CN106495725A - 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用 - Google Patents

一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用 Download PDF

Info

Publication number
CN106495725A
CN106495725A CN201610973336.5A CN201610973336A CN106495725A CN 106495725 A CN106495725 A CN 106495725A CN 201610973336 A CN201610973336 A CN 201610973336A CN 106495725 A CN106495725 A CN 106495725A
Authority
CN
China
Prior art keywords
sic
zrc
carbon fiber
preparation
nws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610973336.5A
Other languages
English (en)
Inventor
闫利文
张幸红
洪长青
胡平
程源
张东洋
孙博谦
徐建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610973336.5A priority Critical patent/CN106495725A/zh
Publication of CN106495725A publication Critical patent/CN106495725A/zh
Pending legal-status Critical Current

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用,涉及一种ZrC‑SiC陶瓷复合材料的制备方法及应用。是要解决现有碳纤维与ZrC‑SiC复相陶瓷基体相容性低、界面结合差的问题。方法:一、碳纤维表面预处理;二、碳纤维表面催化剂加载;三、碳纤维‑碳化硅纳米线多层次增强体制备;四、CF‑SiCnws/ZrC‑SiC超高温陶瓷复合材料的制备;五、重复步骤四6次,最终得到CF‑SiCnws/ZrC‑SiC超高温陶瓷复合材料。该方法显著增大了CF与ZrC‑SiC陶瓷基体的界面结合强度,提高了复合材料的力学性能。本发明用于复合材料领域。

Description

一种碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料的制 备方法及应用
技术领域
本发明涉及一种ZrC-SiC陶瓷复合材料的制备方法及应用。
背景技术
随着飞行器飞行速度的不断提高,对热防护材料的要求也越来越高。在高超声速飞行器长时间飞行或跨大气层飞行过程中,飞行器鼻锥、翼前缘、发动机进气室等部位与空气发生强烈作用,受到严重的气动加热,为了确保其在大气中重复使用,要求研发出力学性能、热物理性能、抗氧化性能和抗烧蚀性能等综合性能优异的热防护材料。SiC具有低密度、抗氧化、耐高温、耐冲刷等特性,以其为陶瓷基体,以碳纤维(CF)为增强体制备的复合材料短时间的使用温度不能高于1800℃,长时间使用温度不能高于1600℃,在2000℃以上的超高温环境中使用仍然具有相当大的困难。ZrC具有熔点高(3530℃)、硬度大(显微硬度为26GPa)、抗烧蚀、热膨胀系数低、高温力学性能突出等一系列优点,是一种优异的超高温陶瓷材料,所以,采用CF为增强增韧相,以ZrC-SiC复相陶瓷为耐超高温的功能相,制备一种新型纤维增强超高温陶瓷复合材料,对于探索力学性能突出、高温抗氧化性能优异的超高温陶瓷复合材料具有重要意义。
目前,CF增韧陶瓷基复合材料普遍存在的一个问题是CF与陶瓷基体界面结合较差。CF本身表面光滑,呈惰性,不利于陶瓷基体的包覆。纤维与陶瓷基体之间较低的界面能,较差的界面结合力会严重影响CF的增韧效果,不利于提高复合材料的力学性能。
发明内容
本发明是要解决现有碳纤维与ZrC-SiC复相陶瓷基体相容性低、界面结合差的问题,同时解决现有超高温陶瓷材料脆性大、强度低的问题,提供一种碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料的制备方法及应用。
本发明碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料的制备方法,包括以下步骤:
一、碳纤维表面预处理:将碳纤维三维编织物加工成实验所需规格的立方块,在75℃沸腾的丙酮中浸泡24~48h,取出后置于80℃的鼓风干燥箱内干燥12~24h,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡1~7h后取出,用去离子水洗涤至中性,然后置于温度为120℃的恒温干燥箱内干燥24h,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Ni(NO3)2或Co(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.01~0.09mol/L的催化剂溶液,将步骤一得到的预处理完成的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物置于温度为80℃的恒温干燥箱内干燥12h;
三、碳纤维-碳化硅纳米线(CF-SiCnws)多层次增强体制备:采用化学气相渗透(CVI)技术在碳纤维表面生长SiCnws,具体的生长工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1000~1100℃,通入H2和甲基三氯硅烷(CH3SiCl3),其中H2用作还原剂及载气,CH3SiCl3提供C源和Si源,控制压强为200Pa,反应气体体积比为:H2/CH3SiCl3=5:1,反应时间为50~100h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体;
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体(聚碳硅烷,PCS)按照质量之比为5~3:1溶于二甲苯中制备出质量分数为60%~70%的陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在先驱体溶液中,采用真空浸渍的方法浸渍20~60min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化12h,固化完成后将试样装入高温裂解炉,室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1400~1600℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解,反复进行先驱体浸渍-固化-裂解过程6次使得复合材料致密化,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
步骤四所述ZrC陶瓷先驱体的制备方法为:在室温、机械搅拌条件下,以ZrCl4为锆源,与乙醇反应生成Zr(OC2H5)4。然后加入1,4-丁二醇和乙酰丙酮,反应并减压蒸馏除去其中的溶剂,最后得到橙红色的ZrC陶瓷先驱体粉末。
上述碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料作为一种轻质、强韧化、高可靠性热防护材料可用于制备高超声速飞行器鼻锥、端头及飞机刹车片等超高温部位结构。
超高温陶瓷材料具有脆性大、抗热冲击性差、热导率高等缺点。而碳纤维具有优异的力学性能,与其他纤维相比具有高比模量和高比强度。研究表明碳纤维在高温(2000℃以上)惰性环境中,其性能优于其他纤维,强度不会因温度的升高而下降。另外,碳纤维具有耐高温、耐腐蚀、抗疲劳、低热膨胀系数等优良特点。所以,碳纤维增强超高温陶瓷复合材料,尤其是长纤维增强陶瓷复合材料可以明显提高材料的综合性能。陶瓷基体的选择及纤维与基体之间的界面控制决定了超高温陶瓷复合材料的性能。只有当碳纤维与陶瓷基体之间具有适当的界面结合力,基体材料才能有效传递外界载荷,起到纤维增韧的作用。本发明通过在CF表面垂直生长SiCnws,制备CF-SiCnws多层次增强体,将CF的比表面积从0.25m2/g提高到CF-SiCnws的5.18m2/g,增加了CF与陶瓷基体之间的界面剪切强度,改善界面性能,对陶瓷基复合材料的强韧化具有十分重要的意义。
本发明的有益效果:
1、本发明制备的碳纤维-碳化硅纳米线多层次增强体强韧化ZrC-SiC陶瓷复合材料,采用化学气相渗透技术在碳纤维表面垂直生长碳化硅纳米线,将比表面积从CF的0.25m2/g提高到CF-SiCnws的5.18m2/g,实现了CF与SiCnws之间的有效连接,显著增大了CF与ZrC-SiC陶瓷基体的界面结合强度,保证了陶瓷基体与CF-SiCnws之间载荷的有效传递,充分发挥了CF的增强增韧作用。
2、本发明采用先驱体浸渍裂解(PIP)技术,以不同比例含量的ZrC有机前驱体和PCS为陶瓷先驱体,以CF-SiCnws为多层次增强增韧相,制备的CF-SiCnws/ZrC-SiC陶瓷复合材料具有更加优异的力学性能,本发明制备的CF-SiCnws/ZrC-SiC复合材料压缩强度可达到25.77MPa,CF-SiCnws/ZrC-SiC断裂韧性可达到6.19MPa·m1/2
附图说明
图1为实施例1所制备的CF-SiCnws多层次复合增强体放大2400倍的表面扫描照片;
图2为实施例1所制备的CF-SiCnws多层次复合增强体放大80000倍的SiCnws表面扫描照片;
图3为实施例1所制备的CF-SiCnws多层次复合增强体放大600倍的断面扫描照片;
图4为实施例1所制备的CF-SiCnws多层次复合增强体放大5000倍的断面扫描照片;
图5为实施例2所制备的CF-SiCnws多层次复合增强体的X射线衍射图谱;
图6为实施例3中浸渍裂解循环2次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片;
图7为实施例3中浸渍裂解循环2次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片;
图8为实施例3中浸渍裂解循环4次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片;
图9为实施例3中浸渍裂解循环4次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片;
图10为实施例3中浸渍裂解循环6次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片;
图11为实施例3中浸渍裂解循环6次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片;
图12为实施例3所制备的ZrC-SiC陶瓷基体的X射线衍射图谱;
图13为实施例3所制备的CF-SiCnws/ZrC-SiC复合材料的压缩强度测试结果。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料的制备方法,包括以下步骤:
一、碳纤维表面预处理:将碳纤维三维编织物加工成立方块,在75℃沸腾的丙酮中浸泡24~48h,取出,干燥,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡1~7h后取出,用去离子水洗涤至中性,然后干燥,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Ni(NO3)2或Co(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.01~0.09mol/L的催化剂溶液,将步骤一得到的预处理的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物进行干燥;
三、碳纤维-碳化硅纳米线多层次增强体制备:采用化学气相渗透在碳纤维表面生长SiCnws
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体按照质量之比为(5~3):1溶于二甲苯中制备出陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在陶瓷先驱体溶液中,浸渍20~60min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化,固化完成后将试样装入高温裂解炉中裂解;
五、重复步骤四6次,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
所述ZrC陶瓷先驱体粉末可以购买得到。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中第一次干燥具体方法为:置于80℃的鼓风干燥箱内干燥12~24h。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中第二次干燥具体方法为:置于温度为120℃的恒温干燥箱内干燥24h。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中浓硝酸的浸泡时间为2~6h。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至三之一不同的是:步骤一中浓硝酸的浸泡时间为3~5h。其它与具体实施方式一至三之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二所述干燥具体方法为:置于温度为80℃的恒温干燥箱内干燥12h。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中催化剂溶液的浓度为0.03~0.07mol/L。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至六之一不同的是:步骤二中催化剂溶液的浓度为0.05mol/L。其它与具体实施方式一至六之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中采用化学气相渗透在碳纤维表面生长SiCnws的具体工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1000~1100℃,通入H2和甲基三氯硅烷,控制压强为200Pa,H2和甲基三氯硅烷的体积比为5:1,反应时间为50~100h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤四所述SiC陶瓷先驱体为聚碳硅烷(PCS)。其它与具体实施方式一至九之一相同。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是:步骤四中所述陶瓷先驱体溶液的质量分数为60%~70%。其它与具体实施方式一至十之一相同。
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同的是:步骤四中所述浸渍为真空浸渍。其它与具体实施方式一至十一之一相同。
具体实施方式十三:本实施方式与具体实施方式一至十二之一不同的是:步骤四中所述固化的时间为12h。其它与具体实施方式一至十二之一相同。
具体实施方式十四:本实施方式与具体实施方式一至十三之一不同的是:步骤四中裂解的具体工艺为:室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1400~1600℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解。其它与具体实施方式一至十三之一相同。
具体实施方式十五:本实施方式碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料用于制备高超声速飞行器鼻锥、端头及飞机刹车片。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:本实施例碳纤维-碳化硅纳米线多层次增强体强韧化ZrC-SiC陶瓷复合材料的制备方法,按以下步骤进行:
一、碳纤维表面预处理:将碳纤维三维编织物加工成15×15×35mm规格的立方块,在75℃沸腾的丙酮中浸泡24h,取出后置于80℃的鼓风干燥箱内干燥12h,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡1h后取出,用去离子水洗涤至中性,然后置于温度为120℃的恒温干燥箱内干燥24h,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Ni(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.01mol/L的催化剂溶液,将步骤一得到的预处理完成的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物置于温度为80℃的恒温干燥箱内干燥12h;
三、碳纤维-碳化硅纳米线(CF-SiCnws)多层次增强体制备:采用化学气相渗透(CVI)技术在碳纤维表面生长SiCnws,具体的生长工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1000℃,通入H2和甲基三氯硅烷(CH3SiCl3),其中H2用作还原剂及载气,CH3SiCl3提供C源和Si源,控制压强为200Pa,反应气体体积比为:H2/CH3SiCl3=5:1,反应时间为100h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体;
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体(聚碳硅烷,PCS)按照质量之比为5:1溶于二甲苯中制备出质量分数为66.7%的陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在先驱体溶液中,采用真空浸渍的方法浸渍20min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化12h,固化完成后将试样装入高温裂解炉,室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1400℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解;
五、重复步骤四先驱体浸渍-固化-裂解过程6次使得复合材料致密化,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
本实施例制备的CF-SiCnws的比表面积为4.52m2/g,与CF(比表面积0.25m2/g)相比,是CF的18.1倍。
本实施例制备的复合材料压缩强度为22.89MPa,断裂韧性为5.78MPa·m1/2
实施例2:本实施例碳纤维-碳化硅纳米线多层次增强体强韧化ZrC-SiC陶瓷复合材料的制备方法,按以下步骤进行:
一、碳纤维表面预处理:将碳纤维三维编织物加工成15×15×35mm规格的立方块,在75℃沸腾的丙酮中浸泡48h,取出后置于80℃的鼓风干燥箱内干燥24h,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡5h后取出,用去离子水洗涤至中性,然后置于温度为120℃的恒温干燥箱内干燥24h,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Co(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.05mol/L的催化剂溶液,将步骤一得到的预处理完成的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物置于温度为80℃的恒温干燥箱内干燥12h;
三、碳纤维-碳化硅纳米线(CF-SiCnws)多层次增强体制备:采用化学气相渗透(CVI)技术在碳纤维表面生长SiCnws,具体的生长工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1050℃,通入H2和甲基三氯硅烷(CH3SiCl3),其中H2用作还原剂及载气,CH3SiCl3提供C源和Si源,控制压强为200Pa,反应气体体积比为:H2/CH3SiCl3=5∶1,反应时间为70h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体;
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体(聚碳硅烷,PCS)按照质量之比为4:1溶于二甲苯中制备出质量分数为66.7%的陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在先驱体溶液中,采用真空浸渍的方法浸渍40min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化12h,固化完成后将试样装入高温裂解炉,室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1500℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解;
五、重复步骤四先驱体浸渍-固化-裂解过程6次使得复合材料致密化,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
本实施例制备的CF-SiCnws的比表面积为4.81m2/g,与CF(比表面积0.25m2/g)相比,是CF的19.2倍。
本实施例制备的复合材料压缩强度为24.30MPa,断裂韧性为4.69MPa·m1/2
实施例3:本实施例碳纤维-碳化硅纳米线多层次增强体强韧化ZrC-SiC陶瓷复合材料的制备方法,按以下步骤进行:
一、碳纤维表面预处理:将碳纤维三维编织物加工成15×15×35mm规格的立方块,在75℃沸腾的丙酮中浸泡48h,取出后置于80℃的鼓风干燥箱内干燥24h,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡7h后取出,用去离子水洗涤至中性,然后置于温度为120℃的恒温干燥箱内干燥24h,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Ni(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.09mol/L的催化剂溶液,将步骤一得到的预处理完成的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物置于温度为80℃的恒温干燥箱内干燥12h;
三、碳纤维-碳化硅纳米线(CF-SiCnws)多层次增强体制备:采用化学气相渗透(CVI)技术在碳纤维表面生长SiCnws,具体的生长工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1100℃,通入H2和甲基三氯硅烷(CH3SiCl3),其中H2用作还原剂及载气,CH3SiCl3提供C源和Si源,控制压强为200Pa,反应气体体积比为:H2/CH3SiCl3=5:1,反应时间为50h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体;
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体(聚碳硅烷,PCS)按照质量之比为3:1溶于二甲苯中制备出质量分数为66.7%的陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在先驱体溶液中,采用真空浸渍的方法浸渍60min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化12h,固化完成后将试样装入高温裂解炉,室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1600℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解
五、重复步骤四先驱体浸渍-固化-裂解过程6次使得复合材料致密化,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
本实施例制备的CF-SiCnws的比表面积为5.18m2/g,与CF(比表面积0.25m2/g)相比,是CF的20.7倍。
本实施例制备的复合材料压缩强度为25.77MPa,断裂韧性为6.19MPa·m1/2
图1-图4所示为实施例1所制备的CF-SiCnws多层次复合增强体的微观形貌照片,其中图1为放大2400倍的表面扫描照片,图2为放大80000倍的SiCnws表面扫描照片,图3为放大600倍的断面扫描照片,图4为放大5000倍的断面扫描照片。可以看出,SiC纳米线沿CF径向均匀生长在CF表面,SiC纳米线的直径为100nm左右,长度为5~15μm;相邻CF表面生长的SiC纳米线互相缠结,这有利于后期ZrC-SiC陶瓷先驱体的渗透附着;CF表面SiC纳米线的生长有效提高了CF的表面粗糙度和比表面积,增大了CF与陶瓷基体之间的界面结合能力。
图5所示为实施例2所制备的CF-SiCnws多层次复合增强体的X射线衍射(XRD)图谱。由图5可以看出,图谱中四个明显的衍射峰分别对应于面心立方结构SiC的(111),(200),(220),(311)晶面,同时也含有CF的C(002)峰。
图6-图11所示为实施例3所制备的CF-SiCnws/ZrC-SiC复合材料的微观形貌照片,其中,图6为浸渍裂解循环2次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片,图7为浸渍裂解循环2次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片,图8为浸渍裂解循环4次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片,图9为浸渍裂解循环4次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片,图10为浸渍裂解循环6次所得到的CF-SiCnws/ZrC-SiC复合材料的表面扫描照片,图11为浸渍裂解循环6次所得到的CF-SiCnws/ZrC-SiC复合材料的断面扫描照片。
由图6-图11可以看出,由于CF表面SiCnws的存在,实现了ZrC-SiC陶瓷基体在CF外侧的均匀包覆,扫描照片中观察不到裸露的CF;随着浸渍裂解循环次数的增多,CF-SiCnws外侧陶瓷层的厚度逐渐增大,CF-SiCnws/ZrC-SiC复合材料致密度逐渐增大。
图12所示为实施例3所制备的ZrC-SiC陶瓷基体的X射线衍射(XRD)图谱,图中表示ZrC,●表示SiC,▲表示t-ZrO2。由图12可以看出,当采用单相ZrC陶瓷作为基体时,经1600℃裂解后,产物中含有大量的目标产物ZrC,同时含有少量的t-ZrO2,这是由于ZrC先驱体聚合物中C/Zr比小于1,t-ZrO2未能全部转化为ZrC;而当采用两相的ZrC-SiC陶瓷作为基体,将PCS加入ZrC有机前驱体时,裂解产物中只含有结晶度很高的目标产物ZrC及SiC;可以看出,PCS的加入有效促进了体系中t-ZrO2的碳热还原反应,保证t-ZrO2完全转化为ZrC。
图13所示为实施例3所制备的CF-SiCnws/ZrC-SiC复合材料的压缩强度测试结果,其中表示CF/ZrC-SiC Z,表示CF-SiCnws/ZrC-SiC Z,表示CF/ZrC-SiC XY,表示CF-SiCnws/ZrC-SiC XY。
由图13可以看出,相对于未改性CF制得的CF/ZrC-SiC陶瓷复合材料,经SiCnws改性后的CF制得的CF-SiCnws/ZrC-SiC陶瓷复合材料具有更高的压缩强度;复合材料在Z方向上的压缩强度高于在XY方向上的压缩强度;随着浸渍裂解循环次数的增大,复合材料的压缩强度逐渐增大;当浸渍裂解循环6次时,CF-SiCnws/ZrC-SiC陶瓷复合材料在Z方向上的压缩强度可达到25.77MPa。

Claims (10)

1.一种碳纤维-碳化硅纳米线强韧化ZrC-SiC陶瓷复合材料的制备方法,其特征在于该方法包括以下步骤:
一、碳纤维表面预处理:将碳纤维三维编织物加工成立方块,在75℃沸腾的丙酮中浸泡24~48h,取出,干燥,在室温下,将干燥后的碳纤维编织物浸没在质量分数为75%的浓硝酸中,浸泡1~7h后取出,用去离子水洗涤至中性,然后干燥,得到表面预处理的碳纤维三维编织物;
二、碳纤维表面催化剂加载:以Ni(NO3)2或Co(NO3)2为溶质,以丙酮为溶剂配制出浓度为0.01~0.09mol/L的催化剂溶液,将步骤一得到的预处理的碳纤维三维编织物放入催化剂溶液中,室温条件下浸泡,之后将浸泡过的纤维编织物进行干燥;
三、碳纤维-碳化硅纳米线多层次增强体制备:采用化学气相渗透在碳纤维表面生长SiCnws
四、CF-SiCnws/ZrC-SiC超高温陶瓷复合材料的制备:将ZrC陶瓷先驱体及SiC陶瓷先驱体按照质量之比为(5~3):1溶于二甲苯中制备出陶瓷先驱体溶液,将步骤三得到的CF-SiCnws多层次增强体浸没在陶瓷先驱体溶液中,浸渍20~60min;然后将浸渍完陶瓷先驱体的试样置于温度为120℃的恒温干燥箱内固化,固化完成后将试样装入高温裂解炉中裂解;
五、重复步骤四6次,最终得到CF-SiCnws/ZrC-SiC超高温陶瓷复合材料。
2.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤一中第一次干燥具体方法为:置于80℃的鼓风干燥箱内干燥12~24h。
3.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤一中第二次干燥具体方法为:置于温度为120℃的恒温干燥箱内干燥24h。
4.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤二所述干燥具体方法为:置于温度为80℃的恒温干燥箱内干燥12h。
5.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤三中采用化学气相渗透在碳纤维表面生长SiCnws的具体工艺为:将加载有催化剂的碳纤维编织物放入化学气相渗透炉中,在高纯氩气气氛保护下升温至1000~1100℃,通入H2和甲基三氯硅烷,控制压强为200Pa,H2和甲基三氯硅烷的体积比为5:1,反应时间为50~100h,最后在氩气保护下降温至室温,制得CF-SiCnws多层次增强体。
6.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤四中所述陶瓷先驱体溶液的质量分数为60%~70%。
7.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤四所述SiC陶瓷先驱体为聚碳硅烷。
8.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤四中所述固化的时间为12h。
9.根据权利要求1所述的ZrC-SiC陶瓷复合材料的制备方法,其特征在于步骤四中裂解的具体工艺为:室温下向裂解炉中通入高纯Ar保持30min,在高纯Ar气氛下以10℃/min的升温速率将温度从室温升高到1000℃,保温30min,随后以5℃/min的升温速率将温度升高至1400~1600℃,保温1h,之后在Ar气氛保护下自然降温至室温完成裂解。
10.如权利要求1所述的ZrC-SiC陶瓷复合材料的应用,其特征在于ZrC-SiC陶瓷复合材料用于制备高超声速飞行器鼻锥、端头及飞机刹车片。
CN201610973336.5A 2016-10-27 2016-10-27 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用 Pending CN106495725A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610973336.5A CN106495725A (zh) 2016-10-27 2016-10-27 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610973336.5A CN106495725A (zh) 2016-10-27 2016-10-27 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN106495725A true CN106495725A (zh) 2017-03-15

Family

ID=58323656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610973336.5A Pending CN106495725A (zh) 2016-10-27 2016-10-27 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106495725A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法
CN108251052A (zh) * 2018-01-16 2018-07-06 哈尔滨工业大学 一种制备聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料的方法
CN108264884A (zh) * 2018-01-16 2018-07-10 哈尔滨工业大学 一种碳化硅纳米线/石墨烯泡沫电磁波吸收复合材料的制备方法
CN110042408A (zh) * 2019-04-23 2019-07-23 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN112624801A (zh) * 2020-12-18 2021-04-09 西北工业大学 制备(SiCNW)/(ZrC基体-涂层一体化)改性C/C复合材料的方法
CN114940622A (zh) * 2022-05-16 2022-08-26 醴陵市东方电瓷电器有限公司 一种气相沉淀法制备碳碳坩埚的工艺
CN115611660A (zh) * 2022-10-12 2023-01-17 南京工程学院 一种c/c复合材料表面抗1600℃风洞燃气冲刷涂层及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584350A (zh) * 2012-02-09 2012-07-18 中南大学 一种SiC/TaC陶瓷复相界面改性C/C复合材料的制备方法
CN103553616A (zh) * 2013-10-23 2014-02-05 中国科学院上海硅酸盐研究所 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN105541412A (zh) * 2016-01-27 2016-05-04 南京工程学院 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN106007766A (zh) * 2016-05-12 2016-10-12 中国人民解放军国防科学技术大学 Cf/MC-SiC复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584350A (zh) * 2012-02-09 2012-07-18 中南大学 一种SiC/TaC陶瓷复相界面改性C/C复合材料的制备方法
CN103553616A (zh) * 2013-10-23 2014-02-05 中国科学院上海硅酸盐研究所 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN105541412A (zh) * 2016-01-27 2016-05-04 南京工程学院 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN106007766A (zh) * 2016-05-12 2016-10-12 中国人民解放军国防科学技术大学 Cf/MC-SiC复合材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHUNHONG MA ET AL.: "Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis", 《MATERIALS AND DESIGN》 *
LIWEN YAN ET AL.: "Carbon Nanofiber Arrays Grown on Three-Dimensional Carbon Fiber Architecture Substrate and Enhanced Interface Performance of Carbon Fiber and Zirconium Carbide Coating", 《APPLIED MATERIALS & INTERFACES》 *
LIWEN YAN ET AL.: "Multifunctional Thermal Barrier Application Composite with SiC Nanowires Enhanced Structural Health Monitoring Sensitivity and Interface Performance", 《APPLIED MATERIALS & INTERFACES》 *
QINGGANG LI ET AL.: "Microstructures and mechanical properties of 3D 4-directional,Cf/ZrC–SiC composites using ZrC precursor and polycarbosilane", 《MATERIALS SCIENCE AND ENGINEERING B》 *
QINGGANG LI: "Fabrication and comparison of 3D Cf/ZrC–SiC composites using ZrC particles/polycarbosilane and ZrC precursor/polycarbosilane", 《CERAMICS INTERNATIONAL》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107032816A (zh) * 2017-05-10 2017-08-11 西北工业大学 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法
CN108251052A (zh) * 2018-01-16 2018-07-06 哈尔滨工业大学 一种制备聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料的方法
CN108264884A (zh) * 2018-01-16 2018-07-10 哈尔滨工业大学 一种碳化硅纳米线/石墨烯泡沫电磁波吸收复合材料的制备方法
CN110042408A (zh) * 2019-04-23 2019-07-23 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN110042408B (zh) * 2019-04-23 2021-04-16 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN112624801A (zh) * 2020-12-18 2021-04-09 西北工业大学 制备(SiCNW)/(ZrC基体-涂层一体化)改性C/C复合材料的方法
CN114940622A (zh) * 2022-05-16 2022-08-26 醴陵市东方电瓷电器有限公司 一种气相沉淀法制备碳碳坩埚的工艺
CN115611660A (zh) * 2022-10-12 2023-01-17 南京工程学院 一种c/c复合材料表面抗1600℃风洞燃气冲刷涂层及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106495725A (zh) 一种碳纤维‑碳化硅纳米线强韧化ZrC‑SiC陶瓷复合材料的制备方法及应用
Wang et al. A review of third generation SiC fibers and SiCf/SiC composites
Yin et al. Recent progress in 1D nanostructures reinforced carbon/carbon composites
CN106977217B (zh) 一种高强高韧性碳化硅纤维增强碳化硅陶瓷基复合材料的制备方法
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN109053207A (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN103553616B (zh) 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
CN106588060B (zh) 一种高致密的碳化硅陶瓷基复合材料及其制备方法
Luo et al. Effects of fabrication processes on the properties of SiC/SiC composites
CN107417291B (zh) 一种准各向同性SiC短切纤维毡增韧陶瓷基复合材料的制备方法
CN109206146B (zh) 碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法
CN107353025A (zh) 一种耐1200℃抗氧化的陶瓷基复合材料的制备方法
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
CN107311682A (zh) 一种SiC纳米线增强Cf/SiC陶瓷基复合材料及其制备方法
Liu et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing
CN113698221B (zh) 改性碳纤维增韧碳化硅陶瓷材料的制备方法及改性碳纤维增韧碳化硅陶瓷材料
CN111285699B (zh) 一种轻质可重复使用的防隔热材料及其制备方法
CN109721376A (zh) 一种SiCw定向高强韧化厚壁陶瓷基复合材料的制备方法
CN108530104A (zh) Pip结合原位生长石墨烯/氮化硼纳米管陶瓷基复合材料致密化方法
CN112624766B (zh) 一种氮化硅@碳化硅@氮化硼复合纤维毡的制备方法
Tang et al. Two-step method to deposit ZrO2 coating on carbon fiber: preparation, characterization, and performance in SiC composites
CN110028329A (zh) 一种高导热陶瓷基复合材料及其制备方法
Yang et al. Flexural behaviors and microstructures of SiC/SiC composites fabricated by microwave sintering assisted with heat molding process
Fan et al. Thermal stability and oxidation resistance of C/Al2O3 composites fabricated from a sol with high solid content

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315

RJ01 Rejection of invention patent application after publication