CN115215663B - 一种高致密纯相CrN陶瓷的制备方法 - Google Patents

一种高致密纯相CrN陶瓷的制备方法 Download PDF

Info

Publication number
CN115215663B
CN115215663B CN202210847324.3A CN202210847324A CN115215663B CN 115215663 B CN115215663 B CN 115215663B CN 202210847324 A CN202210847324 A CN 202210847324A CN 115215663 B CN115215663 B CN 115215663B
Authority
CN
China
Prior art keywords
crn
phase
powder
sintering
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210847324.3A
Other languages
English (en)
Other versions
CN115215663A (zh
Inventor
王传彬
刘龙
徐志刚
彭健
沈强
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210847324.3A priority Critical patent/CN115215663B/zh
Publication of CN115215663A publication Critical patent/CN115215663A/zh
Application granted granted Critical
Publication of CN115215663B publication Critical patent/CN115215663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种高致密纯相CrN陶瓷的制备方法,属于陶瓷技术领域。本发明为一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到高纯CrN粉体原料;(2)将高纯CrN粉体原料装入石墨模具中,进行等离子活化烧结,得到高致密纯相CrN陶瓷,等离子活化烧结过程中升温速率为100~200℃/min,烧结温度为1100~1300℃,保温时长为1~10min,烧结压力为50~100MPa。本发明首先以CrN粉体为原料,利用氨解氮化工艺,进行纯化处理,使粉体中的Cr2N杂相氮化为CrN相,得到物相单一的高纯CrN粉体原料;再利用等离子活化烧结,在1100~1300℃下实现CrN粉体的快速致密化并抑制烧结过程中的相分解,得到物相单一、结构致密的CrN陶瓷。

Description

一种高致密纯相CrN陶瓷的制备方法
技术领域
本发明属于陶瓷技术领域,具体涉及一种高致密纯相CrN陶瓷的制备方法。
背景技术
氮化铬(CrN)是一种重要的工程材料,具有优异的力学性质(硬度高达11.2GPa,断裂韧性约4.7MPa·m1/2,弯曲强度约355MPa)和良好的抗高温氧化和耐化学腐蚀特性,可广泛用于制作超硬刀具、冲压模具、压铸模具、粉末成型模具、机械密封、表面防腐中的各类耐磨、耐高温、抗腐蚀结构件,是现代技术生产中不可或缺的高性能陶瓷材料。
高质量的CrN陶瓷是实现其工程应用的基本前提,然而,高致密纯相CrN陶瓷的制备十分困难。一方面,目前市售的CrN粉体中含有较多Cr2N杂相,虽然其硬度(14.5GPa)稍高于CrN,但脆性大、韧性差,综合力学性能不如纯相CrN。工业上一般以Cr的金属或卤化物粉体为原料,采用氮气氮化法生产CrN粉体,但该方法很难实现完全氮化;采用苯热法、机械合金化、高能球磨等方法制备CrN粉体时,反应条件苛刻、生产周期长,而且容易引入其它杂质;采用高温高压固相合成法和高温自蔓延合成法,虽可制得纯度较高的CrN粉体,但工艺复杂、生产效率低,而且粉体粒径大(达数百微米),烧结活性较差。
另一方面,CrN熔点高(1650℃),自扩散系数小,烧结活性低,而高温下又易分解为Cr2N,导致CrN粉体的致密化也很困难。采用常压或热压烧结技术制备CrN陶瓷时,往往需要很高的烧结温度和较长的保温时间,这极易导致烧结过程中CrN的相分解,难以获得纯相CrN陶瓷。如已公开的申请号为201710247968.8的中国专利中曾公开了一种通过热压烧结制备铬氮化物块体的方法,尝试将烧结温度降低至700~1000℃,但制得的CrN陶瓷致密度仅为66%。也有报道,通过添加Ti等合金元素或碳纳米管,可在一定程度上抑制烧结过程中CrN的相分解,但添加元素不可避免地会影响陶瓷纯度,劣化CrN陶瓷的力学性能。可见,现有技术中的方法制备的CrN陶瓷中会有杂相,而且致密度低。
发明内容
有鉴于此,针对CrN粉体原料纯度低、难以致密化、烧结过程中易发生相分解的问题,本发明提供一种高致密纯相CrN陶瓷的制备方法,首先利用氮化工艺使氮化铬原料纯化,再通过等离子活化烧结实现高纯CrN的制备,制得的CrN陶瓷物相单一、结构致密,具有优异的力学性能、热及化学稳定性和耐摩擦磨损特性,作为一种重要的耐高温结构陶瓷和耐磨材料,具有更广泛的应用。
本发明为一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;
(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到物相单一的高纯CrN粉体。其中N元素的含量高于60at.%,保证后续烧结过程中即使释放出部分N也能保持化学计量比,且氮化后的粉体表面会开裂形成细小颗粒、烧结活性大大提高,更有利于降低烧结温度、缩短保温时间,进一步减弱CrN相的分解。所述氮化处理的温度为800~1200℃,氮化时长为1~20h,所述氮化处理过程中氨气流量为50~1000mL/min;
(2)将所述高纯CrN粉体装入石墨模具中,进行等离子活化烧结,得到高致密纯相CrN陶瓷。通过向烧结炉内通入N2或NH3气体,并保持较高气压,进一步抑制了CrN分解反应的发生;同时气孔中N的及时补位也有利于烧结过程中气孔的消除,有利于提高CrN陶瓷的致密性和强度。所述等离子活化烧结过程中升温速率为100~200℃/min,烧结温度为1100~1300℃,保温时长为1~10min,烧结压力为50~100MPa,烧结气氛为NH3、N2中的一种或两种,气氛压力为100~120kPa。较优选的,所述等离子活化烧结过程中升温速率为150℃/min,烧结温度为1200℃,保温时长为5min,烧结压力为75MPa。
等离子活化烧结是一种在电场、应力场和温度场耦合作用下实现粉体快速致密化的活化烧结技术,具有升温速率快、致密化温度低、保温时间短的技术优势,已广泛应用于各类新材料的制备中。该技术利用开关直流脉冲电压对粉体颗粒间的空隙充电,使颗粒产生瞬间的、分散的等离子体,而等离子体是一种高活性离子化的电导气体,能迅速消除粉体颗粒表面吸附的杂质和气体,使物质发生高速扩散和迁移;此外,等离子体活化烧结采用直流电直接对石墨模具和堆积的粉体进行加热,具有很高的热效率;同时,烧结中对粉料施加轴向压力,有利于使粉料处于热塑性状态,颗粒间接触扩散、传质过程快速进行。等离子体活化烧结能显著降低烧结温度、在较短时间内实现致密化,将其应用于CrN陶瓷的制备,具有得天独厚的优势。
在等离子体活化烧结过程中,活化阶段起着相当重要的作用。在活化阶段,通过施加脉冲电压,使颗粒之间放电,产生等离子体,从而对颗粒表面进行净化和活化,其结果一方面是降低了原子自扩散激活能,提高了能够克服能垒而跃迁的原子几率,使颗粒原子扩散系数按指数规律增大,提高了粉体本征的烧结性:另一方面在放电产生的等离子体和强烈撞击压力的综合作用下,晶粒界面产生迁移、滑移、位错和微裂纹,从而有效地提高了颗粒内的非平衡空位浓度,使原子自扩散系数增高,从而增加了粉体颗粒的烧结性。
本发明与现有技术相比,具有以下有益效果:
(1)本发明基于现有的市售CrN粉体,利用氨解氮化法对其进行纯化处理,氮化处理以后使得CrN粉体的N含量高于60at.%,粉体表面会开裂形成细小颗粒。利用NH3在高温下分解为N-自由基和H-自由基,相比N2直接氮化,氨解法产生的N-自由基更容易扩散进入CrN粉料内部,将其中的Cr2N杂相进一步转化为CrN相,使得高纯CrN粉体的氮含量能够高于60at.%,CrN的晶格以及颗粒内部的孔隙内存在着丰富的N,在烧结的过程中能够及时弥补CrN分解时出现的空位缺陷,从而保持CrN的化学计量比、抑制Cr2N杂相的生成;同时H-自由基又可起到还原作用,去除粉体表面的氧化层,从而能够获得物相单一的高纯CrN粉体;此外,由于CrN和Cr2N在密度、力学性质和热膨胀系数等方面的巨大差异,相转化过程中粉体表面会开裂形成孔洞和细小颗粒,使得CrN粉体表面出现明显的颗粒化,进一步增强表面活化作用和自发热作用,能够大幅降低烧结温度、缩短保温时间,实现CrN粉体的快速致密化,有效抑制CrN陶瓷在烧结过程中的相分解。
(2)等离子活化烧结是一种在电场、应力场和温度场耦合作用下实现粉体快速致密化的活化烧结技术,具有升温速率快、致密化温度低、保温时间短的技术优势,将等离子活化烧结应用到CrN陶瓷的制备中可以大幅降低烧结温度、缩短保温时间,同时粉体表面纳米级小颗粒的存在也进一步增强了表面活化作用和自发热作用,实现CrN粉体的快速致密化,有效抑制CrN陶瓷在烧结过程中的相分解,进而制备出物相单一、结构致密的CrN陶瓷材料。
(3)本发明利用现有商用原料和成熟技术,工艺简便,生产效率高,制备的CrN陶瓷纯度高(CrN相的化学计量比接近1)、致密度高(>95%),具有优异的力学性能、热及化学稳定性和耐摩擦磨损特性,可作为一种重要的耐高温结构陶瓷和耐磨材料,应用前景广泛。
附图说明
图1为本发明实施例1中的CrN粉体原料、氮化处理后的高纯CrN粉体以及烧结后的高致密纯相CrN陶瓷的XRD图谱;
图2为本发明实施例1中的CrN粉体(氮化前)的低倍SEM图;
图3为图2中A处的局部放大图;
图4为本发明实施例1中的高纯CrN粉体(氮化后)的低倍SEM图;
图5为图4中B处的局部放大图;
图6为本发明实施例1得到的高致密纯相CrN陶瓷的断面SEM图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。
实施例1
一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;
(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到物相单一的高纯CrN粉体,其N元素含量高于60at.%,且粉体表面开裂形成细小颗粒、烧结活性大大提高,所述氮化处理的温度为1100℃,氮化时长为10h,所述氮化处理过程中氨气纯度为99.9%,氨气流量为200mL/min,所述高纯CrN粉体为物相单一的立方晶系CrN相,其N含量接近65at.%、不含Cr2N杂相及氧化物等杂质;
(2)将所述高纯CrN粉体装入石墨模具中,进行等离子活化烧结,得到高致密纯相CrN陶瓷,所述等离子活化烧结过程中升温速率为150℃/min,烧结温度为1200℃,保温时长为5min,烧结压力为75MPa,烧结气氛为NH3,气氛压力为110kPa。得到的CrN陶瓷为物相单一的立方晶系CrN相,化学计量比接近1,致密度为98%。
图1为本发明实施例1中的CrN粉体氮化前后以及烧结后的XRD图谱,CrN粉体的衍射谱图中主要有(110)、(002)、(-1-11)、(200)、(-1-12)、(300)等六方晶系Cr2N的衍射峰(PDF#75-4942),同时观察到(111)、(200)、(220)等立方晶系CrN的衍射峰(PDF#77-0047),但衍射强度较低,表明其主要成分为Cr2N,仅含少量CrN。纯化处理之后,粉体的衍射图谱中仅出现立方晶系CrN的衍射峰,而六方晶系Cr2N的衍射峰完全消失,表明其为物相单一的CrN粉体。经过等离子活化烧结之后,得到的陶瓷仍为物相单一的立方晶系CrN。
图2为本施例中的CrN原料粉体(氮化前)的低倍SEM图;图3为图2中A处的局部放大图;图4为本施例中的高纯CrN粉体(氮化后)的低倍SEM图;图5为图4中B处的局部放大图,结合对相应位置的EDS分析可以得出以下结论;其中CrN粉体原料中包含粒径2 ~ 40μm的大颗粒和粒径小于100 nm的小颗粒,大颗粒表面光滑致密、Cr:N原子数之比为63.8:36.2,接近于Cr2N的化学计量比,而小颗粒形貌无规、Cr:N原子数之比为51.9:48.1,接近于CrN的化学计量比;氮化后得到的高纯CrN粉体中,Cr:N原子数之比提高至34.4:65.6,而大颗粒则表面变粗糙、出现很多细小颗粒,Cr:N原子数之比为38.3:61.7。所以经过氮化过程,不仅仅提高了CrN粉体中N的含量,还使得粉体表面发生颗粒化,对后续提高烧结效率、降低烧结温度、缩短保温时间具有极大的促进作用。
图6为本实施例中的高致密纯相CrN陶瓷的断面SEM照片,该陶瓷结构非常致密、未观察到任何孔洞,能谱结果显示其化学计量比接近1。
实施例2
一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;
(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到物相单一的高纯CrN粉体,其N元素含量高于60at.%,且粉体表面开裂形成细小颗粒、烧结活性大大提高,所述氮化处理的温度为1200℃,氮化时长为1h,所述氮化处理过程中氨气纯度为99.999%,氨气流量为1000mL/min,所述高纯CrN粉体为物相单一的立方晶系CrN相,其N含量接近63at.%、不含Cr2N杂相及氧化物等杂质;
(2)将所述高纯CrN粉体装入石墨模具中,进行等离子活化烧结,实现粉体的快速致密化并抑制烧结过程中的相分解,得到高致密纯相CrN陶瓷,所述等离子活化烧结过程中升温速率为200℃/min,烧结温度为1300℃,保温时长为1min,烧结压力为50MPa,烧结气氛为N2,气氛压力为120kPa,得到的CrN陶瓷为物相单一的立方晶系CrN相,化学计量比接近1,致密度为99.1%。
实施例3
一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;
(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到物相单一的高纯CrN粉体,其N元素含量高于60at.%,且粉体表面开裂形成细小颗粒、烧结活性大大提高,所述氮化处理的温度为800℃,氮化时长为20h,所述氮化处理过程中氨气纯度为99.99%,氨气流量为50mL/min,所述高纯CrN粉体为物相单一的立方晶系CrN相,其N含量接近61at.%、不含Cr2N杂相及氧化物等杂质;
(2)将所述高纯CrN粉体装入石墨模具中,进行等离子活化烧结,实现粉体的快速致密化并抑制烧结过程中的相分解,得到高致密纯相CrN陶瓷,所述等离子活化烧结过程中升温速率为100℃/min,烧结温度为1100℃,保温时长为10min,烧结压力为100MPa,烧结气氛为N2和NH3的混合气体,其原子数之比为1:1,气氛压力为100kPa。得到的CrN陶瓷为物相单一的立方晶系CrN相,化学计量比接近1,致密度为96.2%。
实施例4
本实施例与实施例3相同,区别在于本实施例中氮化温度为1000℃,氮化时长为15h,等离子活化烧结的温度为1150℃,保温时长为3min。
本实施例中制得的高致密纯相CrN陶瓷为CrN相,化学计量比接近1,致密度为97.5%。
实施例5
本实施例与实施例1相同,区别在于本实施例中等离子活化烧结的温度为1250℃,保温时长为2min。
本实施例中制得的高致密纯相CrN陶瓷为CrN相,化学计量比接近1,致密度为99.3%。
实施例6
本实施例与实施例5相同,区别在于本实施例中等离子活化烧结中烧结气氛为N2,保温时长为8min。
本实施例中制得的高致密纯相CrN陶瓷为CrN相,化学计量比接近1,致密度为98.1%。
实施例2-6中的CrN粉体烧结氮化前后颗粒表面的变化情况,以及氮含量的变化情况与实施例1相近。

Claims (4)

1.一种高致密纯相CrN陶瓷的制备方法,其特征在于,包括以下步骤;
(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到物相单一的高纯CrN粉体,所述高纯CrN粉体的表面出现颗粒化,所述高纯CrN粉体N元素含量大于60at.%;
(2)将所述高纯CrN粉体装入石墨模具中,进行等离子活化烧结,得到高致密纯相CrN陶瓷,所述等离子活化烧结过程中升温速率为100~200℃/min,烧结温度为1100~1300℃,保温时长为1~10min,烧结压力为50~100MPa;烧结气氛为NH3、N2中的一种或两种,气氛压力为100~120kPa。
2.根据权利要求1所述的一种高致密纯相CrN陶瓷的制备方法,其特征在于,所述氮化处理的温度为800~1200℃,氮化时长为1~20h。
3.根据权利要求2所述的一种高致密纯相CrN陶瓷的制备方法,其特征在于,所述氮化处理过程中氨气流量为50~1000mL/min。
4.根据权利要求1所述的一种高致密纯相CrN陶瓷的制备方法,其特征在于,所述等离子活化烧结过程中升温速率为150℃/min,烧结温度为1200℃,保温时长为5min,烧结压力为75MPa。
CN202210847324.3A 2022-07-19 2022-07-19 一种高致密纯相CrN陶瓷的制备方法 Active CN115215663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210847324.3A CN115215663B (zh) 2022-07-19 2022-07-19 一种高致密纯相CrN陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210847324.3A CN115215663B (zh) 2022-07-19 2022-07-19 一种高致密纯相CrN陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN115215663A CN115215663A (zh) 2022-10-21
CN115215663B true CN115215663B (zh) 2023-03-31

Family

ID=83611050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210847324.3A Active CN115215663B (zh) 2022-07-19 2022-07-19 一种高致密纯相CrN陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115215663B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719187A (en) * 1985-10-10 1988-01-12 Corning Glass Works Dense sintered bodies of nitride materials
CN103318855A (zh) * 2013-06-09 2013-09-25 上海大学 一种氮化铬的制备方法
CN105837224B (zh) * 2016-05-31 2019-01-01 武汉理工大学 一种以氟化铵为添加剂的氮化铝陶瓷的制备方法
CN107128886A (zh) * 2017-04-17 2017-09-05 电子科技大学 热电材料氮化铬及其制备方法
CN113233901B (zh) * 2021-06-30 2022-05-31 中国人民解放军国防科技大学 致密高纯锶钽氧氮化物陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115215663A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
El‐Raghy et al. Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution
JP5444384B2 (ja) 高熱伝導性窒化アルミニウム焼結体
Shi et al. Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites
CN112851365B (zh) 一种氮化硅基复相导电陶瓷的制备方法
CN109293376B (zh) 一种氮化硅氮化钛结合碳化硅耐火材料及其制备方法
CN114853477A (zh) 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
Itoh et al. Microstructure and mechanical properties of B6O-B4C sintered composites prepared under high pressure
JP3559382B2 (ja) 窒化珪素質焼結体の製造方法
CN107285329B (zh) 一种二硼化钨硬质材料及其制备方法和应用
CN114672715A (zh) 高温高熵合金表面碳化物/金刚石颗粒涂层的制备方法
CN115215663B (zh) 一种高致密纯相CrN陶瓷的制备方法
CN101186506B (zh) 利用富硼渣制备氮化硼/赛隆陶瓷复合材料的方法
Logesh et al. Effect of temperature and gaseous medium on the evolved microstructures of carbon fiber reinforced reaction bonded silicon nitride composites
JP2004026555A (ja) 立方晶窒化ホウ素含有焼結体およびその製造方法
Choi Sintering and mechanical properties of AlZrC2
JPH07172921A (ja) 窒化アルミニウム焼結体およびその製造方法
Ma et al. A novel method to fabricate porous single phase O’-sialon ceramic and improve its mechanical property
Cheng et al. Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing
Gao et al. Reclamation of used SiC grinding powder and its sintering characteristics
Grabis et al. formation of high temperature compounds in WCB system by reactive spark plasma sintering
JP3132849B2 (ja) 高靭性高圧相窒化硼素焼結体
JPH0138075B2 (zh)
Mizutani et al. Fabrication and Properties of Nano‐Sized Bn‐Particulate‐Dispersed SiAION Ceramics
JPS6321254A (ja) 窒化珪素セラミツクスの製造法
JP2004250264A (ja) 高強度窒化硼素焼結体とその製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant