CN116041059B - 一种钛酸锶基巨介电陶瓷制备方法 - Google Patents

一种钛酸锶基巨介电陶瓷制备方法 Download PDF

Info

Publication number
CN116041059B
CN116041059B CN202310080428.0A CN202310080428A CN116041059B CN 116041059 B CN116041059 B CN 116041059B CN 202310080428 A CN202310080428 A CN 202310080428A CN 116041059 B CN116041059 B CN 116041059B
Authority
CN
China
Prior art keywords
temperature
dielectric ceramic
giant dielectric
atmosphere
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310080428.0A
Other languages
English (en)
Other versions
CN116041059A (zh
Inventor
白浩
卢楠
高晓
刘振国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202310080428.0A priority Critical patent/CN116041059B/zh
Publication of CN116041059A publication Critical patent/CN116041059A/zh
Application granted granted Critical
Publication of CN116041059B publication Critical patent/CN116041059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种钛酸锶基巨介电陶瓷制备方法,涉及电子陶瓷领域,SrTi0.994Nb0.004V0.001Ta0.001O3以二氧化钛,碳酸锶和五氧化二铌、五氧化二钒、五氧化二钽为原料,混合均匀后球磨,干燥后将粉体在空气中预烧,将预烧后的粉料添加PVA混合均匀,研磨后加入粘合剂PVB以及塑化剂BBP造粒并压制成型,然后放到气氛烧结炉中,使样品在氢气、氩气、氮气混合气氛中烧结成瓷,之后将样品置于真空‑氧气气氛中退火,得到介电性能良好的巨介电陶瓷并且具有良好的温度和频率稳定性。

Description

一种钛酸锶基巨介电陶瓷制备方法
技术领域
本发明涉及电子陶瓷领域,具体涉及一种SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料的制备方法。
背景技术
微电子信息技术的快速发展对电子元器件的微型化、集成化提出了更高的要求,作为电子元器件的重要组分部分,电介质陶瓷的研究受到人们越来越多的关注。随着信息技术领域尤其是电子和微电子行业的发展以及极端环境下的工作需要,具有良好的温度和频率稳定性的巨介电常数、低介电损耗的电介质材料有着广泛的应用前景。
具有钙钛矿结构的陶瓷材料一直因其巨大的介电常数和和很低的介电损耗而备受关注,并且钙钛矿结构陶瓷材料能够在很宽的温度和频率范围内保持稳定性。近年来,电子元器件日新月异,小型化、高效能和低功耗成为重要发展方向,并且对器件的各种声光电热磁等性能有了更多细致的要求。这也要求去研究更多元素的物理化学性能,开发出更多的新材料种类来满足不同层次的需求。
位于第五副族的三种元素钒、铌、钽均为非铁磁性元素,并且已经在生产和生活中得到广泛运用,研究并进一步发展这些元素的应用具有重要的经济效益。例如,用钽电容器用在军事国防等消费领域,但钽元素资源紧缺,因此钽元素成了一种战略性资源。铌元素的碱金属化合物,例如Li2NbO3(铌酸锂)具有钙钛矿型偏三方晶体结构,而钴酸锂是一种常见的电极材料。研究已经表明Nb与Ta共掺杂可以形成复合钙钛矿基结构,并且由于两者的最外层电子数相同,可以在晶体内部形成缺陷偶极子,同时释放出离域电子。因此尝试用碳酸锶、五氧化二铌、二氧化钛、五氧化二钽去合成复合钙钛矿基陶瓷材料,化学式中Ta5+、Nb5+,通过施主与受主共掺杂作用,形成缺陷偶极子,而钒离子与二者有着相近的原子半径,且是常见的制备巨介电陶瓷体原料。目前关于SrTi0.994Nb0.004V0.001Ta0.001O3制备方法的报告还很少见,作为一种具有潜在的广泛应用价值的材料,有必要探索一种合适并且利于推广的制备工艺,以更好的研究SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷的结构、性能。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种钛酸锶基巨介电陶瓷制备方法,本发明获得的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷是典型的钛酸锶基复合钙钛矿结构材料之一,并且测得其有很高的介电常数以及良好的温度和频率稳定性。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种钛酸锶基巨介电陶瓷制备方法,所述巨介电陶瓷材料的结构式为SrTi0.994Nb0.004V0.001Ta0.001O3,其特征在于制备方法包括以下步骤:
(1)以碳酸锶、二氧化钛、五氧化二铌、五氧化二钒、五氧化二钽为原料,按摩尔比1:0.994:0.004:0.001:0.001进行配料,获得原料混合物;
(2)将步骤(1)配制好的原料混合物投入至球磨机中,加入氧化锆球和无水乙醇为球磨介质,在球磨机中混合均匀,然后将混合后的浆料烘干,获得粉体;
(3)将步骤(2)中获得的粉体置于空气炉中,以速率为3℃/min升温至1150℃,然后保温2小时,在高温中原料进行充分反应,获得化合物粉体;
(4)将步骤(3)中获得的化合物粉体与PVA混合并研磨,之后加入塑化剂BBP与粘合剂PVB,用玛瑙研钵研磨30分钟后,过金属筛,获得颗粒状粉末,所述PVA的质量百分比浓度为5%,加入质量为化合物粉体质量的15%,所述BBP和所述PVB的质量百分比浓度分别为7%与5%,加入质量均为化合物粉体质量的10%;
(5)将步骤(4)获得的带PVA、BBP以及PVB的颗粒状粉末,在单向压力10MPa下压制成型,获得块体;
(6)将步骤(5)成型的块体,置于空气炉中进行排胶;
(7)将步骤(6)排胶后的块体置于气氛烧结炉中进行烧结,具体是先抽真空,然后通入混合气体,混合气体中氢气、氩气、氮气的体积比为1:15:10,保持压力在一个大气压,气体流速为100ml/min,以3℃/min的升温速率升至1400℃,保温120分钟进行烧结,然后以自然降温的速度降到室温,撤去气氛,即得到SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷体;
(8)将步骤(7)中形成的巨介电陶瓷体置于气氛管式炉中进行退火,具体是先用压缩机将烧结管抽为真空状态,随后进行加热,升温速率3℃/min,保持管道内的真空状态,待温度升至900℃时,缓慢通入氧气,直至保持管道内部与大气压一致,保持气体流速为100ml/min,当温度升高到1000℃,保温120min进行热处理,然后以自然降温速率降到室温,最后撤去氧气气氛,即得到在真空-氧气中退火的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
进一步包括,步骤(2)中加入的氧化锆球的尺寸为2mm,质量为步骤(1)中原料混合物质量的4~6倍,加入的无水乙醇质量为原料混合物质量的1~2倍。
进一步包括,步骤(2)中的球磨机为行星式球磨机,原料混合物在行星式球磨机中球磨混合24小时,转速为250转/分钟。
进一步包括,步骤(2)中将球磨混合后的浆料取出,在80℃温度下烘干,获得粉体。
进一步包括,步骤(4)中的金属筛选用80目,反复过筛2次。
进一步包括,所述碳酸锶、五氧化二铌、二氧化钛、五氧化二钒、五氧化二钽均为分析纯或高纯原料。
进一步包括,步骤(6)的排胶过程中,升温速率为3℃/min,升温至600℃后,保温2小时,然后以3℃/min的降温速率降至室温。
本发明的有益效果是:
1.本发明提供了一种SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料的制备方法,在三种混合还原性气氛中烧结陶瓷,有利于SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体保持稳定,其中,氢气的高还原性使得陶瓷内部得以形成氧原子空位,氮气使得晶粒生长更加致密与细小,有利于抑制晶粒的不规则生长,而惰性气体氩气则保证了烧结过程安全稳定;本发明所涉及的化合物在整个高温合成过程中均保持在气氛状态,抑制了由于晶格应变等导致的第二相的出现,从而可以得到纯的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
2.本发明在真空-氧气气氛中退火,在一定范围内填充了氧原子空位,有利于形成介电性质稳定的钛酸锶基陶瓷。
3.本发明获得的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷是典型的钛酸锶基复合钙钛矿结构材料之一,并且测得其有很高的介电常数以及良好的温度和频率稳定性。
附图说明
图1为本发明实施例1(a)、实施例2(b)、对比例1(c)、对比例2(d)、对比例3(e)成品陶瓷的SEM图。
图2为本发明实施例1、实施例2、对比例1、对比例2、对比例3成品陶瓷的相对介电常数频谱图以及介电损耗频谱图。
图3为本发明各实施例和比较例步骤3获得的SrTi0.994Nb0.004V0.001Ta0.001O3粉体的XRD扫描图谱。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中的巨介电陶瓷材料按照化学反应式TiO2+SrCO3+Nb2O5+V2O5+Ta2O5→SrTi(1-x-y-z)NbxVyTazO3制得,其中,二氧化钛、碳酸锶、五氧化二铌、五氧化二钒、五氧化二钽的摩尔比为1:0.994:0.004:0.001:0.001。
使用的二氧化钛、碳酸锶、五氧化二铌、五氧化二钒、五氧化二钽均为分析纯。
实施例1
制备SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料,具体制备步骤为:
(1)以碳酸锶、二氧化钛、五氧化二铌、五氧化二钒、五氧化二钽为原料,按通式SrTi0.994Nb0.004V0.001Ta0.001O3化学计量比(摩尔比)进行配料,获得原料混合物;
(2)将步骤(1)配制好的原料混合物放到球磨机中,加入尺寸为2mm的氧化锆球和无水乙醇为球磨介质,所加的氧化锆球质量为原料混合物质量的4倍,所加的无水乙醇质量为原料混合物质量的1倍,在行星式球磨机中球磨混合24小时,转速为250转/分钟,将混合后的浆料取出在80℃烘干,获得粉体;
(3)将步骤(2)中获得的粉体置于空气炉中,以速率为3℃/min升温至1150℃,然后保温2小时,在高温中原料进行充分反应,获得化合物粉体;
(4)将步骤(3)中获得的化合物粉体与PVA混合并研磨,之后加入塑化剂BBP与粘合剂PVB,用玛瑙研钵研磨30分钟后,过80目金属筛,反复过筛2次,获得颗粒状粉末,所述PVA的质量百分比浓度为5%,加入质量为化合物粉体质量的15%,所述BBP和所述PVB的质量百分比浓度分别为7%与5%,加入质量均为化合物粉体质量的10%;
(5)将步骤(4)的颗粒状粉体在单向压力10MPa下压制成型,获得块体;
(6)将步骤(5)成型的块体,置于空气炉中进行排胶,排胶过程中,升温速率为3℃/min,升温至600℃后,保温2小时,然后以3℃/min的降温速率降至室温;
(7)将步骤(6)排胶后的块体,置于气氛烧结炉中,先加抽真空,然后通入氢气、氩气和氮气的混合气体,混合气体中氢气、氩气、氮气的体积比为1:15:10,保持压力在一个大气压,气体流速为100ml/min,以3℃/min的升温速率升至1400℃,保温120分钟进行烧结,然后以自然降温速率降到室温,最后撤去气氛,即得到复合钙钛矿氧化物SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
实施例2
制备SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料,制备步骤1(1)-(7)同实施例1,还包括制备步骤(8):
(8)将步骤(7)成型的陶瓷体,置于气氛管式炉中,先用压缩机将烧结管抽为真空状态,随后进行加热,升温速率3℃/min,保持管道内的真空状态,待温度升至900℃时,缓慢通入氧气,直至保持管道内部与大气压一致,保持气体流速为100ml/min,当温度升高到1000℃,保温120min进行热处理,然后以自然降温速率降到室温,最后撤去氧气气氛,即得到在真空-氧气中退火的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
对比例1
制备SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料,具体制备步骤(1)-(6)同实施例1,改变步骤(7)中的烧结气氛:
(7)将步骤(6)排胶后的块体,置于气氛烧结炉中,先抽真空,然后缓慢通入氮气,保持氮气流速为100ml/min,以3℃/min的升温速率升至1400℃,保温120分钟进行烧结,然后以自然降温速率降到室温,即得到在氮气气氛中烧结制成的复合钙钛矿氧化物SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
对比例2
制备SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料,具体制备步骤(1)-(7)同比较例1,还包括步骤(8):
(8)将步骤(7)成型的陶瓷体,置于气氛管式炉中,先用压缩机将烧结管抽为真空状态,随后进行加热,升温速率3℃/min,保持管道内的真空状态,待温度升至900℃时,缓慢通入氧气,直至保持管道内部与大气压一致,保持气体流速为100ml/min,当温度升高到1000℃,保温120min进行热处理,然后以自然降温速率降到室温,最后撤去氧气气氛,即得到在真空-氧气中退火的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
对比例3
制备SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷材料,具体制备步骤(1)-(5)同实施例1,步骤(6)为:
(6)将步骤(5)成型的块体,置于普通烧结炉中,以3℃/min的升温速率升至1400℃,保温120分钟进行烧结,然后以自然降温速率降到室温,即得到在空气中烧结制成的复合钙钛矿氧化物SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
微观形貌分析
参考图1,图1中分别为在实施例1(a)、实施例2(b)、对比例1(c)、对比例2(d)、对比例3(e)中烧结条件下合成的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷扫描电镜图,从该图可以看出,混合气氛烧结对巨介电陶瓷材料理化性质的影响。通过图1中SEM图片对比发现,在气氛烧结的条件下合成了更加致密的陶瓷,晶粒更加均匀的陶瓷,并且气孔数量减少。而在混合气氛中烧结并在真空-氧气中退火的陶瓷体(b),比只在氮气中烧结的陶瓷体(c-d)更加细致,且更加均匀,因此提高了陶瓷的力学性能。
实施例1和对比例1中,在气氛条件下(包括氮气气氛)有利于SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体的晶粒保持稳定。本发明所涉及的化合物在整个高温合成过程中均保持在气氛状态,抑制了由于晶格应变等导致的第二相的出现,从而可以得到纯的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。实施例2中经过退火处理获得的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷是典型的Nb基复合钙钛矿结构材料之一,具有较高的晶粒密度以及致密性。
介电性能
图2中分别为在三种制备工艺下合成的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷的介电系数频谱(a)与介电损耗频谱(b)。从该图可以看出,混合气氛烧结对巨介电陶瓷材料介电性质的影响。混合气氛中烧结,并在真空-氧气气氛中退火,会形成介电系数稳定在30000左右的巨介电陶瓷,并且有较低的介电损耗(<0.2)。作为对比,对比例3中在不加气氛的情况下使用固相合成法制备出SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷,其介电系数将会远远降低,不适合作为陶瓷电容器使用。
只在氮气气氛(对比例1),或者只在混合气氛(实施例1)中烧结而成的陶瓷,不进行后续退火处理时,也可获得较高介电系数,但其频率的稳定性差、介电损耗高。而经历过步骤8的退火后,可以获得稳定较高的介电系数,以及低的介电损耗。
相结构分析
图3中显示了在1150℃煅烧120min(步骤3)形成的SrTi0.994Nb0.004V0.001Ta0.001O3粉体在X射线下的衍射图谱,从图中可看出其相结构为立方钙钛矿相,并且不含有杂相,证明该煅烧制度可行且合理。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种钛酸锶基巨介电陶瓷制备方法,所述巨介电陶瓷材料的结构式为SrTi0.994Nb0.004V0.001Ta0.001O3,其特征在于制备方法包括以下步骤:
(1)以碳酸锶、二氧化钛、五氧化二铌、五氧化二钒、五氧化二钽为原料,按摩尔比1:0.994:0.004:0.001:0.001进行配料,获得原料混合物;
(2)将步骤(1)配制好的原料混合物投入至球磨机中,加入氧化锆球和无水乙醇为球磨介质,在球磨机中混合均匀,然后将混合后的浆料烘干,获得粉体;
(3)将步骤(2)中获得的粉体置于空气炉中,以速率为3℃/min升温至1150℃,然后保温2小时,在高温中原料进行充分反应,获得化合物粉体;
(4)将步骤(3)中获得的化合物粉体与PVA混合并研磨,之后加入塑化剂BBP与粘合剂PVB,用玛瑙研钵研磨30分钟后,过金属筛,获得颗粒状粉末,所述PVA的质量百分比浓度为5%,加入质量为化合物粉体质量的15%,所述BBP和所述PVB的质量百分比浓度分别为7%与5%,加入质量均为化合物粉体质量的10%;
(5)将步骤(4)获得的带PVA、BBP以及PVB的颗粒状粉末,在单向压力10MPa下压制成型,获得块体;
(6)将步骤(5)成型的块体,置于空气炉中进行排胶;
(7)将步骤(6)排胶后的块体置于气氛烧结炉中进行烧结,具体是先抽真空,然后通入混合气体,混合气体中氢气、氩气、氮气的体积比为1:15:10,保持压力在一个大气压,气体流速为100ml/min,以3℃/min的升温速率升至1400℃,保温120分钟进行烧结,然后以自然降温的速度降到室温,撤去气氛,即得到SrTi0.994Nb0.004V0.001Ta0.001O3巨介电陶瓷体;
(8)将步骤(7)中形成的巨介电陶瓷体置于气氛管式炉中进行退火,具体是先用压缩机将烧结管抽为真空状态,随后进行加热,升温速率3℃/min,保持管道内的真空状态,待温度升至900℃时,缓慢通入氧气,直至保持管道内部与大气压一致,保持气体流速为100ml/min,当温度升高到1000℃,保温120min进行热处理,然后以自然降温速率降到室温,最后撤去氧气气氛,即得到在真空-氧气中退火的SrTi0.994Nb0.004V0.001Ta0.001O3陶瓷体。
2.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于步骤(2)中加入的氧化锆球的尺寸为2mm,质量为步骤(1)中原料混合物质量的4~6倍,加入的无水乙醇质量为原料混合物质量的1~2倍。
3.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于步骤(2)中的球磨机为行星式球磨机,原料混合物在行星式球磨机中球磨混合24小时,转速为250转/分钟。
4.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于步骤(2)中将球磨混合后的浆料取出,在80℃温度下烘干,获得粉体。
5.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于步骤(4)中的金属筛选用80目,反复过筛2次。
6.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于所述碳酸锶、五氧化二铌、二氧化钛、五氧化二钒、五氧化二钽均为分析纯或高纯原料。
7.根据权利要求1所述的一种钛酸锶基巨介电陶瓷制备方法,其特征在于步骤(6)的排胶过程中,升温速率为3℃/min,升温至600℃后,保温2小时,然后以3℃/min的降温速率降至室温。
CN202310080428.0A 2023-02-08 2023-02-08 一种钛酸锶基巨介电陶瓷制备方法 Active CN116041059B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310080428.0A CN116041059B (zh) 2023-02-08 2023-02-08 一种钛酸锶基巨介电陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310080428.0A CN116041059B (zh) 2023-02-08 2023-02-08 一种钛酸锶基巨介电陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN116041059A CN116041059A (zh) 2023-05-02
CN116041059B true CN116041059B (zh) 2024-04-02

Family

ID=86117999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310080428.0A Active CN116041059B (zh) 2023-02-08 2023-02-08 一种钛酸锶基巨介电陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN116041059B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH669951A5 (en) * 1986-04-03 1989-04-28 Battelle Memorial Institute Producing semiconductor strontium titanate particles
KR20010083698A (ko) * 2000-02-21 2001-09-01 윤종용 오존 어닐링 공정을 이용한 반도체 장치의 커패시터제조방법
CN103319170A (zh) * 2013-06-14 2013-09-25 广东风华高新科技股份有限公司 环形压敏电阻器瓷料、制备方法与环形压敏电阻器及其制备方法
CN103601488A (zh) * 2013-12-03 2014-02-26 广州天极电子科技有限公司 一种调控陶瓷电介质微观结构及介电性能的方法
CN104098330A (zh) * 2014-07-22 2014-10-15 中国科学院上海硅酸盐研究所 采用后退火工艺制备高性能钛酸锶钡热释电陶瓷的方法
CN104404464A (zh) * 2014-11-25 2015-03-11 天津大学 射频反应溅射外延镧锶钴氧薄膜的制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN106747410A (zh) * 2016-12-05 2017-05-31 陕西师范大学 偏压稳定型巨介电低损耗二氧化钛基复合介电陶瓷材料
CN110845236A (zh) * 2019-11-22 2020-02-28 湖南匡楚科技有限公司 一种Ta掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN111410527A (zh) * 2020-03-20 2020-07-14 广东风华高新科技股份有限公司 一种复相巨介电陶瓷材料及其制备方法
CN112321299A (zh) * 2020-12-03 2021-02-05 电子科技大学 超低损耗的钇铝石榴石微波介质陶瓷材料及其制备方法
CN114276138A (zh) * 2021-12-28 2022-04-05 清华大学 铌酸钾钠基无铅压电陶瓷及其制备方法
CN115196959A (zh) * 2022-07-11 2022-10-18 陕西科技大学 一种通过氧空位调控具有超低损耗和高绝缘电阻率的巨介电陶瓷及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH669951A5 (en) * 1986-04-03 1989-04-28 Battelle Memorial Institute Producing semiconductor strontium titanate particles
KR20010083698A (ko) * 2000-02-21 2001-09-01 윤종용 오존 어닐링 공정을 이용한 반도체 장치의 커패시터제조방법
CN103319170A (zh) * 2013-06-14 2013-09-25 广东风华高新科技股份有限公司 环形压敏电阻器瓷料、制备方法与环形压敏电阻器及其制备方法
CN103601488A (zh) * 2013-12-03 2014-02-26 广州天极电子科技有限公司 一种调控陶瓷电介质微观结构及介电性能的方法
CN104098330A (zh) * 2014-07-22 2014-10-15 中国科学院上海硅酸盐研究所 采用后退火工艺制备高性能钛酸锶钡热释电陶瓷的方法
CN104404464A (zh) * 2014-11-25 2015-03-11 天津大学 射频反应溅射外延镧锶钴氧薄膜的制备方法
CN105732020A (zh) * 2016-01-19 2016-07-06 陕西师范大学 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN106747410A (zh) * 2016-12-05 2017-05-31 陕西师范大学 偏压稳定型巨介电低损耗二氧化钛基复合介电陶瓷材料
CN110845236A (zh) * 2019-11-22 2020-02-28 湖南匡楚科技有限公司 一种Ta掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN111410527A (zh) * 2020-03-20 2020-07-14 广东风华高新科技股份有限公司 一种复相巨介电陶瓷材料及其制备方法
CN112321299A (zh) * 2020-12-03 2021-02-05 电子科技大学 超低损耗的钇铝石榴石微波介质陶瓷材料及其制备方法
CN114276138A (zh) * 2021-12-28 2022-04-05 清华大学 铌酸钾钠基无铅压电陶瓷及其制备方法
CN115196959A (zh) * 2022-07-11 2022-10-18 陕西科技大学 一种通过氧空位调控具有超低损耗和高绝缘电阻率的巨介电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氧气退火对(In+Nb)共掺杂TiO_2陶瓷的介电性能的影响;赵小刚;刘鹏;;科学通报(25);2967-2976 *

Also Published As

Publication number Publication date
CN116041059A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN109111229B (zh) 一种高温烧结微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN101805185A (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN104129988A (zh) 一种无铅高储能密度高储能效率陶瓷介质材料及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
KR20230147153A (ko) 조밀한 그린 테이프, 그 제조방법 및 용도
CN116041059B (zh) 一种钛酸锶基巨介电陶瓷制备方法
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN116813331A (zh) 钛酸锶陶瓷及其制备方法和应用
CN113233901B (zh) 致密高纯锶钽氧氮化物陶瓷及其制备方法
CN112299839B (zh) 一种微波高稳定低损耗多层陶瓷电容器用瓷介材料及其制备方法
CN109516800B (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN108794004B (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
CN112707728A (zh) 微波介质陶瓷材料及其制备方法和电子器件
CN113264776B (zh) 致密铕钽氧氮化物陶瓷及其制备方法
CN110734286B (zh) 一种铁基石榴石陶瓷材料、其制备和应用
CN116835982B (zh) 一种层状结构微波介质谐振器的制备方法
CN114988868B (zh) 一种巨介电常数、低介电损耗钛酸锶陶瓷的制备方法
CN109748584B (zh) 一种钆钡掺杂镍酸盐陶瓷及其制备方法和应用
CN113387708B (zh) 致密高介电钡钽氧氮化物陶瓷及其制备方法
CN113548873B (zh) 一种锰钴氧化物陶瓷材料的制备方法
Rao et al. New dielectric materials based on pyrochlore-type oxides-Ca 3 RE 3 Ti 7 Ta 2 O 26.5 (RE= Pr, Sm, Gd, Dy or Y): Structure, FT-IR spectra, microstructure and dielectric properties
CN109748583B (zh) 一种镧钐掺杂镍酸盐陶瓷及其制备方法和应用
Czekaj et al. Influence of dopants on structure of polycrystalline bismuth niobate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant