CN113233901B - 致密高纯锶钽氧氮化物陶瓷及其制备方法 - Google Patents

致密高纯锶钽氧氮化物陶瓷及其制备方法 Download PDF

Info

Publication number
CN113233901B
CN113233901B CN202110745116.8A CN202110745116A CN113233901B CN 113233901 B CN113233901 B CN 113233901B CN 202110745116 A CN202110745116 A CN 202110745116A CN 113233901 B CN113233901 B CN 113233901B
Authority
CN
China
Prior art keywords
tantalum oxynitride
strontium tantalum
ceramic
sintering
oxynitride ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110745116.8A
Other languages
English (en)
Other versions
CN113233901A (zh
Inventor
李端
李俊生
曾良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110745116.8A priority Critical patent/CN113233901B/zh
Publication of CN113233901A publication Critical patent/CN113233901A/zh
Application granted granted Critical
Publication of CN113233901B publication Critical patent/CN113233901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种致密高纯锶钽氧氮化物陶瓷的制备方法,包括将锶钽氧氮化物陶瓷粉体与乙醇混合均匀,球磨后干燥并过筛,得到预烧结粉体,将预烧结粉体在加压、保护气氛或者在加压、真空条件下进行放电等离子烧结,烧结温度为1300℃~1400℃,经冷却,得到陶瓷初烧结体,将陶瓷初烧结体在氨气气氛、无压力条件下进行二次烧结,降温冷却后,得到致密高纯锶钽氧氮化物陶瓷。本发明的制备方法时间短,制得的致密高纯锶钽氧氮化物陶瓷具有高纯度、高密度、高介电常数、低介电损耗的优点,有广泛的应用前景。

Description

致密高纯锶钽氧氮化物陶瓷及其制备方法
技术领域
本发明涉及高性能介电陶瓷材料制备技术领域,尤其涉及一种致密高纯锶钽氧氮化物陶瓷及其制备方法。
背景技术
作为一种新型钙钛矿类材料,锶钽氧氮化物SrTaO2N在室温下有着较高的介电常数,耐酸碱腐蚀,热稳定性好,在高性能电容器等领域有着广泛的应用前景。致密化主要是烧结过程,即颗粒重排靠近,使陶瓷致密化以及晶粒生长的过程,主要影响因素有烧结温度、升温速率和保温时间,在加压烧结过程中压力也会对陶瓷的致密化产生影响。对于烧结温度,烧结温度过高时会导致陶瓷晶粒生长过大或组织机构不均匀,还会促进二次结晶,而过低的烧结温度则会导致晶粒发育不完全材料无法充分致密化,对于介电材料,密度和孔隙率是影响陶瓷介电性能的重要参数,需要选择最佳的烧结温度以获得密度高、孔隙率低的样品们才能得到良好的介电性能。对于升温速率,过快的升温速率将会提高晶粒的长大速度,或出现异常长大,陶瓷表面快速致密化,使其内部气孔难以消除,孔隙率过高。保温过程中,材料的各部分温度均匀化并完全结晶成瓷,当保温时间较短时,陶瓷各部分温度不均匀,晶粒不能充分发育长大,晶界过多;而保温时间延长时,陶瓷中的晶粒重新排列并进一步长大,所得陶瓷材料也会更加致密。针对目前主流的氨化加无压烧结的制备方法有工艺时间长、产物纯度和致密度偏低等不足,因此,对于致密化材料新烧结工艺及参数的研究是至关重要的,现亟待发展一种耗时短的方法烧结得到高密度、高纯度、高介电常数的锶钽氧氮化物陶瓷。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种制备周期较短、具有高纯度、高密度、高介电常数的致密高纯锶钽氧氮化物陶瓷及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种致密高纯锶钽氧氮化物陶瓷的制备方法,包括以下步骤:
S1、将锶钽氧氮化物陶瓷粉体与乙醇混合均匀,经球磨后,干燥、过筛,得到预烧结粉体;
S2、将步骤S1所得的预烧结粉体,在加压、保护气氛条件下或者在加压、真空条件下进行放电等离子烧结,所述加压的压力为140MPa~150MPa,所述放电等离子烧结的烧结温度为1300℃~1400℃,升温速率为300℃/min~500℃/min,烧结保温0~10min,然后自然冷却,得到陶瓷初始烧结体;
S3、将步骤S2所得的陶瓷初始烧结体在氨气气氛、无压力条件下进行二次烧结,烧结温度为1310℃~1500℃,该烧结温度需大于步骤S2中的烧结温度,升温速率为10℃/min~20℃/min,烧结保温1min~80min,然后降温冷却,得到致密高纯锶钽氧氮化物陶瓷。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S2中,烧结保温0~5min。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S3中,烧结保温20min~60min。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S1中,所述球磨采用的球磨罐材质为聚氨酯、氧化铝或氧化锆,所述球磨采用的球磨珠材质为聚氨酯、氧化铝或氧化锆,所述球磨的时间为1h~8h,所述干燥的温度为50℃~200℃,所述干燥的时间为1h~18h,所述过筛的目数为3000目~10000目。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S1中,所述球磨的时间为2h~4h,所述干燥的温度为100℃~150℃,所述干燥的时间为6h~12h,所述过筛的目数为3000目~6000目。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S3中,所述降温冷却的冷却速率为1℃/min~200℃/min。
上述的致密高纯锶钽氧氮化物陶瓷的制备方法,优选的,步骤S3中,所述降温冷却的冷却速率为10℃/min~100℃/min。
作为一个总的发明构思,本发明还提供一种上述的制备方法制得的致密高纯锶钽氧氮化物陶瓷。
本发明中,步骤S1采用的原料锶钽氧氮化物陶瓷粉体的制备方法可参考申请人在先申请并公开的专利文献,包括以下步骤:
(1)将4.43g碳酸锶粉末、6.63g五氧化二钽粉末与9g尿素溶于50mL无水乙醇并球磨,得到混合浆料;
(2)将混合浆料充分干燥,得到混合前驱体粉末;
(3)将混合前驱体粉末放置在坩埚中,在保护气氛下1000℃煅烧,得到锶钽氧氮化物陶瓷粉体,即SrTaO2N陶瓷粉体。
与现有技术相比,本发明的优点在于:
本发明采用放电等离子烧结通过焦耳热效应及场效应实现对材料的高效高速加热,可加速原子扩散,从而加速致密化,本发明采用的烧结温度较传统烧结方式低,可在热力学上抑制氧氮化物分解,烧结过程中可施加高的压力,且保温时间短,能有效控制晶粒生长速度,利于获得细晶结构。本发明通过两步法烧结氧氮化物,可尽可能提高产物的致密度,同时通过特定温度、压力和保温时间使材料的开气孔率占总气孔率的比例最高,便于二次烧结时氨气的进入,在氨气气氛中进行二次烧结既使得放电等离子烧结中分解的氧氮化物恢复了化学计量比,又消除了剩余的大部分气孔率,进一步提高产物的致密度和纯度。
附图说明
图1为本发明实施例1制得的致密高纯锶钽氧氮化物陶瓷的光学图片。
图2为本发明实施例1制得的致密高纯锶钽氧氮化物陶瓷的XRD谱图。
图3为本发明实施例1制得的致密高纯锶钽氧氮化物陶瓷的SEM图。
图4为本发明实施例1制得的致密高纯锶钽氧氮化物陶瓷的介电常数和损耗角正切值频谱曲线图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的原料和仪器均为市售。
实施例1:
一种本发明的致密高纯锶钽氧氮化物陶瓷的制备方法,包括以下步骤:
S1、将5g锶钽氧氮化物陶瓷粉体与20mL无水乙醇混合均匀,在聚氨酯球磨罐中用聚氨酯球磨珠球磨4h,在100℃下干燥8h,然后在6000目过筛,得到预烧结粉体。
S2、将步骤S1所得4g预烧结粉体放入Φ12mm的石墨模具中,在放电等离子烧结设备中进行初始烧结,工艺条件为:压力140MPa,气氛为氮气,升温速率300℃/min,烧结温度为1300℃,保温时间为1min,自然冷却后得到陶瓷初烧结体。
S3、将步骤S2所得的陶瓷初始烧结体放入管式炉,在无机械压力、氨气气氛条件下进行二次烧结,烧结工艺条件为:升温速率为20℃/min,烧结温度为1350℃,保温时间为60min,冷却速率为30℃/min。降温冷却后得到致密高纯锶钽氧氮化物陶瓷。
本实施例中,锶钽氧氮化物陶瓷粉体的制备过程如下:
(1)将4.43g碳酸锶粉末、6.63g五氧化二钽粉末与9g尿素溶于50mL无水乙醇并球磨,得到混合浆料;
(2)将混合浆料充分干燥,得到混合前驱体粉末;
(3)将混合前驱体粉末放置在坩埚中,在保护气氛下1000℃煅烧,得到锶钽氧氮化物陶瓷粉体,即SrTaO2N陶瓷粉体。
将本实施例制得的致密高纯锶钽氧氮化物陶瓷片上下表面打磨,其光学图片如图1所示,其颜色为深棕褐色,与氧氮化物陶瓷粉体相近,其物相组成及微观形貌分别如图2和图3所示。由图2和图3可知,本实施例制备得到的SrTaO2N氧氮化物陶瓷几乎为纯相,其微观结构致密,晶粒尺寸约300nm。经测试,所得陶瓷片致密度为94.36%(致密度为体积密度/理论密度,SrTaO2N的理论密度为8.021g/cm3),闭气孔率为5.23%。图4为本实施例制得的致密高纯锶钽氧氮化物陶瓷在室温下介电常数和损耗角正切值随频率变化曲线,由图可知,其在300Hz下有着极高的介电常数(9550)和较低的损耗(0.001)。
对比例1:
一种锶钽氧氮化物陶瓷的制备方法,与实施例1基本相同,不同之处在于:
步骤S2中,并未采用放电等离子烧结设备进行初烧结,而是采用传统无压烧结炉,升温速率为10℃/min,烧结温度为1300℃,保温时间为1min。
本对比例制备得到的SrTaO2N氧氮化物陶瓷片致密度为55.84%,闭气孔率为36.38%,物相组成为SrTa(O,N)3和Sr5Ta4O15。可见,此对比例产物相对密度和纯度都较实施例1明显降低,而闭气孔率高。这是由于采用传统无压方式初烧结,陶瓷初烧结体的致密度较低,其气孔率较高且气孔大,使得在二次烧结时很难致密化,而传统初烧结较慢的升温速率又从动力学上加快了氧氮化物的分解。
对比例2:
一种锶钽氧氮化物陶瓷的制备方法,与实施例1不同之处在于:没有步骤S3,即直接对氧氮化物进行放电等离子烧结,其机械压力140MPa,气氛为氮气,升温速率300℃/min,烧结温度为1300℃,保温时间为1min,自然冷却后得到陶瓷烧结体。
本对比例制备得到的EuTa(O,N)3氧氮化物陶瓷片相对密度为91.88%,闭气孔率为7.4%,物相组成为SrTa(O,N)3、Sr5Ta4OTa3N5和Ta3N5。可见,此对比例产物纯度较实施例1低。这是由于采用高压、快速升温和提高烧结温度的放电等离子烧结方法虽然从一定程度上能快速致密化氧氮化物,但因其分解温度低于烧结温度,产物分解严重且无法恢复化学计量比。
实施例2:
一种本发明的致密高纯锶钽氧氮化物陶瓷的制备方法,与实施例1的制备过程基本相同,区别仅在于:步骤S2中,放电等离子烧结温度为1400℃,保温时间为3min。
经检测,本实施例制备得到的SrTaO2N氧氮化物陶瓷片致密度为95.62%,闭气孔率为3.76%,在室温、300Hz下介电常数为5935,介电损耗为0.0016。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (8)

1.一种致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将锶钽氧氮化物陶瓷粉体与乙醇混合均匀,经球磨后,干燥、过筛,得到预烧结粉体;
S2、将步骤S1所得的预烧结粉体,在加压、保护气氛条件下或者在加压、真空条件下进行放电等离子烧结,所述加压的压力为140MPa~150MPa,所述放电等离子烧结的烧结温度为1300℃~1400℃,升温速率为300℃/min~500℃/min,烧结保温0~10min,然后自然冷却,得到陶瓷初始烧结体;
S3、将步骤S2所得的陶瓷初始烧结体在氨气气氛、无压力条件下进行二次烧结,烧结温度为1310℃~1500℃,该烧结温度需大于步骤S2中的烧结温度,升温速率为10℃/min~20℃/min,烧结保温1min~80min,然后降温冷却,得到致密高纯锶钽氧氮化物陶瓷。
2.根据权利要求1所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S2中,烧结保温0~5min。
3.根据权利要求1所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,烧结保温20min~60min。
4.根据权利要求1~3中任一项所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S1中,所述球磨采用的球磨罐材质为聚氨酯、氧化铝或氧化锆,所述球磨采用的球磨珠材质为聚氨酯、氧化铝或氧化锆,所述球磨的时间为1h~8h,所述干燥的温度为50℃~200℃,所述干燥的时间为1h~18h,所述过筛的目数为3000目~10000目。
5.根据权利要求4所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为2h~4h,所述干燥的温度为100℃~150℃,所述干燥的时间为6h~12h,所述过筛的目数为3000目~6000目。
6.根据权利要求1~3中任一项所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种。
7.根据权利要求1~3中任一项所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,所述降温冷却的冷却速率为1℃/min~200℃/min。
8.根据权利要求7所述的致密高纯锶钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,所述降温冷却的冷却速率为10℃/min~100℃/min。
CN202110745116.8A 2021-06-30 2021-06-30 致密高纯锶钽氧氮化物陶瓷及其制备方法 Active CN113233901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110745116.8A CN113233901B (zh) 2021-06-30 2021-06-30 致密高纯锶钽氧氮化物陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110745116.8A CN113233901B (zh) 2021-06-30 2021-06-30 致密高纯锶钽氧氮化物陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113233901A CN113233901A (zh) 2021-08-10
CN113233901B true CN113233901B (zh) 2022-05-31

Family

ID=77141284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110745116.8A Active CN113233901B (zh) 2021-06-30 2021-06-30 致密高纯锶钽氧氮化物陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113233901B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215663B (zh) * 2022-07-19 2023-03-31 武汉理工大学 一种高致密纯相CrN陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155646A1 (en) * 2008-12-18 2010-06-24 Canon Kabushiki Kaisha Piezoelectric material
CN108695064A (zh) * 2017-03-31 2018-10-23 Tdk株式会社 氧氮化物薄膜及电容元件
JP2019089694A (ja) * 2017-11-10 2019-06-13 Tdk株式会社 金属酸窒化物粉末および金属酸窒化物焼成体
CN109928761A (zh) * 2018-09-06 2019-06-25 中国人民解放军国防科技大学 SrTaO2N氧氮化物纳米粉及其制备方法
CN109928763A (zh) * 2019-03-07 2019-06-25 中国人民解放军国防科技大学 一种钽基氧氮化物纳米粉及其制备方法
CN110156474A (zh) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 一种多孔钽基氧氮化物陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155646A1 (en) * 2008-12-18 2010-06-24 Canon Kabushiki Kaisha Piezoelectric material
CN108695064A (zh) * 2017-03-31 2018-10-23 Tdk株式会社 氧氮化物薄膜及电容元件
JP2019089694A (ja) * 2017-11-10 2019-06-13 Tdk株式会社 金属酸窒化物粉末および金属酸窒化物焼成体
CN109928761A (zh) * 2018-09-06 2019-06-25 中国人民解放军国防科技大学 SrTaO2N氧氮化物纳米粉及其制备方法
CN109928763A (zh) * 2019-03-07 2019-06-25 中国人民解放军国防科技大学 一种钽基氧氮化物纳米粉及其制备方法
CN110156474A (zh) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 一种多孔钽基氧氮化物陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ferroelectric Response Induced in cis-Type Anion Ordered SrTaO2N Oxynitride Perovskite;Kikkawa, Shinichi;《Chemistry of Material》;20160217;第28卷(第5期);第1312-1317页 *
Spark plasma sintering of dielectric BaTaO2N close to the melting point of the BaCN2 additive;Akira Hosono;《Journal of the European Ceramic Society》;20200205;第40卷(第6期);第2317-2322页 *

Also Published As

Publication number Publication date
CN113233901A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN109928763B (zh) 一种钽基氧氮化物纳米粉及其制备方法
CN113233901B (zh) 致密高纯锶钽氧氮化物陶瓷及其制备方法
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN108585848B (zh) 一种KSr2Nb5O15透明铁电陶瓷的制备方法
JP3285620B2 (ja) 透光性イットリウム−アルミニウム−ガーネット焼結体の製造方法
CN111004030A (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
KR20230147153A (ko) 조밀한 그린 테이프, 그 제조방법 및 용도
JP2939535B2 (ja) 透明酸化イットリウム焼結体の製造法
JP4251649B2 (ja) 透光性酸化ルテチウム焼結体及びその製造方法
CN101665356A (zh) 掺锆氧化钇基透明陶瓷及其制备方法
KR20140015073A (ko) 티탄산바륨의 제조방법 및 그 방법으로 제조한 티탄산바륨 분말
CN111925207A (zh) 一种Mg3B2O6-Ba3(VO4)2复合陶瓷材料及制备方法
CN113387708B (zh) 致密高介电钡钽氧氮化物陶瓷及其制备方法
Zhua et al. Compositional regulation of multi-component GYGAG: Ce scintillation ceramics: Self-sintering-aid effect and afterglow suppression
CN113387709B (zh) 致密镧钽氧氮化物陶瓷及其制备方法
CN116041059B (zh) 一种钛酸锶基巨介电陶瓷制备方法
CN113264776B (zh) 致密铕钽氧氮化物陶瓷及其制备方法
CN109516800A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN115784723B (zh) 一种超细晶高透明双相氧化铝透明陶瓷的制备方法
CN115321584B (zh) 一种制备β-Ga2O3微米带的方法
CN117142858B (zh) 具有高强致密相变特性的智能热控涂层材料及其制备方法
CN116283289B (zh) 一种高透明Gd2O3透明陶瓷材料的制备方法
JP4025874B2 (ja) 透明酸化スカンジウムセラミックス及びその製造方法
CN103361729A (zh) 一种制备p型氮化铝晶体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant