.7,1.4,2.1,2.8)原料,将原料置于25ml烧杯中,加入15ml去离子水,然后将烧杯放置于带有搅拌功能的加热台上并加入磁力搅拌子,在室温下搅拌45min,搅拌完毕后将加热台温度调至90℃继续搅拌,直至烧杯中的液体完全挥发,片状物体附着于烧杯底部,取出烧杯底部附着物至玛瑙研钵继续研磨至物料为粉末状,研磨后的混合物置于刚玉坩埚中,然后置于加热炉中以10℃/min的速率升温,在350℃下保温3h后,自然降温至室温后取出坩埚,研磨得到的粉末状产物,即为稀土离子掺杂下的层状双钙钛矿荧光材料,通过将该荧光材料与环氧树脂AB胶按1:1比例混合均匀后封装在商业365nm紫外LED芯片上,成为近红外荧光转换型发光二极管。
通过日本RigakuSmartLabSEX射线衍射(XRD)测试出该层状双钙钛矿及不同浓度Tm3+掺杂下的层状双钙钛矿荧光材料,将其和ICSD数据库已有的XRD进行对比,结果见图1可以看出通过改进的固相法可以得到结晶性好的纯相层状双钙钛矿和稀土离子掺杂下的层状双钙钛矿荧光材料,不存在额外的衍射峰。
在室温条件下,采用爱丁堡FLS980荧光分光光度计测定其光致发光光谱(PL),氙灯光源选定为360nm,结果见图2,从图中可以看出在365nm氙灯激发下,该稀土离子掺杂下的层状双钙钛矿荧光材料光致发光光谱为稀土离子Tm3+的特征近红外发光,包括698nm、801nm、1220nm、1432nm的特征4f-4f窄带发光。
进一步通过检测698nm、801nm、1220nm、1432nm波长,可以测出该荧光粉的激发光谱(PLE),结果见图3,由激发光谱可以看出三个激发峰,紫外宽带激发光谱由Bi3+的部分允许1S03p1跃迁提供,位于320nm和360nm的两个PLE分裂峰归因于晶格振动和Bi6p-cl3p反键轨道耦合引起的激发态的动态Jahn-Teller扭曲效应,而430nm和520nm处的PLE由Mn2+的自旋禁戒跃迁6A14T26A14T1组成。
通过Quantaurus-QYPlusC13534-11对不同Tm3+浓度掺杂下的层状双钙钛矿进行近红外荧光量子产率测试,结果见图4,当稀土离子掺杂量为15%,荧光量子产率达到最大值,为99.6%。
通过捷克TESCANMIRALMS扫描电子显微镜(SEM)分析荧光粉的形貌,结果见图5,可以看出合成的层状双钙钛矿荧光材料呈现出大小和形状均不规则的微米块状,并且由EDSmapping可以看出各元素都呈现均匀分布的状态,没有出现团聚的情况。图6显示出该层状双钙钛矿荧光材料的EDS能谱图,其元素分布百分比与实际合成所需元素含量匹配,表示其可以成功的合成并且合成过程具有良好的均匀性。
通过美国FEITalosF200S透射电子显微镜(TEM)分析荧光粉的晶格条纹,结果见图7,可以看出在分体边缘位置具有清晰的晶格条纹。
为了进一步探究该层状双钙钛矿荧光材料的热稳定性,通过TGA-4000对荧光材料进行热重分析,升温时间为10℃/min,结果如图8所示,可以看出该稀土离子掺杂下的层状双钙钛矿荧光材料在500℃之前未出现重量损失,表现出良好的热稳定性,这延长了其作为近红外发光二极管的寿命。
最后为了展示其在照明显示领域的应用,通过将该荧光材料与商业紫外LED芯片进行封装(封装时使用环氧树脂AB胶),封装完成经过烘干后的LED灯珠通过定制直流电源(20W)的近红外发光实物图如图9所示,在近红外相机的捕捉下可以看出其具有明亮的近红外发光。通过将手掌置于该LED前,由于静脉血管中血液的发色团能够吸收部分近红外光,在近红外相机捕捉光学信号下静脉可以清晰的被分辨出来,这使得该近红外荧光转换型荧光粉具有作为高分辨静脉成像光源的潜力。

Claims (7)

1.一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于,包括以下步骤:
Step1:按比例称量原料CsX、MnX2、BiX3、TmX3原料后置于烧杯中,加入去离子水或无水乙醇,然后将烧杯放置于带有搅拌功能的加热台上并加入磁力搅拌子,在室温下搅拌30~60min;
Step2:搅拌完毕后将加热台温度调至80℃~110℃继续搅拌,直至烧杯中的水分完全挥发,片状物体附着于烧杯底部;
Step3:取出烧杯底部附着物至玛瑙研钵继续研磨至物料为粉末状,研磨后的混合物置于刚玉坩埚中,然后置于加热炉中以10℃/min的速率升温,在200~450℃下保温2~5h后,自然降温至室温后取出坩埚,研磨得到粉末状产物,即目标产物。
2.根据权利要求1所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于,所述的原料摩尔百分比为:
CsX:50~60mol%;
MnX2:10~20mol%;
BiX3:20~30mol%;
TmX3:0.5~3mol%;
其中,X为Cl、Br、I、F元素中的一种或多种。
3.根据权利要求2所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于,所述的CsX、MnX2、BiX3、TmX3原料纯度均为99.99%。
4.根据权利要求1所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于:所述的CsX、MnX2、BiX3、TmX3原料的质量与去离子水或无水乙醇的比例为1g/(3~6ml)。
5.根据权利要求1所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于:所述加热台为整体式或分体式加热台。
6.根据权利要求1所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于:所述加热炉为管式炉或厢式炉。
7.根据权利要求1所述的一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法,其特征在于:所述加热炉中气氛条件为空气、氮气、氩气中的一种或组合。
CN202310538784.2A 2023-05-15 2023-05-15 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法 Pending CN116554875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310538784.2A CN116554875A (zh) 2023-05-15 2023-05-15 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310538784.2A CN116554875A (zh) 2023-05-15 2023-05-15 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法

Publications (1)

Publication Number Publication Date
CN116554875A true CN116554875A (zh) 2023-08-08

Family

ID=87501451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310538784.2A Pending CN116554875A (zh) 2023-05-15 2023-05-15 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法

Country Status (1)

Country Link
CN (1) CN116554875A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089343A (zh) * 2023-08-25 2023-11-21 昆明理工大学 一种近红外发光的铟基双钙钛矿制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776914A (zh) * 2019-11-07 2020-02-11 中山大学 一种无铅A4MnBi2X12钙钛矿材料的制备方法及应用
CN113104890A (zh) * 2021-03-22 2021-07-13 电子科技大学 一种Cs4CuSb2Cl12层状卤化物双钙钛矿材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776914A (zh) * 2019-11-07 2020-02-11 中山大学 一种无铅A4MnBi2X12钙钛矿材料的制备方法及应用
CN113104890A (zh) * 2021-03-22 2021-07-13 电子科技大学 一种Cs4CuSb2Cl12层状卤化物双钙钛矿材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANG, PP等: "Red-NIR Luminescence in Rare-Earth and Manganese Ions Codoped Cs4CdBi2Cl12 Vacancy-Ordered Quadruple Perovskites", CHEMISTRY OF MATERIALS, vol. 35, no. 4, pages 1640 - 1650 *
YANMING SUN,ETC: "Bismuth-Based Halide Double Perovskite Cs2LiBiCl6 : Crystal Structure, Luminescence, and Stability", CHEM. MATER., vol. 33, pages 5905 - 5916 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089343A (zh) * 2023-08-25 2023-11-21 昆明理工大学 一种近红外发光的铟基双钙钛矿制备方法

Similar Documents

Publication Publication Date Title
Hua et al. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications
Ming et al. A novel Cs 2 NbOF 5: Mn 4+ oxyfluoride red phosphor for light-emitting diode devices
Guo et al. Efficient red phosphors Na5Ln (MoO4) 4: Eu3+ (Ln= La, Gd and Y) for white LEDs
CN110776914B (zh) 一种无铅A4MnBi2X12钙钛矿材料的制备方法及应用
CN116120932B (zh) 一种层状双钙钛矿荧光材料的制备方法
Han et al. A novel Mn4+-activated garnet-type Li5La3Nb2O12 far red-emitting phosphor with high thermal stability for plant cultivation
Zhou et al. Sr3Lu (VO4) 3: Eu3+ red‐emitting phosphors for warm white LEDs
Chen et al. Luminescence properties of Gd 2 MoO 6: Eu 3+ nanophosphors for WLEDs
Zhao et al. A novel high thermal stability Ba2CaWO6: Mn4+ far-red emitting phosphor with a double-perovskite structure for plant growth LEDs
CN116554875A (zh) 一种稀土离子掺杂的层状双钙钛矿荧光材料的制备方法
Miao et al. Deep‐red Ca3Al2Ge3O12: Eu3+ garnet phosphor with near‐unity internal quantum efficiency and high thermal stability for plant growth application
Zhou et al. Design of highly efficient deep-red emission in the Mn 4+ doped new-type structure CaMgAl 10 O 17 for plant growth LED light
CN115651655A (zh) 一种具有超高荧光热稳定性的近红外发光材料及其制备方法与应用
CN104334683A (zh) 掺杂稀土金属和过渡金属的Ca1+xSr1-xGayIn2-ySzSe3-zF2荧光粉及其制备方法和应用
Ding et al. Mn4+ activated phosphors in photoelectric and energy conversion devices
Zhou et al. Synthesis and characterization of highly Eu3+-doped CaY2Sb2 (ZnO4) 3 red phosphors with abnormal thermal quenching performance for w-LEDs application
CN112266784B (zh) 一种宽带青光发射的CsCdCl3:xSb3+单晶及其制备方法
Gao et al. Room temperature synthesis, Judd Ofelt analysis and photoluminescence properties of down-conversion K0· 3Bi0· 7F2. 4: Eu3+ orange red phosphors
CN110878206A (zh) 一种Eu3+掺杂稀土镥基钨钼酸盐材料及其制备方法
Cao et al. Efficiently enhanced deep-red emission of Ba3WO6: Mn4+ oxide phosphor via the Gd3+ incorporation
Sun et al. The ultra-wideband near-infrared luminescence properties and applications of K2SrGe8O18: Cr3+ phosphor
Satpute et al. Role of rare-earth ions for energy-saving LED lighting devices
CN111187622B (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN116554874A (zh) 一种可调控发光效率的钙钛矿荧光材料的制备方法
CN107903899B (zh) 一种镱铒共掺KGdF4纳米颗粒及纳米带的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination