CN107428619A - 结晶取向陶瓷及其制造方法、散热材料 - Google Patents

结晶取向陶瓷及其制造方法、散热材料 Download PDF

Info

Publication number
CN107428619A
CN107428619A CN201680013227.7A CN201680013227A CN107428619A CN 107428619 A CN107428619 A CN 107428619A CN 201680013227 A CN201680013227 A CN 201680013227A CN 107428619 A CN107428619 A CN 107428619A
Authority
CN
China
Prior art keywords
particle
ceramics
crystalline orientation
magnetic
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680013227.7A
Other languages
English (en)
Other versions
CN107428619B (zh
Inventor
高桥拓实
多多见纯
多多见纯一
杉本奈菜子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAMA STATE UNIV
Kanagawa Academy of Science and Technology
Yokohama National University NUC
Kanagawa Institute of Industrial Science and Technology
Original Assignee
YOKOKAMA STATE UNIV
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAMA STATE UNIV, Kanagawa Institute of Industrial Science and Technology filed Critical YOKOKAMA STATE UNIV
Publication of CN107428619A publication Critical patent/CN107428619A/zh
Application granted granted Critical
Publication of CN107428619B publication Critical patent/CN107428619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62881Coating fibres with metal salts, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明的结晶取向陶瓷的制造方法包括:第一工序,该工序形成由具有磁化率各向异性的磁各向异性粒子(A)和种粒子(B)构成的复合粒子(C),所述种粒子(B)具有所述磁各向异性粒子(A)的1/10以下的磁化率各向异性,并且由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成;第二工序,该工序将包含前述复合粒子(C)的原料粉(D)加入溶剂中,配制包含所述原料粉(D)和所述溶剂的浆料;第三工序,该工序将前述浆料置于0.1特斯拉(T)以上的静磁场中,在使前述种粒子(B)的长轴方向的结晶轴沿一个方向取向的状态下,对前述浆料进行干燥,对成型体进行成型;以及第四工序,该工序对前述成型体进行烧结。

Description

结晶取向陶瓷及其制造方法、散热材料
技术领域
本发明涉及结晶取向陶瓷及其制造方法、散热材料。
本申请基于2015年3月5日在日本申请的日本特愿2015-043862号并要求优先权,在此将其内容援用于本文。
背景技术
近年来,正在研究通过使陶瓷的结晶沿特定方向取向,使陶瓷具有各向异性,大幅度提高陶瓷的特性。
作为制造结晶沿特定方向取向的陶瓷的方法,例如已知如下方法。对将α型氧化铝粒子和溶剂混合而成的α型氧化铝浆料施加1特斯拉(T)以上优选3特斯拉(T)以上的强磁场,使α型氧化铝粒子的易磁化轴沿磁场方向取向。易磁化轴是指抗磁性磁化率小的结晶轴,在α型氧化铝的情况下,易磁化轴是c轴。接着,制造由c轴沿磁场方向取向的α型氧化铝粒子构成的α型氧化铝成型体,对α型氧化铝成型体进行烧结。由此,制造由c轴沿磁场方向取向的α型氧化铝粒子构成的取向性氧化铝陶瓷。根据该方法,能够容易地制造α型氧化铝粒子取向而成的任意形状的取向性氧化铝陶瓷。
在使用这种磁场的取向方法中,置于磁场中的材料(粒子)产生的磁化能量的各向异性成为取向的驱动力,当磁化能量的各向异性比热振动能量更大时,粒子能够进行取向。由于磁化能量与粒子体积成比例,因此,粒子越大,越容易取向。
现有技术文献
专利文献
专利文献1:日本特开2002-53367号公报。
发明内容
发明要解决的课题
然而,在专利文献1的方法中,在1特斯拉(T)以上的磁场中能够进行取向,但包含氧化铝的大量陶瓷材料的抗磁性磁化率的各向异性非常小。因此,专利文献1的方法的问题在于,磁力矩非常小,取向需要花费过多时间。
另外,当对象材料的要取向的结晶轴是难磁化轴(抗磁性磁化率最大的结晶轴)时,在静磁场中不能沿一个方向取向。当使难磁化轴取向时,使用在平面上施加磁场的旋转磁场。然而,当在旋转磁场中对陶瓷进行成型时,需要在使材料在磁场中旋转的同时进行成型。因此,该成型方法是间歇式,不适合大量生产。
本发明是鉴于上述情况完成的,其目的在于,提供能够在静磁场且低磁场中制造结晶取向陶瓷的结晶取向陶瓷及其制造方法、散热材料。
解决课题的技术手段
本发明的结晶取向陶瓷的制造方法,其特征在于,其包括:第一工序,该工序形成由具有磁化率各向异性的磁各向异性粒子(A)和种粒子(B)构成的复合粒子(C),所述种粒子(B)具有所述磁各向异性粒子(A)的1/10以下的磁化率各向异性,并且由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成;第二工序,该工序将包含前述复合粒子(C)的原料粉(D)加入溶剂中,配制包含前述原料粉(D)和前述溶剂的浆料;第三工序,该工序将前述浆料置于0.1特斯拉(T)以上的静磁场中,在使前述种粒子(B)的长轴方向的结晶轴沿一个方向取向的状态下,对前述浆料进行干燥,对成型体进行成型;以及第四工序,该工序对前述成型体进行烧结。
在本发明的结晶取向陶瓷的制造方法中,优选前述原料粉(D)包含与前述种粒子(B)化学组成相同的粒子。
在本发明的结晶取向陶瓷的制造方法中,优选前述种粒子(B)的平均粒径为0.5μm以上,长轴径相对于短轴径的比(长轴径/短轴径)为1.6以上。
在本发明的结晶取向陶瓷的制造方法中,优选前述磁各向异性粒子(A)的平均粒径为前述种粒子(B)的短轴径的1/10以下。
在本发明的结晶取向陶瓷的制造方法中,在前述第一工序中,前述磁各向异性粒子(A)相对于前述种粒子(B)的配合比例为前述种粒子(B)的总量的0.1体积%以上。
在本发明的结晶取向陶瓷的制造方法中,优选通过对前述成型体进行烧结,得到陶瓷中的粒子沿与前述种粒子(B)的长轴方向的结晶轴相同的方向进行取向,并且陶瓷中的粒子的与前述种粒子(B)的长轴方向相同的结晶轴的取向度为0.2以上的结晶取向陶瓷。
本发明的结晶取向陶瓷,其特征在于,其通过本发明的结晶取向陶瓷的制造方法得到。
本发明的散热材料,其特征在于,其包括粒子的长轴方向的结晶轴沿一个方向取向的结晶取向陶瓷。
发明的效果
根据本发明,使用静磁场且低磁场能得到结晶轴沿一个方向取向的致密的结晶取向陶瓷。
附图说明
图1示出了本发明的结晶取向陶瓷的制造方法中的复合粒子的一个实例,其是表示磁各向异性粒子附着在柱状粒子(种粒子)的侧面的状态的示意图。
图2示出了本发明的结晶取向陶瓷的制造方法中的复合粒子的另一个实例,其是表示磁各向异性粒子附着在板状粒子(种粒子)的侧面的状态的示意图。
图3是表示基于用扫描电子显微镜观察到的种粒子、磁各向异性粒子的图像数据,通过线条提取种粒子、磁各向异性粒子的粒子形状而得到的图像数据的图。
图4是说明用解析软件对图3所示的图像数据进行二值化后,以提取的粒子为对象计量绝对最大长度AB、图案宽度CD的方法的图。
图5是表示在本发明的结晶取向陶瓷的制造方法中将由种粒子和磁各向异性粒子构成的复合粒子置于静磁场中时、种粒子的长轴方向的结晶轴沿静磁场的方向取向的状态的一个实例的示意图。
图6是表示在本发明的结晶取向陶瓷的制造方法中将由种粒子和磁各向异性粒子构成的复合粒子置于静磁场中时、种粒子的长轴方向的结晶轴沿静磁场的方向取向的状态的另一个实例的示意图。
图7示出了通过本发明的结晶取向陶瓷的制造方法得到的结晶取向陶瓷的一实施方式,其是表示板状的结晶取向陶瓷的沿厚度方向的截面的示意图。
图8A是表示实施例中对β氮化硅粒子和石墨烯粒子进行机械处理前的状态的扫描电子显微镜图像。
图8B是表示由β氮化硅粒子和石墨烯粒子构成的机械处理后的复合粒子的扫描电子显微镜图像。
图9是表示实施例1的氮化硅陶瓷中对作为前驱体的成型体进行成型时与磁场垂直的面的X射线衍射图案的图。
图10是表示实施例1的氮化硅陶瓷与厚度方向平行的截面的扫描电子显微镜图像。
图11是表示比较例1的氮化硅陶瓷中对作为前驱体的成型体进行成型时与厚度方向平行的面的X射线衍射图案的图。
图12是表示比较例2的氮化硅陶瓷中对作为前驱体的成型体进行成型时与磁场垂直的面的X射线衍射图案的图。
具体实施方式
对本发明的结晶取向陶瓷及其制造方法、散热材料的实施方式进行说明。
需要说明的是,本实施方式是为了更好地理解发明宗旨而具体说明的实施方式,除非特别说明,并不限定本发明。
[结晶取向陶瓷的制造方法]
本实施方式的结晶取向陶瓷的制造方法包括:第一工序,该工序形成由具有磁化率各向异性的磁各向异性粒子(A)和种粒子(B)构成的复合粒子(C),所述种粒子(B)具有所述磁各向异性粒子(A)的1/10以下的磁化率各向异性,并且由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成;第二工序,该工序将包含前述复合粒子(C)的原料粉(D)加入溶剂中,配制包含所述原料粉(D)和所述溶剂的浆料;第三工序,该工序将前述浆料置于0.1特斯拉(T)以上的静磁场中,在使前述种粒子(B)的长轴方向的结晶轴沿一个方向取向一个方向的状态下,对前述浆料进行干燥,形成成型体;以及第四工序,该工序对前述成型体进行烧结。
<第一工序>
在第一工序中,将磁各向异性粒子(A)和种粒子(B)在粒子复合化装置内预备混合后,使装置内的刀片高速旋转,从而通过机械处理形成由磁各向异性粒子(A)和种粒子(B)构成的复合粒子,所述机械处理使压密剪切力作用于进入到刀片与容器壁之间的狭窄空隙的磁各向异性粒子(A)与种粒子(B)之间。
第一工序中得到的复合粒子(C)由种粒子(B)的一次粒子和磁各向异性粒子(A)的一次粒子构成。
在第一工序中,例如,如图1所示,使板状(图1中,为六角板状)的磁各向异性粒子20附着在柱状(图1中,为六角柱状)的种粒子10的表面(主要为侧面10a),形成由种粒子10和附着在其表面的磁各向异性粒子20构成的复合粒子30。详细地,以磁各向异性粒子20的表面(主要为一个面(与厚度方向垂直的面)20a)与种粒子10的侧面10a接触的方式使磁各向异性粒子20附着在种粒子10上。
另外,在第一工序中,例如,如图2所示,使板状(图2中,为六角板状)的磁各向异性粒子50附着在板状(图2中,为六角板状)的种粒子40的表面(主要为一个面(与厚度方向垂直的面)40a),形成由种粒子40和附着在其表面的磁各向异性粒子50构成的复合粒子50。详细地,以磁各向异性粒子50的表面(主要为一个面(与厚度方向垂直的面)50a)与种粒子40的一个面40a接触的方式使磁各向异性粒子50附着在种粒子40上。
除此之外,能够使用在溶液中对种粒子(B)的表面进行改质而使磁各向异性粒子(A)进行化学或静电复合化的方法、使用溅射装置将成为磁各向异性粒子(A)的物质包覆在种粒子(B)的表面的方法等。
磁各向异性粒子(A)相对于种粒子(B)的配合比例优选为种粒子(B)的总量的0.1体积%以上,更优选为1体积%以上,进一步优选为1体积%~100体积%。
如果磁各向异性粒子(A)相对于种粒子(B)的配合比例为种粒子(B)的总量的0.1体积%以上,则在通过本实施方式的结晶取向陶瓷的制造方法得到的结晶取向陶瓷中,能够将种粒子(B)的长轴方向的结晶轴的取向度设为0.2以上。
种粒子(B)是成为通过本实施方式的结晶取向陶瓷的制造方法得到的结晶取向陶瓷的原料的粒子。
种粒子(B)是具有要取向的结晶轴相当于其短轴或长轴的各向异性形状的粒子。
作为种粒子(B)的形状,没有特别限定,可举例椭圆球状、柱状、板状等。
作为种粒子(B),可举例氮化硅(Si3N4)、羟基磷灰石(Ca10(PO4)6(OH)2)、氧化铝(Al2O3)、氮化硼(BN)、氧化钇(Y2O3)、氧化锌(ZnO)、碳酸钙(CaCO3)等无机化合物的粒子。
对于种粒子(B),当假定用激光衍射法测定的一次粒子为球状时,其平均粒径优选为0.5μm以上,更优选为1.0μm~5.0μm。
通过将种粒子(B)的平均粒径设为0.5μm以上,能够使种粒子(B)的长轴沿结晶取向陶瓷的结晶轴方向进行取向,所述结晶取向陶瓷通过本实施方式的结晶取向陶瓷的制造方法得到。
对于种粒子(B),长轴径相对于短轴径的比(长轴径/短轴径)、即长短径比优选为1.6以上。
通过将种粒子(B)的长短径比设为1.6以上,能够使种粒子(B)的长轴沿结晶取向陶瓷的结晶轴方向进行取向,所述结晶取向陶瓷通过本实施方式的结晶取向陶瓷的制造方法得到。
需要说明的是,当种粒子(B)的形状是图1所示的六角柱状时,种粒子10的短轴径是种粒子10的六角形底面(上表面)10b的对角线长度D1,种粒子10的长轴径是种粒子10的长度(高度)L1。另外,当种粒子(B)的形状是图2所示的六角板状时,种粒子40的短轴径是种粒子40的厚度T2,种粒子40的长轴径是种粒子40的一个面40a的对角线长度D2
种粒子(B)具有后述磁各向异性粒子(A)的1/10以下的磁化率各向异性。
由于种粒子(B)的磁化率各向异性为磁各向异性粒子(A)的1/10以下,因此,对由磁各向异性粒子(A)和种粒子(B)构成的复合粒子(C)施加基于磁场的磁力时,能够使磁力主要作用于磁各向异性粒子(A)。由此,基于通过施加的磁场的磁力能够使种粒子(B)(复合粒子(C))旋转。
磁化率是表示施加外部磁场时引起磁极化的容易程度的物理量。另外,磁化率各向异性是指各向异性结晶中各结晶轴方向间的磁化率的大小不同。
磁各向异性粒子(A)是基于通过施加的磁场的磁力发挥使种粒子(B)旋转的作用的粒子。磁各向异性粒子(A)是磁化率的绝对值及其各向异性比种粒子(B)更大的粒子。
在本实施方式的结晶取向陶瓷的制造方法中,磁各向异性粒子(A)的磁化率各向异性优选为20(×10-9emu/g)以上。
由于磁各向异性粒子(A)的磁化率各向异性为20(×10-9emu/g)以上,因此,成为比公知范围内的无机材料的抗磁性磁化率各向异性大10倍以上。另一方面,对于公知范围内的一部分无机材料,由于磁各向异性粒子(A)的磁化率各向异性小于20(×10-9emu/g),因此推测其抗磁性磁化率各向异性的差小而不能得到对于取向充分的磁力矩。
作为磁各向异性粒子(A),例如,可举例石墨烯粒子、石墨粒子、碳纳米管、噻吩粒子、硅烯(silicene)粒子、硫酸钙二水合物粒子等。但是,必须是在对包含复合粒子(C)的成型体进行烧结前能够容易地除去、或者在对该成型体进行烧结时不抑制致密化的物质。
此外,当磁各向异性粒子(A)的形状是图1所示的六角板状时,磁各向异性粒子20的短轴径是磁各向异性粒子20的厚度t1,磁各向异性粒子20的长轴径是磁各向异性粒子20的一个面20a的对角线的长度d1。另外,当磁各向异性粒子(A)的形状是图2所示的六角板状时,磁各向异性粒子50的短轴径是磁各向异性粒子50的厚度t2,磁各向异性粒子50的长轴径是磁各向异性粒子50的一个面50a的对角线的长度d2
对于磁各向异性粒子(A),优选其平均粒径比种粒子(B)的平均粒径更小,优选为种粒子(B)的平均粒径的1/10以下。
此外,种粒子(B)、磁各向异性粒子(A)的粒径如下求出。
如图3所示,基于用扫描电子显微镜观察到的图像数据,制成通过线条提取粒子形状而成的图像数据。
用解析软件(数字儿童有限公司(デジタル·ビーイング·キッズ社,DigitalBeing Kids Limited Company)制的Pop Imaging)对该图像数据进行二值化后,以提取的全部粒子为对象,计量图4所示的绝对最大长度AB、图案宽度CD。绝对最大长度AB是图案区域的轮廓线上任意两点之间的距离的最大值。图案宽度CD是在绝对最大长度AB的方向上夹着图案区域的两条直线之间的距离,长短径比是绝对最大长度AB相对于图案宽度CD的比(AB/CD)。粒子的测定数为100个以上。其中,在全部粒子的长短径比AB/CD中,对于上层10%的粒子,将绝对最大长度AB的平均值设为粒子的长轴径,将图案宽度CD的平均值设为粒子的短轴径。
<第二工序>
在第二工序中,将包含第一工序中形成的复合粒子(C)的原料粉(D)加入溶剂中,配制包含原料粉(D)和溶剂的浆料。
原料粉(D)可以包含化学组成与第一工序中使用的种粒子(B)相同的粒子(种粒子粉)。
在第二工序中,详细地说,用磁力搅拌器、搅拌翼等搅拌装置对包含复合粒子(C)的原料粉(D)和溶剂进行搅拌、混合,进一步地利用超声波均质机等超声波发生装置产生的空穴现象(通过超声波照射在液体中产生气泡的现象)、或者使用球磨机、珠磨机的机械处理,从而使原料粉(D)分散在溶剂中,配制浆料。
由此,如上所述,在原料粉(D)包含复合粒子(C)和种粒子粉的情况下,种粒子粉中包含的粒子的二次粒子呈分散状态,以复合粒子(C)和种粒子(B)的一次粒子的形式分散在溶剂中。此外,由于构成复合粒子(C)的种粒子(B)与磁各向异性粒子(A)牢固地附着,因此,上述分散处理不会造成构成复合粒子(C)的种粒子(B)与磁各向异性粒子(A)分离,当施加基于磁场的磁力时,通过该磁力能够容易地沿规定的方向进行取向。
此时,根据需要,可以在原料粉(D)中添加烧结助剂。
此外,在本实施方式中,举例了对原料粉(D)和溶剂施加基于超声波的振动的情况,但本实施方式并不限定于此。在本实施方式中,也可以使用除超声波以外的手段使原料粉(D)和溶剂分散。
反复进行对原料粉(D)和溶剂进行搅拌以及对原料粉(D)和溶剂施加基于超声波的振动(超声波处理),超声波处理时间优选为5分钟以上,更优选为25分钟~30分钟。
通过将超声波处理时间设为上述范围内,使原料粉(D)中包含的粒子的二次粒子呈分散状态,从而能够在对复合粒子(C)的凝集体进行粉碎的同时形成种粒子的一次粒子。
作为溶剂,主要使用水、二甲苯、甲苯、乙醇等有机溶剂。
作为烧结助剂,可举例通常用于陶瓷烧结的烧结助剂。
当种粒子(B)是氮化硅时,作为烧结助剂,使用氧化钇等稀土类氧化物、氧化铪等过渡金属氧化物、或者除去氧化铝的氧化镁、二氧化硅等典型金属氧化物。
烧结助剂用于促进种粒子(B)的结晶粒的成长,并提高结晶取向陶瓷的相对密度。另外,这些烧结助剂不固溶于种粒子(B)。
另外,在浆料的配制中,根据需要,可以在溶剂中添加分散剂。
作为分散剂,使用聚羧酸、聚丙烯酸、聚乙烯亚胺、高级脂肪酸酯等。
当构成复合粒子(C)的种粒子(B)是β氮化硅时,β氮化硅、由α氮化硅构成的种粒子粉以及烧结助剂的配合比例优选为,复合粒子(C)(β氮化硅):种粒子粉(α氮化硅):氧化铪(烧结助剂):氧化钇(烧结助剂):二氧化硅(烧结助剂)=0.1质量%~10质量%:82质量%~87质量%:2.5质量%~10质量%:2.5质量%~5质量%:0.2质量%~1.0质量%、或者复合粒子(C)(β氮化硅):种粒子粉(α氮化硅):氧化钇(烧结助剂):氧化镁(烧结助剂)=0.1质量%~10质量%:82质量%~95质量%:1质量%~10质量%:1质量%~10质量%。
通过将复合粒子(C)、种粒子粉以及烧结助剂的配合比例设为上述范围内,能够使复合粒子(C)的长轴方向沿一个方向进行取向,结果得到相对密度高的结晶取向陶瓷。
另外,原料粉(D)与溶剂的配合比例优选为,原料粉(D):溶剂=10体积%~30体积%:70体积%~90体积%。
通过将原料粉(D)与溶剂的配合比例设为上述范围内,能够将原料粉(D)中包含的复合粒子(C)和种粒子粉分散在溶剂中。
进一步地,相对于原料粉(D)100质量%,分散剂相对于包含复合粒子(C)和种粒子粉的原料粉(D)的添加量优选为0.5质量%~3.0质量%。
<第三工序>
在第三工序中,将第二工序中配制的浆料置于0.1特斯拉(T)以上的静磁场中,在使种粒子(B)的长轴方向的结晶轴沿一个方向取向的状态下,对浆料进行干燥,对成型体进行成型。
在第三工序中,例如,将第二工序中配制的浆料放入成型用模具中,在0.1特斯拉(T)以上的静磁场中,在使构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿一个方向取向的状态下,对浆料进行干燥,形成包含复合粒子(C)的成型体。
此时,将静磁场的方向设为例如成型用模具的一个方向(宽度方向、长度方向、高度方向等)。
另外,对浆料进行干燥并对成型体进行成型,并且通过静磁场使例如浆料中包含的构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿成型用模具的一个方向进行取向。
此外,通过改变静磁场相对于成型用模具的方向,能够将构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴设定为任意的方向。
另外,在第三工序中,例如,将第二工序中配制的浆料涂布于基板的一个面而形成涂膜,在0.1特斯拉(T)以上的静磁场中,在使构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿一个方向取向的状态下,对由浆料形成的涂膜进行干燥,形成包含复合粒子(C)的薄膜(成型体)。
此时,将静磁场的方向设为例如基板的一个方向(沿基板的一个面的方向、基板的厚度方向等)。
另外,对浆料进行干燥而形成薄膜(成型体),并且通过静磁场使例如浆料中包含的构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿成型用模具的一个方向进行取向。
此外,通过改变静磁场相对于基板的方向,能够将构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴设定为任意的方向。
在第三工序中,例如,如图5所示,将包含由柱状的种粒子10和板状的磁各向异性粒子20构成的复合粒子30的浆料置于静磁场中,对复合粒子30施加基于静磁场的磁力,从而将磁力作用于磁各向异性粒子20。于是,在图5(A)所示的不施加基于静磁场的磁力的状态下,种粒子10的方向散乱,而在图5(B)所示的施加基于静磁场的磁力的状态下,种粒子10的长轴方向的结晶轴沿箭头所示的静磁场的方向70取向。
在本实例中,种粒子10的长度(长轴径)L1相当于要取向的结晶轴方向,磁各向异性粒子20的难磁化轴相当于其厚度(短轴径)t1。因此,如果形成图5所示的复合粒子30,则由于磁各向异性粒子20的厚度(短轴径)t1是对于静磁场的方向70垂直的方向而稳定化,因此,种粒子10的长轴方向的结晶轴沿与静磁场的方向70平行的方向进行取向。由此,复合粒子30的长轴方向沿静磁场的方向70取向。需要说明的是,难磁化轴是指通过施加外部磁场进行磁极化时对磁场排斥的结晶轴。例如,在抗磁体的情况下,其是抗磁性磁化率的绝对值大的结晶轴。
另外,在第三工序中,例如,如图6所示,将包含由板状的种粒子40和板状的磁各向异性粒子50构成的复合粒子60的浆料置于静磁场中,对复合粒子60施加基于静磁场的磁力,从而将磁力作用于磁各向异性粒子50。于是,在图6(A)所示的不施加基于静磁场的磁力的状态下,种粒子40的方向散乱,而在图6(B)所示的施加基于静磁场的磁力的状态下,种粒子40的长轴方向的结晶轴沿箭头所示的静磁场的方向80进行取向。
在本实例中,种粒子40的厚度(短轴径)T2相当于要取向的结晶轴方向,磁各向异性粒子50的难磁化轴相当于其厚度(短轴径)t2。因此,如果形成图6所示的复合粒子60,则由于磁各向异性粒子50的厚度(短轴径)t2是相对于静磁场的方向80垂直的方向而稳定化,因此,种粒子40的长轴方向的结晶轴沿与静磁场的方向80平行的方向取向。由此,复合粒子60的长轴方向沿静磁场的方向80进行取向。
作为产生静磁场的磁铁,例如,使用钕磁铁等永久磁铁。
在第三工序中,静磁场的强度为0.1特斯拉(T)以上,优选为0.5特斯拉(T)以上。
通过将静磁场的强度设为上述范围,能够使浆料中包含的构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿一个方向取向。
另外,在第三工序中,对浆料进行干燥的温度优选为15℃~30℃,更优选为15℃~20℃。
另外,对浆料进行干燥的时间优选为20分钟以上,更优选为1小时以上。
通过将对浆料进行干燥的温度和时间设为上述范围内,能够通过静磁场使浆料中包含的构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴例如沿成型用模具的一个方向取向,同时,能够对形成沿模具形状的形状的成型体进行成型。此外,使得到的成型体保持构成复合粒子(C)的种粒子(B)的长轴方向的结晶轴沿成型用模具的一个方向(例如,成型体的厚度方向)取向的状态。
<第四工序>
在第四工序中,对第三工序中成型的成型体进行烧结。由此,得到结晶取向陶瓷。
在第四工序中,例如,使第三工序中成型的成型体从模具中脱模,对该成型体进行烧结,得到各向异性形状的无机化合物的种粒子(B)的长轴方向的结晶轴沿一个方向例如厚度方向取向的板状的结晶取向陶瓷(烧结体)。
另外,在第四工序中,例如,对第三工序中形成于基板的一个面的薄膜(成型体)进行烧结,在基板上,得到各向异性形状的无机化合物的种粒子(B)的长轴方向的结晶轴沿一个方向例如厚度方向取向的薄膜状的结晶取向陶瓷(烧结体)。
在第四工序中,例如,在种粒子(B)是氮化硅的情况下,优选采用气压烧结法对成型体进行烧结。另外,优选采用气压烧结法对成型体的烧结在氮气环境下进行。通过在氮气环境下对成型体进行烧结,能够促进单晶的种粒子(B)的粒子成长。
在第四工序中,例如,在种粒子(B)是氮化硅的情况下,成型体的烧结温度优选为1850℃~1950℃。
对成型体进行烧结的时间例如优选为0.5小时~60小时。
例如,在种粒子(B)是氮化硅的情况下,氮气环境的压力优选为0.2MPa~10MPa。
通过将成型体的烧结温度、烧结时间以及氮气环境的压力例如设为上述范围内,如上所述得到种粒子(B)的长短径比为1.6以上且种粒子(B)的长轴方向的结晶轴沿一个方向例如厚度方向取向的板状的结晶取向陶瓷(烧结体)。
在第四工序中,通过对第三工序中成型的成型体进行烧结,从而浆料中包含的长短径比为1.6以上的种粒子(B)的一次粒子成长,形成长短径比为1.6以上的种粒子(B),该种粒子(B)大量密集,成为形成致密结构的结晶取向陶瓷。
此外,在第四工序前,在除去分散剂等有机添加物的脱脂过程中,通过在700℃~1000℃的条件下对成型体进行热处理,浆料中包含的构成复合粒子(C)的由石墨烯粒子等构成的磁各向异性粒子(A)完全消失。因此,得到的结晶取向陶瓷仅由各向异性形状的无机化合物的种粒子(B)构成。
根据本实施方式的结晶取向陶瓷的制造方法,能够制造要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物的种粒子(B)的长轴方向的结晶轴沿一个方向取向,并且相对密度高的致密的结晶取向陶瓷。例如,在种粒子(B)是氮化硅的情况下,对于通过本实施方式的结晶取向陶瓷的制造方法得到的结晶取向陶瓷,种粒子(B)的长轴方向的结晶轴(c轴)进行取向的方向上的热传导率高。
[结晶取向陶瓷]
图7示出了通过本实施方式的结晶取向陶瓷的制造方法得到的结晶取向陶瓷的一实施方式,其是表示板状的结晶取向陶瓷沿厚度方向的截面的示意图。
本实施方式的结晶取向陶瓷100通过上述实施方式的结晶取向陶瓷的制造方法制造,如图7所示,其是包含大量各向异性形状的粒子101而成的基板102。结晶取向陶瓷100具有大量粒子101沿与上述种粒子(B)的长轴方向的结晶轴相同的方向例如与基板102的厚度方向垂直的方向(图7中纸面的左右方向)取向的结构。
此外,在图7中,作为粒子101,示出了结晶轴方向是长轴的呈各向异性形状例如柱状的粒子。
如上所述,结晶取向陶瓷100是对原料粉进行烧结而成的烧结体,该原料粉包含由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成的种粒子(B)。
此外,在图7所示的截面图中,大量长方形状(柱状)的物体均表示柱状的粒子101。即,结晶取向陶瓷100是大量粒子101密集而成的。而且,大量粒子101的长轴方向的结晶轴例如沿与基板102的厚度方向垂直的方向取向。大量粒子101的长轴方向的结晶轴沿与基板102的厚度方向垂直的方向取向是指大量粒子101的长轴方向的结晶轴沿与基板102的厚度方向垂直的方向排列(聚齐)。
此外,由于本实施方式的结晶取向陶瓷100是通过上述实施方式的结晶取向陶瓷的制造方法制造的,因此,大量粒子101的长轴方向的结晶轴沿与基板102的厚度方向垂直的方向取向,是表示施加磁场的方向是与基板102的厚度方向垂直的方向(在图7中,指箭头α所示的方向)。
粒子101的与上述种粒子(B)的长轴方向相同的结晶轴的取向度优选为0.2以上,更优选为0.8以上。
如果粒子101的与种粒子(B)的长轴方向相同的结晶轴的取向度为上述范围内,则例如在将粒子101设为氮化硅的情况下,对于结晶取向陶瓷100,粒子101的长轴方向的结晶轴是氮化硅的c轴方向,在与基板102的厚度方向垂直的方向上热传导率高。此外,在将粒子101设为氮化硅的情况下,当粒子101的长轴方向的结晶轴沿与垂直于基板102的厚度方向的方向不同的方向取向时,结晶取向陶瓷100在该方向上热传导率高。
此外,当粒子101的长轴方向的结晶轴的取向度是1时,由于全部粒子101的长轴方向的结晶轴例如沿与基板102的厚度方向垂直的方向取向,因此优选取向度接近1。
粒子101的长轴方向的结晶轴的取向度根据通过X射线衍射(X-raydiffraction,XRD)得到的峰强度的比算出。详细地,根据由下述式(1)表示的罗格林法(Lotgering)求出罗格林因子(Lotgering Factor)。
[数学式1]
在不取向陶瓷中,对于上述式(1)中的ρ0,使用衍射X射线的2θ范围在20.0度至70.0度之间出现的全衍射反射的总强度和衍射面指数为002的衍射反射的强度通过下述式(2)求出。
[数学式2]
上述式(2)中的ΣI0(hkl)表示2θ范围在20.0度至70.0度之间出现的全衍射反射的总强度,上述式(2)中的ΣI0(00l)表示衍射面指数为002的衍射反射的强度。
另外,对于上述式(1)中的ρ,在结晶取向陶瓷40中,使用衍射X射线的2θ范围在20.0度至70.0度之间出现的全衍射反射的总强度和衍射面指数为002的衍射反射的强度通过下述式(3)求出。
[数学式3]
上述式(3)中的ΣI(hkl)表示2θ范围在20.0度至70.0度之间出现的全衍射反射的总强度,上述式(3)中的ΣI(00l)表示衍射面指数为002的衍射反射的强度。
另外,在上述结晶取向陶瓷的制造方法中,将根据原料组成求出的计算密度作为真密度时,结晶取向陶瓷100的相对密度为99%以上,该结晶取向陶瓷100是包含由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成的粒子101的原料粉的烧结体。即,结晶取向陶瓷100形成致密的结构。
烧结体的相对密度通过阿基米德法(JIS Z 8807)测定。作为测定溶剂,使用蒸馏水。
作为构成要取向的结晶轴相当于短轴或长轴的各向异性形状的粒子101的无机化合物,例如,可举例氮化硅(Si3N4)、羟基磷灰石(Ca10(PO4)6(OH)2)、氧化铝(Al2O3)、氮化硼(BN)、氧化钇(Y2O3)、氧化锌(ZnO)、碳酸钙(CaCO3)等。
在将粒子101设为氮化硅的情况下,对于这种结构的结晶取向陶瓷100,粒子101的c轴方向的取向方向上的热传导率例如与基板102的厚度方向垂直的方向上的热传导率为100W/mK以上,在与基板102的厚度方向垂直的方向上,热传导率升高。因此,当使用结晶取向陶瓷100作为例如碳化硅半导体的散热基板时,能够有效地放出(散热)碳化硅半导体产生的热。故而,例如具备碳化硅半导体和结晶取向陶瓷100的半导体元件是散热效率优异的元件。
另外,对于结晶取向陶瓷100,由于粒子101的长轴方向的结晶轴沿与基板102的厚度方向垂直的方向取向,因此在厚度方向上机械强度升高。
[半导体元件]
本实施方式的半导体元件具备本实施方式的结晶取向陶瓷而成。由此,对于本实施方式的半导体元件,在构成结晶取向陶瓷的粒子的长轴方向上,热传导率升高。
本实施方式的半导体元件例如是具备碳化硅半导体以及作为散热基板使用的本实施方式的结晶取向陶瓷而成。当使用本实施方式的结晶取向陶瓷作为碳化硅半导体的散热基板时,能够有效地放出(散热)碳化硅半导体产生的热。故而,具备碳化硅半导体以及本实施方式的结晶取向陶瓷的半导体元件是散热效率优异的元件。
[散热材料]
本实施方式的散热材料包括粒子的长轴方向的结晶轴沿一个方向取向的结晶取向陶瓷。由此,对于本实施方式的散热材料,在构成结晶取向陶瓷的粒子的长轴方向上,热传导率升高。因此,当使本实施方式的散热材料与装置等中的发热部分接触而进行配置时,能够有效地放出(散热)该装置产生的热。故而,应用了本实施方式的散热材料的装置等是散热效率优异的装置。
[实施例]
下面,根据实施例和比较例进一步具体地说明本发明,但本发明并不限定于以下的实施例。
<实施例1>
(氮化硅陶瓷的制造)
将β氮化硅粒子和多层石墨烯粒子投入到粒子复合化装置内以使粉体的总体积达到20mL。然后,为了将基于旋转的压密剪切力作用于这些粒子,将粒子复合化装置的马达输出设为600W,机械处理10分钟,使多层石墨烯粒子附着在β氮化硅粒子的表面,制造由β氮化硅粒子和多层石墨烯粒子构成的复合粒子。
此外,β氮化硅粒子的磁化率各向异性小于10(×10-9emu/g),多层石墨烯粒子的磁化率各向异性为20000(×10-9emu/g),β氮化硅粒子的磁化率各向异性是多层石墨烯粒子的磁化率各向异性的1/2000。
然后,将包含所述复合粒子、α氮化硅粒子和烧结助剂的原料粉加入包含分散剂的纯水中,用磁力搅拌器对原料粉和纯水进行搅拌、混合,同时,对原料粉和纯水施加基于超声波均质机发出的超声波的振动,使原料粉分散在纯水中,配制包含复合粒子、α氮化硅粒子、烧结助剂和纯水的浆料。对原料粉和纯水的搅拌以及对原料粉和纯水施加基于超声波的振动均进行30分钟。
作为β氮化硅粒子,使用如下制造的β氮化硅粒子:用球磨机将包含α氮化硅、氧化钇和氧化镁的原料粉混合后,将该混合粉填充到多孔质的氮化硼制坩埚内,在1600℃条件下保持1小时,接着在1900℃条件下保持2小时,从而制造出β氮化硅粒子。
作为α氮化硅粒子,使用宇部兴产社制的SN-E10。
作为石墨烯粒子,使用日本EM社(イーエムジャパン社)制的G-13L。
作为烧结助剂,使用氧化铪、氧化钇、二氧化硅。
作为分散剂,使用聚乙烯亚胺(数均分子量=10000)。
将复合粒子、α氮化硅粒子、氧化铪、氧化钇以及二氧化硅的配合比例设为复合粒子:α氮化硅粒子:氧化铪:氧化钇:二氧化硅=10质量%:82质量%:5质量%:2.5质量%:0.5质量%。
另外,将聚乙烯亚胺相对于原料粉(复合粒子、α氮化硅粒子、氧化铪、氧化钇、二氧化硅)100质量%的添加量设为1.5质量%。
然后,将如上所述配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,在静磁场中使构成复合粒子的种粒子的长轴方向的结晶轴沿一个方向取向,并且使浆料自然干燥,对包含上述复合粒子、α氮化硅粒子和烧结助剂的成型体进行成型。
此外,使用钕磁铁施加静磁场,将静磁场的强度(磁通密度)设为1特斯拉(T)。另外,将静磁场的方向设为成型用模具的深度方向。另外,将浆料的干燥时间设为12小时。
然后,使上述成型的成型体从模具中脱模,在250℃条件下加热3小时,接着在700℃条件下加热3小时,从而对成型体进行脱脂。
然后,在氮气环境下通过气压烧结法对脱脂的成型体进行烧结,得到厚度为0.2cm且直径为2cm的圆盘状的氮化硅陶瓷(烧结体)。
此外,将基于气压烧结法的成型体的烧结温度的最高温度设为1900℃,将最高温度的保持时间设为6小时,将氮气环境的压力设为0.9MPa。
<评价>
(复合粒子的观察)
用扫描电子显微镜(SEM;商品名:JSM-6390LV;日本电子社制)观察实施例中的复合粒子的粒子形态。将结果示于图8(A)、图8(B)。图8(A)表示对β氮化硅粒子和石墨烯粒子进行机械处理前的状态。图8(B)表示由β氮化硅粒子和石墨烯粒子构成的机械处理后的复合粒子。
(取向度的测定)
使用粉末X射线衍射装置(商品名:MultiFlex 2kW;日本理学株式会社(Rigaku)制),将测定角度(2θ)的范围设为20°~70°,将测定面设为与对成型体进行成型时的磁场垂直的面,通过罗格林(Lotgering)法测定实施例1的氮化硅陶瓷的取向度。将结果示于表1和图9。
其结果是,实施例1的氮化硅陶瓷中与磁场垂直的面的c轴取向度为0.35。根据该结果确认了:通过使用对氮化硅粒子和石墨烯粒子进行复合化而成的复合粒子,即使在磁通密度为1特斯拉(T)的静磁场中对浆料进行干燥,也能得到氮化硅粒子的c轴方向沿与施加的磁场方向平行的方向取向的板状的氮化硅陶瓷。
(氮化硅陶瓷的微细结构的观察)
使用上述扫描电子显微镜观察实施例1的氮化硅陶瓷的微细结构。此处,将如下处理的氮化硅陶瓷作为试样:对氮化硅陶瓷的观察面进行镜面研磨,对该观察面进行等离子体蚀刻,接着使用离子溅射装置(商品名:JFC-1100;日本电子社制)在其观察面实施Au涂布而成。
图10是表示与实施例1的氮化硅陶瓷的厚度方向平行的截面的扫描电子显微镜图像。
根据图10的扫描电子显微镜图像,观察到实施例1的氮化硅陶瓷呈如下状态:在与磁场垂直的面(与厚度方向平行的截面)上,沿c轴方向成长且尺寸粒径处于规定范围内的柱状氮化硅粒子致密地排列。
根据以上结果,确认了:通过使用对氮化硅粒子和石墨烯粒子进行复合化而成的复合粒子,即使在磁通密度为1特斯拉(T)的静磁场中对浆料进行干燥,也能得到氮化硅粒子的c轴方向沿与施加的磁场方向平行的方向取向的板状氮化硅陶瓷。
<实施例2>
(氮化硅陶瓷的制造)
将与实施例1同样配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,在磁通密度为0.4特斯拉(T)的静磁场中使构成复合粒子的种粒子的长轴方向的结晶轴沿一个方向取向,并且使浆料自然干燥,对包含上述复合粒子、α氮化硅粒子和烧结助剂的成型体进行成型。
接着,与实施例1同样地,得到厚度为0.2cm且直径为2cm的圆盘状的氮化硅陶瓷(烧结体)。
(取向度的测定)
与实施例1同样地测定实施例2的氮化硅陶瓷的取向度。将结果示于表1。
其结果是,实施例2的氮化硅陶瓷中与磁场垂直的面的c轴取向度为0.23。根据该结果确认了:通过使用对氮化硅粒子和石墨烯粒子进行复合化而成的复合粒子,即使在磁通密度为0.4特斯拉(T)的静磁场中对浆料进行干燥,也能得到氮化硅粒子的c轴方向沿与施加的磁场方向平行的方向取向的板状氮化硅陶瓷。
<实施例3>
(氮化硅陶瓷的制造)
将与实施例1同样配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,在磁通密度为2特斯拉(T)的静磁场中使构成复合粒子的种粒子的长轴方向的结晶轴沿一个方向取向,并且,使浆料自然干燥,对包含上述复合粒子、α氮化硅粒子和烧结助剂的成型体进行成型。
接着,与实施例1同样地进行,得到厚度为0.2cm且直径为2cm的圆盘状的氮化硅陶瓷(烧结体)。
(取向度的测定)
与实施例1同样地进行,测定实施例3的氮化硅陶瓷的取向度。将结果示于表1。
其结果是,实施例3的氮化硅陶瓷中与磁场垂直的面的c轴取向度为0.23。根据该结果确认了:通过使用对氮化硅粒子和石墨烯粒子进行复合化而成的复合粒子,即使在磁通密度为2特斯拉(T)的静磁场中对浆料进行干燥,也能得到氮化硅粒子的c轴方向沿与施加的磁场方向平行的方向取向的板状氮化硅陶瓷。
<实施例4>
(氧化铝陶瓷的制造)
将氧化铝纤维粒子和硫酸钙二水合物粒子投入到粒子复合化装置内以使粉体的总体积达到20mL。然后,为了将基于旋转的压密剪切力作用于这些粒子,将粒子复合化装置的马达输出设为600W,机械处理10分钟,使硫酸钙二水合物粒子附着在氧化铝纤维粒子的表面,制造由氧化铝纤维粒子和硫酸钙二水合物粒子构成的复合粒子。
此外,氧化铝纤维粒子的磁化率各向异性为0.7(×10-9emu/g),硫酸钙二水合物粒子的磁化率各向异性为9.6(×10-9emu/g),氧化铝纤维粒子的磁化率各向异性是硫酸钙二水合物粒子的磁化率各向异性的1/14。
然后,将由前述复合粒子构成的原料粉加入包含分散剂的纯水中,用磁力搅拌器对原料粉和纯水进行搅拌、混合,同时,对原料粉和纯水施加基于超声波均质机发出的超声波的振动,使原料粉分散在纯水中,配制包含复合粒子和纯水的浆料。对原料粉和纯水的搅拌以及对原料粉和纯水施加基于超声波的振动均进行30分钟。
作为分散剂,使用聚乙烯亚胺(数均分子量=10000)。
将聚乙烯亚胺相对于原料粉(复合粒子)100质量%的添加量设为3.0质量%。
然后,将如上所述配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,在静磁场中使构成复合粒子的种粒子的长轴方向的结晶轴沿一个方向取向,并且,使浆料自然干燥,对由上述复合粒子构成的成型体进行成型。
此外,使用超导磁铁施加静磁场,将静磁场的强度(磁通密度)设为10特斯拉(T)。另外,将静磁场的方向设为成型用模具的深度方向。另外,将浆料的干燥时间设为12小时。
然后,使上述成型的成型体从模具中脱模,在250℃条件下加热3小时,接着在700℃条件下加热3小时,从而对成型体进行脱脂。
然后,在大气中对脱脂的成型体进行烧结,得到厚度为0.2cm且直径为2cm的圆盘状的氧化铝陶瓷(烧结体)。
此外,将成型体的烧结温度的最高温度设为1600℃,将最高温度的保持时间设为2小时。
<评价>
(取向度的测定)
使用粉末X射线衍射装置(商品名:MultiFlex 2kW;日本理学株式会社(Rigaku)制),将测定角度(2θ)范围设为20°~100°,将测定面设为与对成型体进行成型时的磁场垂直的面,通过罗格林(Lotgering)法测定实施例4的氧化铝陶瓷的取向度。
其结果是,实施例4的氧化铝陶瓷中来自与磁场垂直的面的c面的峰升高,确认了取向。
[表1]
实施例1 实施例2 实施例3
磁通密度(T) 1 0.4 2
取向度 0.35 0.23 0.23
<比较例1>
(氮化硅陶瓷的制造)
除了不施加磁场以外,与实施例1同样地进行,将与实施例1同样配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,使浆料自然干燥,对包含上述复合粒子、α氮化硅粒子和烧结助剂的成型体进行成型。
接着,与实施例1同样地进行,得到厚度为0.2cm且直径为2cm的圆盘状的氮化硅陶瓷(烧结体)。
(取向度的测定)
与实施例1同样地进行,测定比较例1的氮化硅陶瓷的取向度。将结果示于图11。
其结果是,比较例1的氮化硅陶瓷中与磁场垂直的面的c轴取向度为0。根据该结果确认了:在不施加磁场的情况下对浆料进行干燥时,能得到氮化硅粒子的c轴方向相对于施加的磁场方向不进行取向的板状的氮化硅陶瓷。
<比较例2>
(氮化硅陶瓷的制造)
除了使用市售的β氮化硅粒子并与实施例1同样地配制复合粒子以外,与实施例1同样地进行,将与实施例1同样配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,使浆料自然干燥,对包含上述复合粒子、α氮化硅粒子和烧结助剂的成型体进行成型。
接着,与实施例1同样地进行,得到厚度为0.2cm且直径为2cm的圆盘状的氮化硅陶瓷(烧结体)。
(取向度的测定)
与实施例1同样地进行,测定比较例2的氮化硅陶瓷的取向度。将结果示于图12。
其结果是,比较例2的氮化硅陶瓷中与磁场垂直的面的c轴取向度为0。根据该结果确认了:在不施加磁场的情况下对浆料进行干燥时,能得到氮化硅粒子的c轴方向相对于施加的磁场方向不进行取向的板状的氮化硅陶瓷。
<比较例3>
(氧化铝陶瓷的制造)
将氧化铝纤维粒子和板状软水铝石粒子投入粒子复合化装置内以使粉体的总体积达到20mL。然后,为了将基于旋转的压密剪切力作用于这些粒子,将粒子复合化装置的马达输出设为600W,机械处理10分钟,使板状软水铝石粒子附着在氧化铝纤维粒子的表面,制造由氧化铝纤维粒子和板状软水铝石粒子构成的复合粒子。
此外,氧化铝纤维粒子的磁化率各向异性为0.7(×10-9emu/g),板状软水铝石粒子的磁化率各向异性为4.2(×10-9emu/g),氧化铝纤维粒子的磁化率各向异性是板状软水铝石粒子的磁化率各向异性的1/6。
然后,将由所述复合粒子构成的原料粉加入包含分散剂的纯水中,用磁力搅拌器对原料粉和纯水进行搅拌、混合,同时,对原料粉和纯水施加基于超声波均质机发出的超声波的振动,使原料粉分散在纯水中,配制包含复合粒子和纯水的浆料。对原料粉和纯水的搅拌以及对原料粉和纯水施加基于超声波的振动均进行30分钟。
作为分散剂,使用聚乙烯亚胺(数均分子量=10000)。
将聚乙烯亚胺相对于原料粉(复合粒子)100质量%的添加量设为3质量%。
然后,将如上所述配制的浆料4mL放入深度为2.5cm且内径为2.5cm的圆筒形状的成型用模具中,在静磁场中使构成复合粒子的种粒子的长轴方向的结晶轴沿一个方向取向,同时,使浆料自然干燥,对由上述复合粒子构成的成型体进行成型。
此外,使用超导磁铁施加静磁场,将静磁场的强度(磁通密度)设为10特斯拉(T)。另外,将静磁场的方向设为成型用模具的深度方向。另外,将浆料的干燥时间设为12小时。
然后,使上述成型的成型体从模具中脱模,在250℃条件下加热3小时,接着在700℃条件下加热3小时,从而对成型体进行脱脂。
然后,在大气中对脱脂的成型体进行烧结,得到厚度为0.2cm且直径为2cm的圆盘状的氧化铝陶瓷(烧结体)。
此外,将成型体的烧结温度的最高温度设为1600℃,将最高温度的保持时间设为2小时。
<评价>
(取向度的测定)
使用粉末X射线衍射装置(商品名:MultiFlex 2kW;日本理学株式会社(Rigaku)制),将测定角度(2θ)范围设为20°~100°,将测定面设为与对成型体进行成型时的磁场垂直的面,通过罗格林(Lotgering)法测定实施例4的氧化铝陶瓷的取向度。
其结果是,实施例4的氧化铝陶瓷中与磁场垂直的面的c轴取向度为0,确认了不取向。
工业实用性
由于本发明的结晶取向陶瓷的制造方法不使用基于超导磁铁的旋转磁场而使用基于永久磁铁的静磁场,能够使要取向的结晶轴相当于短轴或长轴的各向异性形状的种粒子的长轴方向的结晶轴沿一个方向取向,因此,能够比以往更廉价地制造致密的结晶取向陶瓷。因此,本发明的结晶取向陶瓷的制造方法能够降低制造成本,其工业价值大。
附图标记说明
10 种粒子;
20 磁各向异性粒子;
30 复合粒子;
40 种粒子;
50 磁各向异性粒子;
60 复合粒子;
100 结晶取向陶瓷;
101 粒子;
102 基板。

Claims (8)

1.一种结晶取向陶瓷的制造方法,其特征在于,其包括:
第一工序,该工序形成由具有磁化率各向异性的磁各向异性粒子A和种粒子B构成的复合粒子C,该种粒子B具有前述磁各向异性粒子A的1/10以下的磁化率各向异性,并且由要取向的结晶轴相当于短轴或长轴的各向异性形状的无机化合物构成;
第二工序,该工序将包含前述复合粒子C的原料粉D加入溶剂中,配制包含前述原料粉D和前述溶剂的浆料;
第三工序,该工序将前述浆料置于0.1特斯拉T以上的静磁场中,在使前述种粒子B的长轴方向的结晶轴沿一个方向取向的状态下,对前述浆料进行干燥,对成型体进行成型;以及
第四工序,该工序对前述成型体进行烧结。
2.如权利要求1所述的结晶取向陶瓷的制造方法,其特征在于,前述原料粉D包含与前述种粒子B的化学组成相同的粒子。
3.如权利要求1所述的结晶取向陶瓷的制造方法,其特征在于,前述种粒子B的平均粒径是0.5μm以上,长轴径相对于短轴径的比即长轴径/短轴径是1.6以上。
4.如权利要求1所述的结晶取向陶瓷的制造方法,其特征在于,前述磁各向异性粒子A的平均粒径是前述种粒子B的平均粒径的1/10以下。
5.如权利要求1所述的结晶取向陶瓷的制造方法,其特征在于,在前述第一工序中,前述磁各向异性粒子A相对于前述种粒子B的配合比例是前述种粒子B的总量的0.1体积%以上。
6.如权利要求1所述的结晶取向陶瓷的制造方法,其特征在于,通过对前述成型体进行烧结,得到陶瓷中的粒子沿与前述种粒子B的长轴方向的结晶轴相同的方向进行取向、并且陶瓷中的粒子的与前述种粒子B的长轴方向相同的结晶轴的取向度是0.2以上的结晶取向陶瓷。
7.一种结晶取向陶瓷,其特征在于,其通过权利要求1~6中任一项所述的结晶取向陶瓷的制造方法得到。
8.一种散热材料,其特征在于,其包括粒子的长轴方向的结晶轴沿一个方向取向的结晶取向陶瓷。
CN201680013227.7A 2015-03-05 2016-03-04 结晶取向陶瓷及其制造方法、散热材料 Active CN107428619B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015043862 2015-03-05
JP2015-043862 2015-03-05
PCT/JP2016/056881 WO2016140359A1 (ja) 2015-03-05 2016-03-04 結晶配向セラミックスおよびその製造方法、放熱材料

Publications (2)

Publication Number Publication Date
CN107428619A true CN107428619A (zh) 2017-12-01
CN107428619B CN107428619B (zh) 2020-11-24

Family

ID=56848184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680013227.7A Active CN107428619B (zh) 2015-03-05 2016-03-04 结晶取向陶瓷及其制造方法、散热材料

Country Status (6)

Country Link
US (1) US10323168B2 (zh)
JP (1) JP6845402B2 (zh)
KR (1) KR20170125037A (zh)
CN (1) CN107428619B (zh)
DE (1) DE112016001041T5 (zh)
WO (1) WO2016140359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033792A (zh) * 2017-12-07 2018-05-15 武汉科技大学 一种原生电磁场SiC-ZnO耐火浇注料及其制备方法
CN116134608A (zh) * 2020-07-29 2023-05-16 日本精细陶瓷有限公司 氮化硅基板及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445968B (zh) 2014-09-25 2020-06-16 中兴通讯股份有限公司 具有镜子功能的显示屏、控制方法、装置和终端
JP2017214264A (ja) * 2016-06-02 2017-12-07 住友電気工業株式会社 窒化物焼結体の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236743A (ja) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp 一軸配向した針状Si3N4粒子を含有するセラミックス焼結板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975518B2 (ja) * 1997-08-21 2007-09-12 株式会社豊田中央研究所 圧電セラミックス
KR20000075715A (ko) * 1997-12-25 2000-12-26 마쯔노고오지 페라이트 자석 및 그의 제조방법
JPH11217272A (ja) 1998-02-02 1999-08-10 Hitachi Metals Ltd 結晶配向した窒化珪素焼結部材及びその製造方法
JP3556886B2 (ja) * 2000-08-08 2004-08-25 独立行政法人日本学術振興会 配向性アルミナセラミックスの製造方法及び配向性アルミナセラミックス
JP4680272B2 (ja) * 2008-02-04 2011-05-11 トヨタ自動車株式会社 異方性磁性材料の製造方法および異方性磁性材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236743A (ja) * 2011-05-12 2012-12-06 Mitsubishi Materials Corp 一軸配向した針状Si3N4粒子を含有するセラミックス焼結板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033792A (zh) * 2017-12-07 2018-05-15 武汉科技大学 一种原生电磁场SiC-ZnO耐火浇注料及其制备方法
CN116134608A (zh) * 2020-07-29 2023-05-16 日本精细陶瓷有限公司 氮化硅基板及其制造方法

Also Published As

Publication number Publication date
JPWO2016140359A1 (ja) 2018-01-11
CN107428619B (zh) 2020-11-24
DE112016001041T5 (de) 2017-12-21
KR20170125037A (ko) 2017-11-13
JP6845402B2 (ja) 2021-03-17
WO2016140359A1 (ja) 2016-09-09
US10323168B2 (en) 2019-06-18
US20180044568A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
Suzuki et al. Fabrication of textured titania by slip casting in a high magnetic field followed by heating
CN107428619A (zh) 结晶取向陶瓷及其制造方法、散热材料
JP5881174B2 (ja) 配向性max相セラミック及びその製造方法
JP6471927B2 (ja) 窒化ケイ素セラミックス基板の製造方法
Le Ferrand Magnetic slip casting for dense and textured ceramics: A review of current achievements and issues
JP5676910B2 (ja) セラミクスの製造方法および圧電材料
Zhu et al. The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field
Chen et al. Evolution of mullite texture on firing tape‐cast kaolin bodies
Alkoy et al. Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers–texture development
Ge et al. Size dependence of the polarization and dielectric properties of KNbO 3 nanoparticles
CN110668493B (zh) 一种纳微米级钛酸铋钠基低维晶体
Sokolov et al. 3D crystallographic alignment of alumina ceramics by application of low magnetic fields
JPH09165265A (ja) 高熱伝導窒化ケイ素セラミックスならびにその製造方法
Li et al. Synthesis and piezoelectric properties of KxNa1− xNbO3 ceramic by molten salt method
Hashimoto et al. Fabrication of textured porous ti3sic2 by slip casting under high magnetic field and microstructural evolution through high temperature deformation
Obata et al. Grain-oriented Ca 3 Co 4 O 9 thermoelectric oxide ceramics prepared by solid-state reaction
Li et al. A novel process to fabricate of highly textured ceramics in a high magnetic field
Tanaka et al. c-axis oriented ZnO formed in a rotating magnetic field with various rotation speeds
Yuping et al. Enhanced coercivity of La–Co substituted Sr–Ca hexaferrite fabricated by improved ceramics process
Poterala et al. Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics
WO2006043407A1 (ja) 非強磁性物質成形体の製造方法、及び非強磁性物質成形体
Li et al. Synthesis of high aspect ratio (K, Na) NbO 3 plate-like particles and study on the synthesis mechanism
JP2018016505A (ja) 配向性セラミックス焼結体の製造方法
馬場翔子 Study on fabrication process with photopolymerization reaction under magnetic field for crystal-oriented ceramics
Baba et al. Graded evolution of anisotropic microstructure during sintering from crystal‐oriented powder compact

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant