CN116947498A - 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法 - Google Patents

一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法 Download PDF

Info

Publication number
CN116947498A
CN116947498A CN202310844334.6A CN202310844334A CN116947498A CN 116947498 A CN116947498 A CN 116947498A CN 202310844334 A CN202310844334 A CN 202310844334A CN 116947498 A CN116947498 A CN 116947498A
Authority
CN
China
Prior art keywords
sic
preparation
doped
nano
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310844334.6A
Other languages
English (en)
Other versions
CN116947498B (zh
Inventor
刘勇军
吴叔芳
陈嘉兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202310844334.6A priority Critical patent/CN116947498B/zh
Publication of CN116947498A publication Critical patent/CN116947498A/zh
Application granted granted Critical
Publication of CN116947498B publication Critical patent/CN116947498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于复合材料技术领域,具体公开了一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法,其中制备方法包括Ti3SiC2原料预处理、备用Ti3SiC2浆料制备、碳化硅纤维预处理、浸渍沉积、复合材料制备。本发明采用高速气流粉碎配合高能球磨、超声剥离处理使Ti3SiC2颗粒比单纯的球磨处理平均粒度更小且分布均匀。本发明的方法重复性好,对设备要求低,适用于大尺寸构件的大批量生产,同时能确保Ti3SiC2界面致密均匀孔隙少,Ti3SiC2纯度高,界面厚度可调控。

Description

一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备 方法
技术领域
本发明属复合材料技术领域,具体涉及一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法。
背景技术
连续碳化硅纤维增强碳化硅陶瓷(SiCf/SiC)复合材料具有优异的高温机械力学性能、热稳定性和耐化学腐蚀性,是航天航空、核能等领域热端结构部件的理想材料。对于SiCf/SiC复合材料而言,位于纤维和基体间的界面相是其不可缺少的关键组成部分,起到控制纤维/基体结合强度,调节材料力学性能,保护纤维不被氧化及化学腐蚀,进而决定材料高温使用寿命等重要作用。近年来,通过对界面相的研制和改性来提高复合材料的综合性质的策略得到越来越多的关注。
SiCf/SiC复合材料中最为常用的界面相材料是热解碳(PyC)和氮化硼(BN)。他们具有层状晶体结构,能够提供弱的界面结合,并在复合材料负载情况下有效地偏转裂纹、传递载荷,提高复合材料的拉伸强度和韧性。但是,他们的热氧化稳定性都不够理想。在有氧环境下,PyC在370℃开始氧化,500℃大量反应生成CO挥发掉,造成界面缺失,纤维/基体形成强结合,复合材料呈现脆性断裂特性。相对来说BN抗氧化性有所提升,能在中等温度范围保持稳定,但是在水氧条件下易生成硼酸等易挥发的硼氢化合物。设计多层复合界面,如(PyC/SiC)n、(BN/SiC)n等,一定程度上可以改善材料的抗氧化稳定性和高温寿命,但是多层复合界面一方面会增加制备的步骤和复杂性,其次不稳定的PyC或BN仍然存在,无法保证材料在高温湿氧环境下的长期稳定。基于此,开发具有更好的热、化学稳定性和力学性质的新型的界面材料成为该领域的研究热点。
在众多新开发的界面材料中,碳化硅钛(Ti3SiC2)展现出巨大的应用潜力,它不仅具有能发挥力学熔断作用的独特的六方层状晶体结构,还展现出众多的出色物理性质,比如较低的热膨胀系数、较高的导热/电性、高断裂韧性、和SiC的良好化学兼容,以及更好的耐高温、抗氧化性。以化学气相沉积技术制备的Ti3SiC2界面被证实能有效实现SiCf/SiC复合材料的增强增韧(CN112479718A),且可以用于调控复合材料的吸波性能(CN111592371A)。但是,化学气相沉积技术依赖昂贵的设备,成本高,沉积温度高,时间长,还需要使用危险的四氯化钛作为前驱体。而且,文献报导化学气相沉积得到的Ti3SiC2,其晶体平面往往垂直于纤维表面,使界面的增强增韧效果大打折扣(Surf.Coat.Technol.,2006,201,3748-3755)。磁控溅射法用于Ti3SiC2界面的制备也有报道(CN109467450A),但是该方法更适合在平面基底上沉积薄膜,对于复杂、大尺寸纤维制件很难实现Ti3SiC2的均匀沉积。Lee等人采用的电泳沉积(EPD)法则比较适合小面积制备(J.Appl.Ceram.Technol.,2018,15,602-610)。专利CN113087533A公开一种CVD结合熔盐法在SiC纤维表面原位合成Ti3SiC2界面相方法,Ti3SiC2均匀致密且和纤维紧密结合,但是该方法要用CVD在SiC纤维表面预先沉积一定厚度的PyC作为模板和碳源,增加了制备步骤和成本,且熔盐反应过程会引入钠、钾等杂原子。现有Ti3SiC2界面浸涂法相比于气相制备、电泳沉积或原位合成等方法,具有操作简单、廉价快速、重复性好、界面厚度可控、适用于大批量生产的优点,但是所使用Ti3SiC2颗粒尺寸不均匀,局部易团聚,界面结构松散易剥离,颗粒间存在大量孔隙,且高温热处理引起Ti3SiC2界面分解,最终不利于Ti3SiC2界面发挥力学调控和保护作用。如Li等人通过Ti3SiC2浆料浸涂配合高温热处理(900-1100℃)成功在SiC纤维制备由Ti3SiC2颗粒构成的界面(J.Eur.Ceram.Soc.,2021,5850-5862)。然而,该界面中Ti3SiC2颗粒粒度不均匀,局部易团聚,致使Ti3SiC2涂层表面粗糙且易脱落,另外涂层不够致密,颗粒之间存在大量的空隙,无法有效阻挡氧气、水汽的侵入,进而导致Ti3SiC2界面保护纤维、抗氧化腐蚀作用减弱。此外,研究结果还显示,高温处理会使Ti3SiC2界面发生分解,降低其力学调控效果。
因此,有必要开发一种新的Ti3SiC2界面涂层及制备方法以满足需要。
发明内容
本发明的目的在于克服现有技术存在的缺陷,提供一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法,一方面通过高速气体粉碎、球磨和超声剥离使Ti3SiC2颗粒平均粒度减小并提高尺寸均匀度,其次通过添加难熔氧化物纳米颗粒和/或含硅陶瓷纳米材料纳米颗粒增加Ti3SiC2颗粒的分散性和连接性,减小界面孔隙,最后通过低温静压处理,进一步增强Ti3SiC2界面的致密性、均匀性,从而提高Ti3SiC2界面作用以及SiCf/SiC复合材料的性能。
为了实现以上目的,本发明的技术方案之一为:一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层的制备方法,包括以下步骤:
S1:Ti3SiC2原料预处理:将Ti3SiC2粉末研磨后用高速气流粉碎机粉碎成微粒,再将粉碎后的Ti3SiC2微粒放入高能球磨罐,加入适量去离子水,经高能球磨机处理使得Ti3SiC2粒径进一步降低;将球磨处理得到的Ti3SiC2颗粒用去离子水稀释,超声使其剥离并使其分散均匀,随后用溶剂1分散并再次超声处理后离心得到沉淀,然后经真空干燥后备用;
S2:备用Ti3SiC2浆料制备:将步骤S1处理后的Ti3SiC2分散在溶剂2中配制成一定浓度的Ti3SiC2分散液,再加入难熔氧化物纳米颗粒和/或含硅陶瓷纳米材料纳米颗粒,超声使其分散均匀得到备用Ti3SiC2浆料;
S3:碳化硅纤维预处理:将碳化硅纤维置于反应室内,在空气环境中加热并保温,冷却后分别置于溶剂3和溶剂4中超声清洗后再进行保温;
S4:浸渍沉积纳米掺杂Ti3SiC2界面涂层:将步骤S3处理后的碳化硅纤维浸渍在Ti3SiC2浆料中,取出烘干后再经低温静压处理,得到纳米掺杂Ti3SiC2界面涂层。
进一步地,所述步骤S1中Ti3SiC2粉末研磨后用高速气流粉碎机粉碎成1-2μm的微粒,高能球磨使得Ti3SiC2粒径进一步降低到200-500nm。
进一步地,所述步骤S1中高能球磨转速为1200~2000rpm,优选为1500~1800rpm。
进一步地,所述步骤S1中高能球磨时用的碾磨球为氧化锆球磨珠,Ti3SiC2微粉与氧化锆球磨珠的质量比为1:(5-20),Ti3SiC2微粉与去离子质量比为1:(0.5-5),优选为1:(1-3),球磨时间为2-10h,优选为5-8h。
进一步地,所述步骤S1中超声处理时间为20-80min,优选为30-50min。
进一步地,所述步骤S1中溶剂1为乙醇、异丙醇、水中的一种或多种混合,所述步骤S2中溶剂2为去离子水、乙醇中的至少一种,所述步骤S3中溶剂3为去离子水,溶剂4为乙醇。
进一步地,所述步骤S2中Ti3SiC2分散液中Ti3SiC2的浓度为0.1wt%-1.2wt%,优选为0.3wt%-0.6wt%,难熔氧化物纳米颗粒和/或含硅陶瓷材料纳米颗粒的添加量占Ti3SiC2质量的5wt%-30wt%。
进一步地,所述难熔氧化物纳米颗粒和/或含硅陶瓷材料纳米颗粒的粒度为10-30nm,所述难熔氧化物包括氧化锆、三氧化二铝、氧化镁中的至少一种,所述含硅陶瓷材料包括二氧化硅、碳化硅、氮化硅中的至少一种。
进一步地,所述步骤S3中在空气环境中加热温度为400-600℃,保温时间为0.5-3h。
进一步地,所述步骤S3中超声清洗时间为10-30min,分别置于溶剂3和溶剂4中超声清洗需重复2-3次。
进一步地,所述步骤S3中超声清洗后保温温度为70-90℃,保温时间为20-28h。
进一步地,所述步骤S4中浸泡时间为2-15min,优选为5-12min,烘干温度为70-90℃,烘干时间为30-100min,优选为60~90min。
进一步地,所述步骤S4中低温静压处理的温度为200-500℃,压力为30-150MPa,保压时间为10-60min,优选时间为20-40min。
进一步地,所述步骤S4中为了控制纳米掺杂Ti3SiC2界面涂层厚度需经多次重复浸渍-烘干,浸渍-烘干次数为5-10次。
为了实现以上目的,本发明的技术方案之二为:一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层。
为了实现以上目的,本发明的技术方案之三为:一种含有纳米掺杂Ti3SiC2界面涂层的SiCf/SiC复合材料。
进一步地,所述含有纳米掺杂Ti3SiC2界面涂层的SiCf/SiC复合材料采用如下方法制备:通过前驱体浸渍裂解法在表面含纳米掺杂Ti3SiC2涂层的碳化硅纤维上制备碳化硅基体,得到SiCf/纳米掺杂Ti3SiC2/SiC复合材料。
更进一步地,所述前驱体浸渍裂解法包括浸渍、固化及裂解,具体制备参数为真空气氛下进行浸渍,所用有机前驱体为液态聚碳硅烷,分子量优选为1600~2000;浸渍的温度为50-100℃,优选为75-90℃,浸渍时间为0.5-2h;固化的温度为100-200℃,优选为120~160℃,固化时间为2-12h,优化为5~10h;裂解在Ar气氛围下进行,裂解的温度为800-1400℃,优选为1000~1200℃,裂解时间为2-3小时;浸渍-固化-裂解过程重复次数为2-6次。
与现有技术相比,本发明的有益效果在于:
1、本发明采用高速气流粉碎配合高能球磨、超声剥离处理使Ti3SiC2颗粒比单纯的球磨处理平均粒度更小且分布均匀;首先采用高速气流粉碎技术使Ti3SiC2原料粒径数十微米减小到1-2μm,随后采用高能湿磨和超声剥离使其粒径进一步减小50-200nm,粒度更小且均匀的Ti3SiC2颗粒可以有效避免大块颗粒造成的局部团聚,并且可以减小涂层颗粒间的间隙和表面粗糙度,提高涂层的紧密性。
2、本发明在Ti3SiC2浆料中添加粒度为10-30nm耐高温、抗氧化性优异的难熔氧化物纳米颗粒和/或含硅陶瓷纳米材料纳米颗粒,添加的这些纳米颗粒能增加Ti3SiC2的分散性,减少团聚;其次添加的小粒径纳米颗粒可以进一步填补Ti3SiC2颗粒的孔隙,减小气体入侵通道,能更好地保护碳化硅纤维免受氧化腐蚀,并且增加了纳米颗粒间的孔隙复杂性,在复合材料负载情况下,能提供更多的裂纹扩展和偏移路径,增加了断裂能量耗尽机率;另外,添加的小粒径纳米颗粒自身具有良好的热/化学稳定性,可以提高界面的高温抗氧化腐蚀性能。
3、本发明采用低温静压对浸涂制备的Ti3SiC2涂层进行后处理,可以有效避免高温热处理导致的Ti3SiC2分解问题,较低的处理温度还可以避免对碳化硅纤维的损伤,同时有效增加Ti3SiC2界面的致密度和表面均匀性,提高界面和纤维间的结合强度。
4、本发明制备的添加难熔氧化物纳米颗粒和/或含硅陶瓷纳米材料纳米颗粒的Ti3SiC2界面,Ti3SiC2具有类似PyC层状晶体结构,可以提供纤维/基体的弱结合,且难融纳米颗粒添加的Ti3SiC2界面构成多孔结构,具有丰富的裂纹扩展路径,有利于裂纹偏转和纤维拔出;难融纳米颗粒协同高纯度Ti3SiC2构成的均匀致密界面涂层有望获得更好的抗氧化效果;所采用的Ti3SiC2浸涂制备方法有效地简化界面制备过程,缩短制备时间,减低成本,避免危险原料的使用,重复性好,设备要求低,适用于大尺寸构件的大批量生产,同时能确保Ti3SiC2界面致密均匀孔隙少,Ti3SiC2纯度高,界面厚度可调控。
附图说明
图1为在SiC纤维上制备的纳米掺杂Ti3SiC2界面及含纳米掺杂Ti3SiC2界面SiCf/SiC复合材料样品示意图,其中(a)为在SiC纤维上制备的纳米掺杂Ti3SiC2界面涂层,(b)为含纳米掺杂Ti3SiC2界面的SiCf/SiC复合材料。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合附图和具体实施例对本发明进行更详细地描述,但本发明的保护范围并不受限于这些实施例。文中相同的附图标记始终代表相同的元件,相似的附图标记代表相似的元件。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“横”、“竖”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图中的立体图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层,由如下方法制得:
(1)将500gTi3SiC2粉末在玛瑙研钵中研磨,随后用高速气流粉碎机粉碎成1~2μm的微粒;每个球磨罐中加入粉碎后的Ti3SiC2微粒50g,氧化锆球磨珠500g,去离子水50g,经高能球磨机1500rpm处理6h,使Ti3SiC2粒径进一步降低到200-500nm;高能球磨处理得到的Ti3SiC2颗粒用去离子水稀释,超声使其剥离并使其分散均匀,随后换用乙醇分散并再次超声处理,每次超声处理时间为40min,超声处理后离心得到沉淀然后经真空干燥后备用;
(2)取30g上述处理后的Ti3SiC2颗粒分散在10kg去离子水中,得到浓度为0.3wt%的Ti3SiC2分散液,再加入3g平均粒度为20nm的碳化硅纳米颗粒,超声30min使其分散均匀,得到备用Ti3SiC2浆料;
(3)将碳化硅纤维于反应室内,空气条件下经400℃下保温2h,冷却后分别置于去离子水和乙醇中超声10min,重复3次,随后于80℃烘箱中保温24h;
(4)将上述预处理后的碳化硅纤维浸泡在步骤(2)添加了碳化硅纳米颗粒的0.3wt%Ti3SiC2浆料中10min,取出后80℃烘箱中烘干60min;重复浸渍-烘干5次后再在400℃温度下,100MPa压力下静压30min,碳化硅纤维表面得到碳化硅纳米掺杂Ti3SiC2涂层。
在真空气氛下将上述制得的表面含有碳化硅纳米掺杂Ti3SiC2涂层的碳化硅纤维浸渍在
液态聚碳硅烷中1h,浸渍温度为80℃;取出后在130℃温度下固化6h;然后在Ar气氛围下进行裂解,裂解温度为1100℃,裂解时间为2h;重复浸渍-固化-裂解过程4次得到致密的SiCf/SiC复合材料,对制得的SiCf/SiC复合材料进行检测可知,碳化硅纳米掺杂Ti3SiC2界面约~300nm,复合材料的弯曲强度为289MPa,1300℃空气中处理1h,强度保留率为85%。
实施例2
一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层,制备各步骤同实施例1,不同之处在于将添加的碳化硅纳米颗粒换成氧化锆纳米颗粒,氧化锆平均粒度为20nm。
由上述界面涂层所制备的SiCf/SiC复合材料经检测,氧化锆纳米掺杂Ti3SiC2界面约~340nm,复合材料的弯曲强度为325MPa,1300℃空气中处理1h,强度保留率为92%。
实施例3
一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层,制备各步骤同实施例1,不同之处在于本实施例浆料浸渍-烘干重复次数为10次。
由上述界面涂层所制备的SiCf/SiC复合材料经检测,碳化硅纳米掺杂Ti3SiC2界面约~500nm,复合材料的弯曲强度为310MPa,1300℃空气中处理1h,强度保留率为90%。
对比例1
(1)将Ti3SiC2粉末在玛瑙研钵中研磨,随后放入高能球磨罐,Ti3SiC2粉末:玛瑙球磨珠质量比例为1:10,高能球磨机1000rpm/min处理6h;将处理后的Ti3SiC2分散在去离子水中,浓度为0.3wt%,超声30min使其分散均匀,得到备用Ti3SiC2浆料;
(2)碳化硅纤维于反应室内,空气条件下经400℃下保温2h,冷却后分别置于去离子水和乙醇溶液中超声10min,重复3次,随后于80℃烘箱中保温24h;
(3)将预处理后碳化硅纤维浸泡在0.3wt%Ti3SiC2浆料中2min,取出后80℃烘箱中烘干60min;烘干后在真空反应室900℃热处理2h,升温速度为5℃/min,浸渍-烘干次数为7次;
(4)真空气氛下,将含Ti3SiC2涂层的碳化硅纤维浸渍在液态聚碳硅烷中1h,浸渍温度为80℃,取出后在130℃温度下固化6h;再在Ar气氛围下进行裂解,温度为1100℃,裂解2h;重复浸渍-固化-裂解过程4次,得到致密的的SiCf/SiC复合材料。
本对比例制备的复合材料经检测,Ti3SiC2界面约~300nm,复合材料的弯曲强度为265MPa,1300℃空气中处理1h,强度保留率为75%。
本发明实施例与对比例检测结果对比,可以得出如下结论:本发明采用的Ti3SiC2前处理、难熔氧化物纳米颗粒或含硅陶瓷纳米材料纳米颗粒的添加以及低温静压手段可以有效地解决常规浸渍法制备Ti3SiC2界面的不足,提高Ti3SiC2界面的致密度和表面均匀性,进而提高SiCf/SiC复合材料的力学性能和稳定性。
上述实施例仅是本发明的优化实施方法,用以例示性说明本发明的原理及其功效,而非用于限制本发明。应当指出,对于任何熟习此项技艺的人士在不违背本发明的精神及范畴下,对上述实施例进行修改,些修改也应视为本发明的保护范畴。

Claims (10)

1.一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层的制备方法,其特征在于,包括以下步骤:
S1:Ti3SiC2原料预处理:将Ti3SiC2粉末研磨后用高速气流粉碎机粉碎成微粒,再将粉碎后的Ti3SiC2微粒放入高能球磨罐处理使得Ti3SiC2粒径进一步降低;将球磨处理得到的Ti3SiC2颗粒用去离子水稀释后超声使其剥离并分散均匀,随后用溶剂1分散并再次超声处理后离心得到沉淀,然后经真空干燥后备用;
S2:备用Ti3SiC2浆料制备:将步骤S1处理后的Ti3SiC2分散在溶剂2中得到Ti3SiC2分散液,再加入难熔氧化物纳米颗粒和/或含硅陶瓷材料纳米颗粒,超声使其分散均匀得到备用Ti3SiC2浆料;
S3:碳化硅纤维预处理:将碳化硅纤维置于反应室内,在空气环境中加热并保温,冷却后分别置于溶剂3和溶剂4中超声清洗后再进行保温;
S4:浸渍沉积纳米掺杂Ti3SiC2界面涂层:将步骤S3处理后的碳化硅纤维浸渍在步骤(2)制备的Ti3SiC2浆料中,取出烘干后再经低温静压处理得到纳米掺杂Ti3SiC2界面涂层。
2.如权利要求1所述的制备方法,其特征在于,所述步骤S1中Ti3SiC2粉末研磨后用高速气流粉碎机粉碎成1-2μm的微粒,高能球磨使得Ti3SiC2粒径进一步降低到200-500nm。
3.如权利要求1所述的制备方法,其特征在于,所述步骤S1中高能球磨转速为1200~2000rpm,碾磨球为氧化锆球磨珠,Ti3SiC2微粉与氧化锆球磨珠的质量比为1:
(5-20),Ti3SiC2微粉与去离子质量比为1:(0.5-5),球磨时间为2-10h。
4.如权利要求1所述的制备方法,其特征在于,所述步骤S2中Ti3SiC2分散液中Ti3SiC2的浓度为0.1wt%-1.2wt%,难熔氧化物纳米颗粒和/或含硅陶瓷纳米颗粒的添加量占Ti3SiC2质量的5wt%-30wt%。
5.如权利要求1或4所述的制备方法,其特征在于,所述难熔氧化物纳米颗粒和/或含硅陶瓷纳米颗粒的粒度为10-30nm,所述难熔氧化物包括氧化锆、三氧化二铝、氧化镁中的至少一种,所述含硅陶瓷材料包括二氧化硅、碳化硅、氮化硅中的至少一种。
6.如权利要求1所述的制备方法,其特征在于,所述步骤S3中在空气环境中加热温度为400-600℃,保温时间为0.5-3h,超声时间为10-30min,超声清洗后保温温度为70-90℃,保温时间为20-28h。
7.如权利要求1所述的制备方法,其特征在于,所述步骤S4中浸泡时间为2-15min,烘干温度为70-90℃,烘干时间为30-100min,低温静压处理的温度为200-500℃,压力为30-150MPa,保压时间为10-60min。
8.如权利要求1所述的制备方法,其特征在于,所述步骤S4中为控制纳米掺杂Ti3SiC2界面涂层厚度,浸渍和烘干处理需重复5-10次后再经低温静压处理。
9.一种如权利要求1-8任一项所述的制备方法制得的SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层。
10.一种含有权利要求9所述的纳米掺杂Ti3SiC2界面涂层的SiCf/SiC复合材料。
CN202310844334.6A 2023-07-11 2023-07-11 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法 Active CN116947498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310844334.6A CN116947498B (zh) 2023-07-11 2023-07-11 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310844334.6A CN116947498B (zh) 2023-07-11 2023-07-11 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN116947498A true CN116947498A (zh) 2023-10-27
CN116947498B CN116947498B (zh) 2024-10-22

Family

ID=88454075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310844334.6A Active CN116947498B (zh) 2023-07-11 2023-07-11 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116947498B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119060573A (zh) * 2024-09-24 2024-12-03 蒙太奇(佛山)科技有限公司 一种艺术漆用无机纳米改性地面底层材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170086270A (ko) * 2016-01-18 2017-07-26 한국원자력연구원 Ti3SiC2 코팅용 조성물 및 이를 이용한 코팅 방법
CN108585869A (zh) * 2018-05-10 2018-09-28 西北工业大学 一种原位自生max相改性复合材料的制备方法
CN112194497A (zh) * 2020-09-04 2021-01-08 山东理工大学 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
CN115259878A (zh) * 2022-09-01 2022-11-01 上海大学 一种抽滤掺杂工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170086270A (ko) * 2016-01-18 2017-07-26 한국원자력연구원 Ti3SiC2 코팅용 조성물 및 이를 이용한 코팅 방법
CN108585869A (zh) * 2018-05-10 2018-09-28 西北工业大学 一种原位自生max相改性复合材料的制备方法
CN112194497A (zh) * 2020-09-04 2021-01-08 山东理工大学 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
CN115259878A (zh) * 2022-09-01 2022-11-01 上海大学 一种抽滤掺杂工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAOBING LI ET AL.: "Ti3SiC2 interphase coating in SiCf/SiC composites: Effect of the coating fabrication atmosphere and temperature", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 》, vol. 41, no. 12, 1 April 2021 (2021-04-01), pages 5850 - 5862, XP086621325, DOI: 10.1016/j.jeurceramsoc.2021.03.058 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119060573A (zh) * 2024-09-24 2024-12-03 蒙太奇(佛山)科技有限公司 一种艺术漆用无机纳米改性地面底层材料及其制备方法

Also Published As

Publication number Publication date
CN116947498B (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
CN102964144B (zh) 一种提高碳/碳复合材料表面涂层抗氧化性能的方法
CN102515870B (zh) 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN102093083B (zh) 炭/炭复合材料HfC抗烧蚀涂层的制备方法
CN104628407B (zh) 一种Al2O3纤维增韧MAX相陶瓷基复合材料的制备方法
CN106966742B (zh) 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
CN108395279B (zh) 化学气相共沉积法制备HfC-SiC复相梯度涂层的方法
CN107827461A (zh) 一种耐烧蚀纤维增韧硅硼碳氮锆陶瓷基复合材料、其制备方法及应用
CN103467126A (zh) 一种SiC纳米线改性C/C复合材料的制备方法
CN114716268B (zh) 碳/碳复合材料表面制备Glass-MoSi2@Y2O3-SiC抗氧化涂层的方法
CN103214268B (zh) 一种纳米线增强SiC耐磨涂层的制备方法
CN113754442B (zh) 一种SiC/SiC复合材料高致密多层基体及制备方法
CN107176604A (zh) 一种碳素材料表面原位生成纳米碳化物涂层的方法
CN105481477B (zh) 一种石墨/SiC复合材料的制备方法
CN114538908B (zh) 一种耐高温烧蚀的柔性热防护涂层及其制备方法
CN106495725A (zh) 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用
CN116947498B (zh) 一种SiCf/SiC复合材料用纳米掺杂Ti3SiC2界面涂层及其制备方法
CN111423233A (zh) 一种碳化硅增强碳化硼基陶瓷材料及其制备方法
CN106631161B (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN108531780A (zh) 一种石墨烯增强镍铝合金基复合材料的制备方法
CN110451969A (zh) 碳纤维-碳化锆复合材料及其制备方法
CN103806267B (zh) 一种在碳纤维表面制备碳化锆陶瓷界面相的方法
CN108863419A (zh) 一种原位生长石墨烯增强Cf/SiC复合材料及其制备方法
CN115724664B (zh) 一种两步烧结快速制备MCMBs/SiC复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant