CN107128886A - 热电材料氮化铬及其制备方法 - Google Patents

热电材料氮化铬及其制备方法 Download PDF

Info

Publication number
CN107128886A
CN107128886A CN201710247968.8A CN201710247968A CN107128886A CN 107128886 A CN107128886 A CN 107128886A CN 201710247968 A CN201710247968 A CN 201710247968A CN 107128886 A CN107128886 A CN 107128886A
Authority
CN
China
Prior art keywords
chromium nitride
thermoelectric material
preparation
powder
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710247968.8A
Other languages
English (en)
Inventor
王超
夏峻峰
姜晶
周婷
牛夷
陈乙德
张蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710247968.8A priority Critical patent/CN107128886A/zh
Publication of CN107128886A publication Critical patent/CN107128886A/zh
Priority to US15/936,442 priority patent/US10541356B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/062Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了氮化铬热电材料及其制备方法,属于热电材料领域。所述氮化铬热电材料由化学法合成得到,和传统的制备氮化铬的方法相比,工艺简单,大大缩短了生产制备周期,得到的氮化铬粉末也相对较纯。所得氮化铬热电材料在温度575℃时塞贝克系数可达到‑67uv/k以上,材料的ZT值在575℃时可以达到0.104,适用于中高温低功耗负载的温差发电器。结合氮化铬材料特有的耐磨、耐腐蚀和高硬度等优良的物理和机械性能,氮化铬成为一种极具潜力的中高温热电材料,能够应用在极端的条件下,比如太空卫星上的热电发电。本发明探究了一种更快速更高效合成氮化铬的方法和其在优良物理机械性能之外在热电应用领域里的潜在价值。

Description

热电材料氮化铬及其制备方法
技术领域
本发明属于热电材料领域,具体涉及氮化铬热电材料的制备方法以及热电相关参数的测试,探究了其在热电应用领域里的潜在价值。
背景技术
热电材料是一种能将热能和电能相互转换的功能材料,基于塞贝克效应和帕尔贴效应,可以分别用于温差发电和静态制冷,且有无污染,无机械转动,无噪音,安装灵活可靠性高等优点。目前,热电材料在军事、航空航天、工业废热利用、汽车尾气废热利用等领域已经展现出蓬勃发展的趋势,拥有极大的商业潜力。
热电材料的热电性能可由无量纲值ZT评估(ZT=S2σT/K)其中S为塞贝克系数,表示单位开尔文温差产生的塞贝克电压,σ为电导率,T为开尔文温度,K为热导率。ZT值越高,热电材料的转换效率越高。出于节能环保、降低成本的角度考虑,高ZT值热电材料一直是研究者们追求的目标。同时在军事和航空航天等领域的应用中,对热电材料及器件的物理和机械性能则有较高的要求。目前,Bi2Te3、PbTe、SiGe、Skutterudite、Zintl合金、Clathrate、Half-heusler合金、金属氧化物、硫族化合物和p-Zn4Sb3、FeSb2、Mg2Si等材料因具有成为高ZT值热电材料的潜力而受到广泛关注。但是大部分材料由于机械性差和在高温环境下不稳定的原因,很难应用于特殊环境。探究能应用在极端条件下的热电材料,具有极其重要的实际意义。氮化铬热电材料因为具备良好的物理和机械性能,是一种潜在的能应用于极端条件下的热电材料。
工业上氮化铬通常是通过金属铬或卤化铬与氨在约1000℃的温度下反应制备。反应通常需要非常长的时间(细粉末2或3周),由于制备周期过长,大大降低了氮化铬产业的生产效率和经济效益。其它制备氮化铬的方法如机械合金法、苯热法、高能球磨法等由于生产周期长、制备的氮化铬纯度不够高、对反应条件苛刻等原因都不适合于大规模投入生产适用。因此探究一种快速高效制备氮化铬的方法,具有很重要的实际应用意义。
发明内容:
本发明的目的在于提供一种高纯度氮化铬的制备方法和其潜在的热电领域的使用价值。本发明制备的氮化铬方法工艺简单,大大缩短了生产制备周期,可以用于大规模生产。另外氮化铬材料由于其良好的物理和机械性能,广泛应用于耐磨涂层材料,本发明探究了它在热电领域的使用价值,材料的ZT值在575℃时可以达到0.104,是一种潜在的中高温热电材料。
本方案的技术方案如下:将氮化铬应用于热电材料领域。
热电材料氮化铬的制备方法,包括以下步骤:
步骤1:取一定量的Cr(NO3)3.9H2O和聚乙二醇粉末,加去离子水进行超声混合;缓慢滴加氨水调整溶液PH值8—9,待溶液沉淀,静置过滤洗涤干燥沉淀,得到墨绿色的Cr(OH)3粉末;
步骤2:将干燥的Cr(OH)3粉末在CVD管式炉中退火,得到墨绿色的Cr2O3粉末;
步骤3:将所得Cr2O3粉末在CVD管式炉中通入氨气进行氮化,得到黑色粉末氮化铬;
步骤4:将所得的氮化铬粉末研磨后放入模具,热压烧结成块体,得到本发明所述的氮化铬热电材料。
进一步的,所述步骤1中Cr(NO3)3.9H2O、PEG、去离子水的比例为:16.000g:8.000g:400ml,混合超声时间为0.5—1h,静置时间为6—12h,干燥温度为60℃,干燥时间为12—24h。
进一步的,所述步骤2中退火温度为500—700℃,退火时间为2—4h。
进一步的,所述步骤3中氨气流量为100—200ml/min,氮化温度在800—1000℃,氮化时间为8—12h。
进一步的,所述步骤4中热压的压力为50—80MPa,烧结温度为700—1000℃,烧结时间为10—30min。
进一步的,所述步骤4中加压烧结方式采用的模具为石墨模具,贴合石墨模具内壁及上下压头按放一层石墨纸,使样品在烧结时不直接与石墨模具接触;样品在热压时,热压机炉体抽真空并持续通氩气或氮气,防止样品被氧化。
本发明制备的氮化铬方法工艺简单,大大缩短了生产制备周期,可以用于大规模生产。
附图说明
图1为本发明提供的氮化铬热电材料的制备方法流程示意图。
图2为实施例所得氮化铬热电材料的扫描电镜图。(a)为样品放大5000倍的扫描电镜,(b)为样品放大20000倍的扫描电镜,(c)为样品放大50000倍的扫描电镜,(d)为样品放大80000倍的扫描电镜。图中可以看到氮化铬的晶粒尺寸大概为300—400nm。
图3为实施例所得氮化铬热电材料的X衍射衍射图谱;结合氮化铬标准卡片PDF#77-0047来看,所得样品为纯的氮化铬材料。
图4为实施例所得氮化铬热电材料塞贝克系数-温度特性曲线。可以看出样品随着温度升高塞贝克系数也随之增大,在575℃时,样品的塞贝克系数达到-67uv/k。
图5为实施例所得氮化铬热电材料热导率-温度特性曲线。可以看出样品随温度的升高热导率不会发生显著的改变。
图6为实施例所得氮化铬热电材料电导率-温度特性曲线。可以看出样品的电导率随着温度的升高而降低,具有类似金属的特性。
图7为实施例所得氮化铬热电材料ZT值-温度特性曲线。样品ZT值都是随温度的升高而升高,在575℃时样品的ZT值可以达到0.104。
具体实施方式
下面结合附图,详述本试验的技术方案。
步骤1:称取16.000g的Cr(NO3)3.9H2O和8.000g的PEG(聚乙二醇)粉末,混合放入烧杯中,加400ml去离子水,混合超声半小时得溶液A。
步骤2:向溶液A缓慢滴加氨水,调整溶液PH至8—9,溶液缓慢沉淀,分离沉淀加无水乙醇和去离子水反复洗涤沉淀,静置抽滤12h,过滤分离后将沉淀在温度设置为60℃的干燥箱干燥12h,得到墨绿色的Cr(OH)3粉末。
步骤3:将干燥的Cr(OH)3粉末在CVD管式炉中500℃条件下退火2h,得到墨绿色Cr2O3粉末。
步骤4:将得到的Cr2O3粉末在CVD管式炉中1000℃条件下通入氨气进行氮化。氨气流量为150ml/min,氮化温度为1000℃,氮化时间为10个小时。得到黑色粉末氮化铬。
步骤5:将得到的氮化铬粉末研磨后放入石墨模具,加压烧结成块体,压力为75MPa,烧结温度为800℃,烧结时间为20min(包括从室温升高到烧结温度时间和保温时间),得到氮化铬热电材料;具体采用热压的方式,采用的模具为石墨模具,贴合石墨模具内壁及上下压头按放一层石墨纸,使样品在烧结时不直接与石墨模具接触。另外,样品在热压时,给热压机炉体抽真空并持续通氩气,防止样品氧化。

Claims (7)

1.将氮化铬应用于热电材料领域。
2.热电材料氮化铬的制备方法,该方法包括:
步骤1:取一定量的Cr(NO3)3.9H2O和聚乙二醇粉末,加去离子水进行超声混合;缓慢滴加氨水调整溶液PH值8—9,待溶液沉淀,静置过滤洗涤干燥沉淀,得到墨绿色的Cr(OH)3粉末;
步骤2:将干燥的Cr(OH)3粉末在CVD管式炉中退火,得到墨绿色的Cr2O3粉末;
步骤3:将所得Cr2O3粉末在CVD管式炉中通入氨气进行氮化,得到黑色粉末氮化铬;
步骤4:将所得的氮化铬粉末研磨后放入模具,热压烧结成块体,得到本发明所述的氮化铬热电材料。
3.如权利要求2所述的热电材料氮化铬的制备方法,其特征在于所述步骤1中Cr(NO3)3.9H2O、PEG、去离子水的比例为:16.000g:8.000g:400ml,混合超声时间为0.5—1h,静置时间为6—12h,干燥温度为60℃,干燥时间为12—24h。
4.如权利要求2所述的热电材料氮化铬的制备方法,其特征在于所述步骤2中退火温度为500—700℃,退火时间为2—4h。
5.如权利要求2所述的热电材料氮化铬的制备方法,其特征在于所述步骤3中氨气流量为100—200ml/min,氮化温度在800—1000℃,氮化时间为8—12h。
6.如权利要求2所述的热电材料氮化铬的制备方法,其特征在于所述步骤4中热压的压力为50—80MPa,烧结温度为700—1000℃,烧结时间为10—30min。
7.如权利要求2所述的热电材料氮化铬的制备方法,其特征在于所述步骤4中加压烧结方式采用的模具为石墨模具,贴合石墨模具内壁及上下压头按放一层石墨纸,使样品在烧结时不直接与石墨模具接触;样品在热压时,热压机炉体抽真空并持续通氩气或氮气,防止样品被氧化。
CN201710247968.8A 2017-04-17 2017-04-17 热电材料氮化铬及其制备方法 Pending CN107128886A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710247968.8A CN107128886A (zh) 2017-04-17 2017-04-17 热电材料氮化铬及其制备方法
US15/936,442 US10541356B2 (en) 2017-04-17 2018-03-27 Chromium nitride thermoelectric material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710247968.8A CN107128886A (zh) 2017-04-17 2017-04-17 热电材料氮化铬及其制备方法

Publications (1)

Publication Number Publication Date
CN107128886A true CN107128886A (zh) 2017-09-05

Family

ID=59714932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710247968.8A Pending CN107128886A (zh) 2017-04-17 2017-04-17 热电材料氮化铬及其制备方法

Country Status (2)

Country Link
US (1) US10541356B2 (zh)
CN (1) CN107128886A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642233A (zh) * 2019-10-31 2020-01-03 哈尔滨工业大学 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN115215663A (zh) * 2022-07-19 2022-10-21 武汉理工大学 一种高致密纯相CrN陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343625A (zh) * 2001-10-22 2002-04-10 中国科学院上海硅酸盐研究所 一种由纳米氧化铬直接氮化制备纳米氮化铬粉体的方法
CN101633576A (zh) * 2009-07-24 2010-01-27 中国科学院上海硅酸盐研究所 氮化铬-氮化钛固溶体陶瓷及制备方法
CN102332567A (zh) * 2011-08-15 2012-01-25 黑龙江科技学院 石墨烯/氮化铬纳米复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343625A (zh) * 2001-10-22 2002-04-10 中国科学院上海硅酸盐研究所 一种由纳米氧化铬直接氮化制备纳米氮化铬粉体的方法
CN101633576A (zh) * 2009-07-24 2010-01-27 中国科学院上海硅酸盐研究所 氮化铬-氮化钛固溶体陶瓷及制备方法
CN102332567A (zh) * 2011-08-15 2012-01-25 黑龙江科技学院 石墨烯/氮化铬纳米复合材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642233A (zh) * 2019-10-31 2020-01-03 哈尔滨工业大学 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN110642233B (zh) * 2019-10-31 2022-09-02 哈尔滨工业大学 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN115215663A (zh) * 2022-07-19 2022-10-21 武汉理工大学 一种高致密纯相CrN陶瓷的制备方法

Also Published As

Publication number Publication date
US20180240955A1 (en) 2018-08-23
US10541356B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
Zhan et al. High temperature thermoelectric properties of Dy-doped CaMnO3 ceramics
Wang et al. Thermoelectrics in misfit-layered oxides [(Ca, Ln) 2CoO3] 0.62 [CoO2]: From bulk to nano
CN107946450B (zh) 一种掺杂变价元素协同优化BiCuSeO基热电材料
JP2011035117A (ja) 熱電変換材料
CN107128886A (zh) 热电材料氮化铬及其制备方法
Nemoto et al. Characteristics of a pin–fin structure thermoelectric uni-leg device using a commercial n-type Mg 2 Si source
CN107994115A (zh) 一种Pb/Ba双掺杂BiCuSeO热电材料及其制备方法
CN103474567A (zh) 一种低维纳米银/ Bi2Te3基热电复合材料及其制备方法
JPH1197750A (ja) 熱電材料、その製造方法、および熱電発電システム
Yang et al. Enhanced power factor of textured Al‐doped‐ZnO ceramics by field‐assisted deforming
CN105633267B (zh) 一种Cu2‑xS/CNT复合热电材料及其制备方法
CN109399580A (zh) 一种快速制备CuFeSe2的方法
JP6315357B2 (ja) 熱電材料の製造方法及び熱電素子
Hao et al. High-temperature thermoelectric properties of Cu-substituted Bi2Ba2Co2-xCuxOy oxides
CN104321889A (zh) 热电转换材料及使用其的热电转换模块以及其制造方法
JP4543127B2 (ja) 酸化物熱電変換材料の構造
Hwang et al. Thermoelectric properties of P‐doped and V‐doped Fe2O3 for renewable energy conversion
CN101905972A (zh) 一种铝掺杂的氧化锌基热电材料及其制备方法
He et al. Thermoelectric properties of hot-pressed Al-and Co-doped iron disilicide materials
CN106098922A (zh) 一种Cu掺杂立方相Ca2Si热电材料
Culebras et al. La 1− x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties
CN104946918A (zh) 一种快速制备AgInSe2基热电材料的新方法
CN1614054B (zh) 锑化钴基热电复合材料及制备方法
CN105206736B (zh) 一种高优值系数的高温合金热电材料及其制备方法
CN102460753A (zh) 热电转换材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170905

RJ01 Rejection of invention patent application after publication