CN116134608A - 氮化硅基板及其制造方法 - Google Patents

氮化硅基板及其制造方法 Download PDF

Info

Publication number
CN116134608A
CN116134608A CN202180060239.6A CN202180060239A CN116134608A CN 116134608 A CN116134608 A CN 116134608A CN 202180060239 A CN202180060239 A CN 202180060239A CN 116134608 A CN116134608 A CN 116134608A
Authority
CN
China
Prior art keywords
silicon nitride
nitride substrate
thickness direction
thermal conductivity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180060239.6A
Other languages
English (en)
Inventor
田边惠介
有马聪平
奥野照久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Co Ltd
Original Assignee
Japan Fine Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021067895A external-priority patent/JP7434208B2/ja
Application filed by Japan Fine Ceramics Co Ltd filed Critical Japan Fine Ceramics Co Ltd
Publication of CN116134608A publication Critical patent/CN116134608A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种氮化硅基板。该氮化硅基板在厚度方向上具有优异的导热性。本发明的氮化硅基板在对基板面照射了X射线时,具有β‑Si3N4的X射线衍射峰,表示在氮化硅基板中沿厚度方向取向的β‑Si3N4颗粒的长轴(c轴)的比例的取向度fa在0~0.3的范围内,厚度方向的导热率为80W/m·K以上。

Description

氮化硅基板及其制造方法
[技术领域]
本发明涉及一种在厚度方向上具有优异的导热性的氮化硅基板及其制造方法。
[背景技术]
近年来,尝试了将氮化硅(Si3N4)基板应用于功率半导体等的半导体电路基板。作为半导体电路基板,使用了氧化铝(Al2O3)基板、氮化铝(A1N)基板。氧化铝基板的导热率为30W/m·K左右,但能够实现低成本化。另外,氮化铝基板能够实现导热率为160W/m·K以上的高导热化。另一方面,作为氮化硅基板,开发了导热率为50W/m·K以上的基板。
氮化硅基板与氮化铝基板相比导热率更低,但三点弯曲强度更优异,为500MPa以上。氮化铝基板的三点弯曲强度通常为300至400MPa左右,具有导热率越高则强度越下降的倾向。通过利用高强度的优点,氮化硅基板能够薄型化。通过基板的薄型化能够降低热阻,因此散热性得到提高。
利用这样的特性,氮化硅基板通过设置金属板等的电路部而作为电路基板被广泛使用。另外,还有作为国际公开号WO2011/010597号小册子(专利文献1)所示的压接结构用电路基板使用的方法
[现有技术文献]
专利文献
专利文献1:国际公开号WO2011/010597号小册子
[发明内容]
发明要解决的课题
然而,氮化硅基板如上所述与氮化铝等相比导热率更低,因此在用于半导体电路基板的情况下,无法将半导体芯片中产生的热有效地释放到散热器中,可以投入到半导体电路基板中的电力也受到了限制。因此,要求氮化硅基板特别是在厚度方向上具有更高的导热性。
本发明的目的在于提供一种在厚度方向上导热性优异的氮化硅基板。
用于解决课题的手段
为了解决上述课题,本发明涉及一种氮化硅基板,其特征在于:在对基板面照射了X射线时,具有β-Si3N4的X射线衍射峰,表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的长轴(c轴)的比例的取向度fa在0~0.3的范围内,厚度方向的导热率为80W/m·K以上。
fa=(P-P0)/(1-P0)......(1)。
在式(1)中,P由式(2)表示,是指在上述β型氮化硅基板中的(10°≤2θ≤80°)的范围内与c轴相关的所有X射线衍射线强度比(具体而言,以(101)面、(111)面、(201)面、(121)面、(301)面、(221)面、(131)面、(002)面、(401)面、(102)面、(112)面、(231)面、(202)面、(141)面、(212)面、(302)面、(501)面的X射线衍射强度为对象),P0由式(3)表示,是指在β型氮化硅粉末中的(10°≤2θ≤80°)的范围内与c轴相关的所有X射线衍射线强度比(具体而言,以(101)面、(111)面、(201)面、(121)面、(301)面、(221)面、(131)面、(002)面、(401)面、(102)面、(112)面、(231)面、(202)面、(141)面、(212)面、(302)面、(501)面的X射线衍射强度为对象)。
P=(I(101)+I(111)+I(201)+I(121)+I(301)+I(221)+I(131)+I(002)+I(401)+I(102)+I(112)+I(231)+I(202)+I(141)+I(212)+I(302)+I(501))/(I(100)+I(110)+I(200)+I(101)+I(120)+I(111)+I(300)+I(201)+I(220)+I(121)+I(130)+I(301)+I(400)+I(221)+I(131)+I(230)+I(002)+I(140)+I(401)+I(102)+I(112)+I(231)+I(202)+I(500)+I(141)+I(330)+I(212)+I(240)+I(302)+I(501))......(2)。
P0=(I0(101)+I0(111)+I0(201)+I0(121)+I0(301)+I0(221)+I0(131)+I0(002)+I0(401)+I0(102)+I0(112)+I0(231)+I0(202)+I0(141)+I0(212)+I0(302)+I0(501))/(I0(100)+I0(110)+I0(200)+I0(101)+I0(120)+I0(111)+I0(300)+I0(201)+I0(220)+I0(121)+I0(130)+I0(301)+I0(400)+I0(221)+I0(131)+I0(230)+I0(002)+I0(140)+I0(401)+I0(102)+I0(112)+I0(231)+I0(202)+I0(500)+I0(141)+I0(330)+I0(212)+I0(240)+I0(302)+I0(501))......(3)。
另外,本发明涉及一种氮化硅基板的制造方法,其特征在于,包括以下步骤:将硅粉末、烧结助剂和分散介质混合来制作浆料;由所述浆料成型片材体;在含氮气氛中对所述片材体进行热处理,以使所述片材体中的硅氮化,形成氮化硅;以及对包含所述氮化硅的所述片材体进行烧结,来制造氮化硅基板,至少在所述形成氮化硅的步骤中,控制烧结助剂的挥发,使氮化硅颗粒沿所述烧结助剂的移动方向即厚度方向取向。
根据本发明,在经过氮化步骤由硅得到氮化硅、进而经过烧结步骤得到氮化硅基板时,至少在得到氮化硅时促进烧结助剂的挥发。因此,通过由烧结助剂的挥发引起的扩散移动,生成的氮化硅β颗粒沿厚度方向取向。
结果,能够得到以下氮化硅基板:在对基板面照射了X射线时,具有β-Si3N4的X射线衍射峰,表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的长轴(c轴)的比例的取向度fa在0~0.3的范围内。该基板的厚度方向的导热率为80W/m·K以上,因此与现有的氮化硅基板相比具有高导热率。
因此,即使在用于半导体电路基板的情况下,也能够将半导体芯片中产生的热有效地释放到散热器中,能够提高可以投入到半导体电路基板中的电力。即,与氮化硅基板的优异的强度相结合,能够将本发明的氮化硅基板应用于以功率半导体为首的各种半导体电路基板。
优选地,在本发明的氮化硅基板及其制造方法中,烧结助剂为稀土氧化物和镁化合物中的至少一种。由此,能够促进由上述烧结助剂生成的液相的厚度方向的移动,因此能够更显著地发挥上述作用效果。
另外,优选地,在本发明的氮化硅基板中,基于三点法的抗弯强度为500MPa以上,厚度为0.1~1.2mm。由此,能够得到足够实用的强度的氮化硅基板。
并且,优选地,在本发明的氮化硅基板中,主面的大小为400~40000mm2、密度为3.15~3.40g/cm3、绝缘耐压为20kV/mm以上。在该情况下,能够得到足够实用的绝缘耐力的氮化硅基板。
发明效果
如以上说明的那样,根据本发明,能够提供在厚度方向上导热性优异的氮化硅基板。
[附图的简单说明]
图1是示出β-Si3N4的晶系的示意图。
图2是本发明的实施方式中的氮化硅基板的示意性截面图。
[具体实施方式]
图1是示出β-Si3N4的晶系的示意图,图2是本发明的实施方式中的氮化硅基板的示意性截面图。
本发明的氮化硅基板中,氮化硅的含量优选为85质量%以上,更优选为87质量%以上。由此,如以下说明的那样,由于氮化硅的晶系(晶体结构),氮化硅基板的厚度方向的导热率得到提高。如果氮化硅的含量小于85质量%,则上述氮化硅的比例会变少,因此氮化硅基板的厚度方向的导热率的提高会变得不充分。
另外,氮化硅的含量优选为95质量%以下,更优选为93质量%以下。如果氮化硅的含量超过95质量%,则氮化硅基板中含有的烧结助剂的含量会减少,因此液相的量会减少,朝向分离剂层中的垂直方向的液相的移动会减少,因此生成的氮化硅难以沿氮化硅基板的厚度方向取向,无法提高氮化硅基板的厚度方向的导热率。
在本发明的氮化硅基板中,烧结助剂的含量优选为5质量%以上,更优选为7质量%以上。通过以5质量%以上的比例含有烧结助剂,如以下说明的那样,在烧结来制造氮化硅基板时的液相的比例得到优化,氮化硅颗粒与厚度方向垂直地取向,并且氮化硅的比例得到优化,氮化硅基板的厚度方向上的导热率得到提高。
另一方面,在本发明的氮化硅基板中,烧结助剂的含量需要为15质量%以下。如果含有超过15质量%的烧结助剂,则氮化硅的比例会减少,因此源自氮化硅的氮化硅基板的厚度方向上的导热率会减少。
此外,本发明的氮化硅基板除了上述那样的氮化硅、烧结助剂以外,还包含不可避免的杂质。该不可避免的杂质例如是在氮化硅基板的制造过程中使用的作为分散介质的有机溶剂、粘合剂、增塑剂等添加剂等。
优选地,本发明的氮化硅基板在对基板面照射了X射线时,具有β-Si3N4的X射线衍射峰,表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的长轴(c轴)的比例的取向度fa在0~0.3的范围内。
如图1所示,β-Si3N4的晶系(晶体结构)是在侧面具有包含(200)面和(120)面的多个面、在端面具有(002)面的六棱柱状。因此,在对基板面照射了X射线时、表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的比例的取向度fa在0~0.3的范围内是指,在氮化硅基板的厚度方向上,β-Si3N4颗粒优先取向,在图2所示的形态下,柱状的β-Si3N4颗粒11大部分在氮化硅基板10内沿厚度方向取向。此外,参考数字12表示由烧结助剂等引起的晶界相。
本来,氮化硅颗粒的导热率在六棱柱的长度方向上比在其他方向上更高。即,在本发明中,例如如图2所示,六棱柱状的氮化硅(β-Si3N4)沿着氮化硅基板的厚度方向取向的比例变高。因此,在本发明中,能够在厚度方向上呈现高导热率。
另外,在表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的比例的取向度fa小于0、即在负的范围内时,向面方向的取向变强,无法充分地发挥上述作用效果,无法在氮化硅基板的厚度方向上得到较高的导热率。另外,取向度fa的上限在当前为0.3,但从导热率的观点出发,越高越优选。但是,如果该比变得过高,则厚度方向上的破坏强度等机械强度会降低。
在本发明的氮化硅基板中,厚度方向的导热率为80W/m·K以上,优选为85W/m·K以上。由此,即使在将本发明的氮化硅基板用于半导体电路基板的情况下,也能够将半导体芯片中产生的热有效地释放到散热器中,能够提高可以投入到半导体电路基板中的电力。即,与氮化硅基板的优异的强度相结合,能够将本发明的氮化硅基板应用于以功率半导体为首的各种半导体电路基板。
此外,上述导热率能够通过本发明的氮化硅基板满足上述氮化硅和烧结助剂的含量、以及X射线衍射的要求来得到。
另外,优选地,在本发明的氮化硅基板中,基于三点法的抗弯强度为500MPa以上,厚度为0.1~1.2mm。由此,能够得到足够实用的强度的氮化硅基板。另外,如后述的表1所示,在本发明的氮化硅基板中,作为基于三点法的抗弯强度,可以具有650MPa以上、优选700MPa以上。
并且,优选地,在本发明的氮化硅基板中,主面的大小为400~40000mm2、密度为3.15~3.40g/cm3、绝缘耐压为20kV/mm以上。在该情况下,能够得到足够实用的绝缘耐力的氮化硅基板。
接着,对本发明的氮化硅基板的制造方法进行说明。
首先,作为原料,准备硅粉末和烧结助剂粉末。硅粉末例如优选为中值粒径D50为50μm以下、杂质氧含量为0.6质量%以下。此外,烧结助剂的量相对于100质量份硅粉末优选为15质量份。
烧结助剂例如优选为中值粒径D50为10μm以下的金属化合物粉末。作为金属化合物粉末,可列举出稀土元素、镁、钛、铪等的氧化物,更优选为稀土元素氧化物、镁化合物(氧化镁等)。这些烧结助剂流动性优异,因此呈现出如以下说明那样的流体行为,容易使氮化硅(颗粒)沿厚度方向取向。
接着,在硅粉末和烧结助剂中添加分散介质,例如由球磨机进行介质分散、粉碎混合来制作浆料。作为分散介质,能够使用甲苯、乙醇、丁醇等有机溶剂。
接着,对于上述浆料,根据需要添加粘合剂、增塑剂等,进一步进行真空脱泡来进行浆料的粘度调整。作为粘合剂,可以使用甲基丙烯酸丁酯、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯等有机粘合剂。
接着,通过刮刀法、辊法等片材成型法将粘度调整后的浆料成型为片状,形成例如厚度0.2~1.5mm的片材体。此外,该片材体例如在将浆料涂布并形成在膜上后、在干燥后除去膜而得到。
接着,根据需要在该片材体的主面上涂布由陶瓷粉末和分散介质构成的浆料,形成分离剂层。此外,作为分散介质,与上述同样地,可以使用甲苯、乙醇、丁醇等有机溶剂。另外,作为涂布方法,可以使用喷雾法、棒涂法、丝网印刷法等。
接着,根据需要将片材体的脱脂例如在非氧化性气氛中、在600℃以下的温度下进行几小时。然后,通过将上述片材体在含氮气氛中、在1200~1500℃的温度下保持2~8小时,进行构成片材体的硅的氮化,形成氮化硅。此外,含氮气氛中的氮分压例如为0.05~0.5MPa。
接着,通过同样在含氮气氛中、在1800~1950℃的温度下保持6~24小时,进行氮化硅的烧结。
此外,在本发明中,在氮化烧结步骤中使用重石板,具有以下等方法:(1)在硅的氮化时,不使用重石板而使上表面成为自由的状态,仅在烧结时使用重石板;(2)使用多孔质板作为重石板,与硅的氮化和氮化硅的烧结连续地对成型体施加载荷;(3)或者使用致密板作为重石板,在成型体与致密板之间设置分离剂层。
分离剂层由陶瓷粉末构成,但只要在氮化和烧结中热稳定、且在烧结完成后能够分离致密板即可,没有特别限定,优选氮化硼。
另外,在使用氮化硼作为陶瓷粉末的情况下,其纯度优选为95%以上,其平均粒径优选为5~20μm。另外,分离剂层的厚度优选为10~60μm或20~60μm。
也能够将主面上形成有分离剂层的片材体隔着该分离剂层层叠多层。在该情况下,通过经过上述氮化和烧结的步骤,能够同时制造多个氮化硅基板。
结果,能够得到以下氮化硅基板:在对基板面照射了X射线时,具有β-Si3N4的X射线衍射峰,表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的长轴(c轴)的比例的取向度fa在0~0.3的范围内。
(实施例)
(实施例1)
使用球磨机将金属Si粉末和烧结助剂(稀土氧化物和镁化合物)、分散剂(聚氧化烯型分散剂)、以及分散介质(乙醇、丁醇)混合35小时。将金属Si粉末和烧结助剂的质量比调节为0.89∶0.11。然后,在该混合物中添加分散介质(乙醇、甲基乙基酮)、有机粘合剂(丙烯酸树脂)和增塑剂并进行再混合,从而制作浆料。接着,将制作的浆料从球磨机中取出,并转移至脱泡机后,通过真空脱泡调整浆料的粘度,成型为片状,制作100×100×t0.38mm的片材成型体。作为片材成型法,采用刮刀法。
然后,将由氮化硼构成的陶瓷浆料涂布在片材成型体上,从而在该片材成型体的表面形成厚度10μm的分离剂层,然后在非氧化性气氛中、在550℃下对片材成型体实施脱脂处理。
接着,对于在主面上形成有由氮化硼构成的分离剂层的片材成型体,在氮分压0.2MPa的含氮气氛中、在1400℃下实施2小时氮化处理。并且,在氮分压0.7MPa的含氮气氛中、在1820℃下烧结9小时,制作实施例1的氮化硅基板。
(实施例2)
将金属Si粉末和烧结助剂的质量比调节为0.895∶0.105,在片材成型体的表面形成厚度20μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例2的氮化硅基板。
(实施例3)
将金属Si粉末和烧结助剂的质量比调节为0.878∶0.122,在片材成型体的表面形成厚度25μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例3的氮化硅基板。
(实施例4)
将金属Si粉末和烧结助剂的质量比调节为0.885∶0.115,在片材成型体的表面形成厚度35μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例4的氮化硅基板。
(实施例5)
将金属Si粉末和烧结助剂的质量比调节为0.883∶0.117,在片材成型体的表面形成厚度35μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例5的氮化硅基板。
(实施例6)
将金属Si粉末和烧结助剂的质量比调节为0.885∶0.115,在片材成型体的表面形成厚度50μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例6的氮化硅基板。
(实施例7)
在片材成型体的表面没有分离剂层的状态下对片材成型体实施脱脂处理,在烧结过程中,将片材成型体载置于气孔率0%的致密板,除此以外,按照与实施例1同样的制作条件制作实施例7的氮化硅基板。
(实施例8)
在片材成型体的表面形成气孔率40%的多孔质板来代替分离剂层,在该状态下对片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例8的氮化硅基板。
(实施例9)
在片材成型体的表面形成气孔率15%的半致密板来代替分离剂层,在该状态下对片材成型体实施脱脂处理,除此以外,按照与实施例1同样的制作条件制作实施例8的氮化硅基板。
(实施例10)
将金属Si粉末和烧结助剂的质量比调节为0.921∶0.079,制作240×180×t0.29mm的片材成型体,在片材成型体的表面形成厚度20μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,在氮分压0.7MPa的含氮气氛中、在1840℃下烧结12小时,除此以外,按照与实施例1同样的制作条件制作实施例10的氮化硅基板。
(实施例11)
将金属Si粉末和烧结助剂的质量比调节为0.92∶0.08,在氮分压0.7MPa的含氮气氛中、在1830℃下烧结12小时,除此以外,按照与实施例10同样的制作条件制作实施例11的氮化硅基板。
(实施例12)
将金属Si粉末和烧结助剂的质量比调节为0.926∶0.074,制作240×180×t0.38mm的片材成型体,在片材成型体的表面形成厚度10μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例11同样的制作条件制作实施例12的氮化硅基板。
(实施例13)
将金属Si粉末和烧结助剂的质量比调节为0.927∶0.073,在片材成型体的表面形成厚度20μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,除此以外,按照与实施例12同样的制作条件制作实施例13的氮化硅基板。
(比较例)
(比较例1)
将金属Si粉末和烧结助剂的质量比调节为0.909∶0.091,制作100×100×t0.38mm的片材成型体,在片材成型体的表面形成厚度35μm的分离剂层,在该状态下对该片材成型体实施脱脂处理,在氮分压0.7MPa的含氮气氛中、在1820℃下烧结9小时,除此以外,按照与实施例1同样的制作条件制作比较例1的氮化硅基板。
(比较例2)
将金属Si粉末和烧结助剂的质量比调节为0.904∶0.096,除此以外,按照与比较例1同样的制作条件制作比较例2的氮化硅基板。
(评价方法)
如下评价各实施例和各比较例的氮化硅基板的特性。
(基于X射线衍射峰强度的取向度)
X射线衍射是使用在40kV、15mA下激发的Cu-Kα射线、以0.01°的步长进行基于θ-2θ法的扫描而进行测定。
(元素分析)
Si、N、Mg和稀土元素的定量分析使用Rigaku公司制ZSX PrimusII、通过荧光X射线分析法来进行。另一方面,O的分析使用HORIBA公司制EMGA-920、通过惰性气体熔解-非分散型红外线吸收(NDIR)法来进行。根据Si与N的量和量比对SiN的含量进行计算,根据Mg与O的量和量比、以及稀土元素与O的量和量比对烧结助剂的量进行计算。
(导热率)
热扩散率的测定通过闪光法、使用NETZSCH公司制LFA 467HyperFlash装置来进行。在本装置中,通过照射脉冲宽度20μsec的氙闪光,利用IR检测器对AC温度响应进行测定,根据该温度响应的振幅和相对于位置的衰减率对热扩散率进行计算。在10mm×10mm的尺寸的试验片的表面实施黑化处理后实施测定。
(密度测定)
密度测定通过阿基米德法来进行。
(基于三点法的抗弯强度)
关于三点弯曲强度,对于4mm×35mm的试验片,按照JIS R1601:2008,在室温(25℃)下作为两支点间的间隔为30mm、从两支点的中间点弯曲时的三点弯曲强度进行测定,取十个试验片的三点弯曲强度的平均值。
表1中汇总示出各实施例和各比较例的氮化硅基板的一部分制作条件和该评价结果。
[表1]
Figure BDA0004113744460000121
在片材体的单个主面上形成了分离剂层的实施例1至5、10至13和形成了多孔质板的实施例6至9中均发现:表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的比例的取向度fa在0~0.3的范围内,厚度方向的导热率为80W/m·K以上。
[符号说明]
10:氮化硅基板;11:氮化硅颗粒;12:晶界相

Claims (7)

1.一种氮化硅基板,其特征在于,
在对基板面照射了X射线时,具有β-Si3N4的X射线衍射峰,
表示在氮化硅基板中沿厚度方向取向的β-Si3N4颗粒的长轴、即c轴的比例的取向度fa包含在0~0.3的范围内,
厚度方向的导热率为80W/m·K以上。
2.根据权利要求1所述的氮化硅基板,其特征在于,
所述取向度fa在0.0072~0.2854的范围内,所述导热率在80.0W/m·K~121.6W/m·K的范围内。
3.根据权利要求2所述的氮化硅基板,其特征在于,
所述取向度fa在0.0479~0.0929的范围内,所述导热率在111.2W/m·K~121.6W/m·K的范围内。
4.根据权利要求1至3中任一项所述的氮化硅基板,其特征在于,
包含稀土氧化物和镁化合物作为烧结助剂。
5.根据权利要求1至4中任一项所述的氮化硅基板,其特征在于,
基于三点法的抗弯强度为500MPa以上,厚度为0.1mm~1.2mm。
6.根据权利要求1至5中任一项所述的氮化硅基板,其特征在于,
主面的大小为400mm2~40000mm2、密度为3.15g/cm3~3.40g/cm3、绝缘耐压为20kV/mm以上。
7.一种氮化硅基板的制造方法,其特征在于,包括:
将硅粉末、烧结助剂和分散介质混合来制作浆料的步骤;
成型步骤,由所述浆料制作片材成型体;
氮化处理步骤,在含氮气氛中对所述片材成型体进行热处理,以使构成所述片材成型体的硅氮化;以及
烧结步骤,对经过了所述氮化处理步骤的所述片材体进行烧结,来制作氮化硅基板,
至少在所述氮化处理步骤中,促进烧结助剂的挥发,使氮化硅颗粒沿该挥发方向即厚度方向取向。
CN202180060239.6A 2020-07-29 2021-07-08 氮化硅基板及其制造方法 Pending CN116134608A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020128406 2020-07-29
JP2020-128406 2020-07-29
JP2021067895A JP7434208B2 (ja) 2020-07-29 2021-04-13 窒化珪素基板およびその製造方法
JP2021-067895 2021-04-13
PCT/JP2021/025799 WO2022024707A1 (ja) 2020-07-29 2021-07-08 窒化珪素基板およびその製造方法

Publications (1)

Publication Number Publication Date
CN116134608A true CN116134608A (zh) 2023-05-16

Family

ID=80037334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180060239.6A Pending CN116134608A (zh) 2020-07-29 2021-07-08 氮化硅基板及其制造方法

Country Status (4)

Country Link
JP (2) JP2024026590A (zh)
CN (1) CN116134608A (zh)
DE (1) DE112021004004T5 (zh)
WO (1) WO2022024707A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157784A1 (ja) * 2022-02-16 2023-08-24 株式会社Maruwa 窒化ケイ素焼結体、および、窒化ケイ素焼結体の製造方法
JP7455184B1 (ja) 2022-12-23 2024-03-25 株式会社Maruwa 窒化ケイ素薄板及び窒化ケイ素樹脂複合板

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121076A (ja) * 2000-10-10 2002-04-23 Kyocera Corp セラミックスの製造方法とそれを用いて作製したセラミック基板
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP2009218322A (ja) * 2008-03-10 2009-09-24 Hitachi Metals Ltd 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP2012236743A (ja) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp 一軸配向した針状Si3N4粒子を含有するセラミックス焼結板
JP2014073937A (ja) * 2012-10-04 2014-04-24 Hitachi Metals Ltd 窒化珪素焼結体およびそれを用いた窒化珪素基板並びにその製造方法
JP2015063440A (ja) * 2013-08-27 2015-04-09 公益財団法人神奈川科学技術アカデミー 窒化ケイ素セラミックスおよびその製造方法、半導体素子
JP2016040224A (ja) * 2015-09-03 2016-03-24 日立金属株式会社 窒化珪素質セラミックス焼結基板の製造方法
CN107428619A (zh) * 2015-03-05 2017-12-01 地方独立行政法人神奈川县立产业技术综合研究所 结晶取向陶瓷及其制造方法、散热材料
JP2018184333A (ja) * 2017-04-26 2018-11-22 日立金属株式会社 窒化珪素基板の製造方法、及び窒化珪素基板
JP2019052072A (ja) * 2017-09-19 2019-04-04 株式会社Maruwa 窒化ケイ素焼結体基板、電子装置、及び、窒化ケイ素焼結体基板の製造方法
JP2019059639A (ja) * 2017-09-26 2019-04-18 日立金属株式会社 窒化ケイ素焼結基板
CN110343389A (zh) * 2019-06-04 2019-10-18 深圳市飞荣达科技股份有限公司 各向异性绝缘导热组合物及其制备方法
WO2019235594A1 (ja) * 2018-06-07 2019-12-12 宇部興産株式会社 板状の窒化ケイ素質焼結体およびその製造方法
CN111249638A (zh) * 2019-11-20 2020-06-09 华南理工大学 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501317B2 (ja) * 1995-07-21 2004-03-02 日産自動車株式会社 高熱伝導率窒化ケイ素質焼結体および窒化ケイ素質焼結体製絶縁基板
US8916961B2 (en) 2009-07-24 2014-12-23 Kabushiki Kaisha Toshiba Insulation sheet made from silicon nitride, and semiconductor module structure using the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121076A (ja) * 2000-10-10 2002-04-23 Kyocera Corp セラミックスの製造方法とそれを用いて作製したセラミック基板
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
WO2006118003A1 (ja) * 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
US20090039477A1 (en) * 2005-04-28 2009-02-12 Hitachi Metals, Ltd. Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module
JP2009218322A (ja) * 2008-03-10 2009-09-24 Hitachi Metals Ltd 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP2012236743A (ja) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp 一軸配向した針状Si3N4粒子を含有するセラミックス焼結板
JP2014073937A (ja) * 2012-10-04 2014-04-24 Hitachi Metals Ltd 窒化珪素焼結体およびそれを用いた窒化珪素基板並びにその製造方法
JP2015063440A (ja) * 2013-08-27 2015-04-09 公益財団法人神奈川科学技術アカデミー 窒化ケイ素セラミックスおよびその製造方法、半導体素子
US20180044568A1 (en) * 2015-03-05 2018-02-15 Kanagawa Institute Of Industrial Science And Technology Crystal oriented ceramicscrystal oriented ceramics, the production process, and heat radiation material
CN107428619A (zh) * 2015-03-05 2017-12-01 地方独立行政法人神奈川县立产业技术综合研究所 结晶取向陶瓷及其制造方法、散热材料
JP2016040224A (ja) * 2015-09-03 2016-03-24 日立金属株式会社 窒化珪素質セラミックス焼結基板の製造方法
JP2018184333A (ja) * 2017-04-26 2018-11-22 日立金属株式会社 窒化珪素基板の製造方法、及び窒化珪素基板
JP2019052072A (ja) * 2017-09-19 2019-04-04 株式会社Maruwa 窒化ケイ素焼結体基板、電子装置、及び、窒化ケイ素焼結体基板の製造方法
JP2019059639A (ja) * 2017-09-26 2019-04-18 日立金属株式会社 窒化ケイ素焼結基板
WO2019235594A1 (ja) * 2018-06-07 2019-12-12 宇部興産株式会社 板状の窒化ケイ素質焼結体およびその製造方法
CN110343389A (zh) * 2019-06-04 2019-10-18 深圳市飞荣达科技股份有限公司 各向异性绝缘导热组合物及其制备方法
CN111249638A (zh) * 2019-11-20 2020-06-09 华南理工大学 一种基于全纤维驻极体发电机的高效防护口罩及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. BELMONTE;蒋德伦;蒋修治;: "彩色Si_3N_4陶瓷的金刚石涂层", 超硬材料工程, no. 06, 30 December 2005 (2005-12-30) *
陈代荣;韩伟健;李思维;卢振西;邱海鹏;邵长伟;王重海;王浩;张铭霞;周新贵;朱陆益;: "连续陶瓷纤维的制备、结构、性能和应用:研究现状及发展方向", 现代技术陶瓷, no. 03, 15 June 2018 (2018-06-15) *

Also Published As

Publication number Publication date
DE112021004004T5 (de) 2023-06-01
JP2024026590A (ja) 2024-02-28
JP2024083396A (ja) 2024-06-21
WO2022024707A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
JP4997431B2 (ja) 高熱伝導窒化ケイ素基板の製造方法
KR101483921B1 (ko) 냉각판, 그 제조방법 및 반도체 제조 장치용 부재
US8178455B2 (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
JP2018184333A (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
JP2020528861A (ja) 窒化ケイ素焼結体製造のためのテープキャスティング用スラリー組成物
JP5836522B2 (ja) 窒化ケイ素基板の製造方法
CN116134608A (zh) 氮化硅基板及其制造方法
WO2022196693A1 (ja) 窒化珪素基板
KR102125964B1 (ko) 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물
WO2005049525A1 (ja) 高熱伝導性窒化アルミニウム焼結体
JP4089974B2 (ja) 窒化ケイ素質粉末、窒化ケイ素質焼結体及びこれを用いた電子部品用回路基板
JP2022159414A (ja) 窒化珪素基板
JP7434208B2 (ja) 窒化珪素基板およびその製造方法
CN112912356B (zh) 氮化硅基板的制造方法以及氮化硅基板
JP4593062B2 (ja) 窒化アルミニウム焼結体及びその製造方法
JP4615873B2 (ja) 窒化アルミニウム焼結体及びその製造方法
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP2000327430A (ja) 窒化アルミニウム焼結体とその製造方法
JP2001354479A (ja) 窒化アルミニウム焼結体およびその製造方法
JP4564257B2 (ja) 高熱伝導性窒化アルミニウム焼結体
JP5265859B2 (ja) 窒化アルミニウム焼結体
JP3929335B2 (ja) 窒化アルミニウム焼結体およびその製造方法
JP2022094464A (ja) 窒化シリコン用グリーンシート、および、その製造方法
JP2022145475A (ja) 窒化珪素基板
JP2023030139A (ja) 窒化珪素基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination