CN109111229B - 一种高温烧结微波介质陶瓷材料及其制备方法 - Google Patents

一种高温烧结微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN109111229B
CN109111229B CN201811072366.4A CN201811072366A CN109111229B CN 109111229 B CN109111229 B CN 109111229B CN 201811072366 A CN201811072366 A CN 201811072366A CN 109111229 B CN109111229 B CN 109111229B
Authority
CN
China
Prior art keywords
less
ndnbo
microwave dielectric
ceramic material
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811072366.4A
Other languages
English (en)
Other versions
CN109111229A (zh
Inventor
李恩竹
杨鸿程
杨鸿宇
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811072366.4A priority Critical patent/CN109111229B/zh
Publication of CN109111229A publication Critical patent/CN109111229A/zh
Application granted granted Critical
Publication of CN109111229B publication Critical patent/CN109111229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于电子陶瓷及其制造领域,涉及一种高温烧结微波介质陶瓷材料及其制备方法。化学通式为NdNb1‑x(AB)xO4,A=Mg2+、Al3+、Si4+、Zr4+,B=W6+、Mo6+,x=0~0.07,其中AB的具体组合为Mg1/4W3/4,Al1/3W2/3,Zr1/2W1/2,Mg1/4Mo3/4,Al1/ 3Mo2/3,Zr1/2Mo1/2,通过固相烧结法制得。本发明采用复合掺杂,按比例将异价A、B(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+)原子等价取代NdNbO4中的Nb离子,最终制备得到有限固溶体,调节其品质因数和频率温度系数,制备方法为固相烧结法,工艺简单。本发明改善了NdNbO4陶瓷的品质因数和温度稳定性,介电常数小于20,34000GHz≤Q×f≤60000GHz,‑42ppm/℃≤τf≤+10ppm/℃。

Description

一种高温烧结微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷及其制造领域,涉及一种高温烧结微波介质陶瓷材料及其制备方法。
背景技术
继BaO-TiO2二元陶瓷系统的微波介电性能首次报道,研究者们极力探索适用于各通信频段的微波介质陶瓷材料。作为移动通信系统中的重要部件,微波介质陶瓷按其介电常数分类可分为:高介电常数微波介质陶瓷(εr≥70),中等介电常数微波介质陶瓷(30≤εr<70)和低介电常数微波介质陶瓷(εr<30)。
现有报道的微波介电陶瓷通常通过离子取代改性和形成复相陶瓷的方法来获得令人满意的性能。在考虑掺杂位置和取代离子的离子半径、极化率和电负性差异后,选取合适的离子对陶瓷基料取代改性可以调节其介电常数、提高品质因数和得到近零的谐振频率温度系数。而复相陶瓷主要是采用两类具有相反谐振频率温度系数的陶瓷,根据混合对数规则,以期获得高温度稳定的微波介质陶瓷。
在众多微波介质陶瓷中,稀土铌酸盐陶瓷是近年来兴起的一类ABO4体系中的一类典型代表。其中,NdNbO4陶瓷的微波介电性能于2006年首次报道(εr=19.6、Q×f=33000GHz、τf=-24ppm/℃),但其较低的品质因数和较大的谐振频率温度系数限制了该陶瓷的应用范围。而NdNb1-x(AB)xO4(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+;x=0~0.07mol)陶瓷在1225℃~1300℃烧结下,能够使得品质因数有较大的提升且能保证较低的谐振频率温度系数,例如在1250℃烧结,εr=19.2、Q×f=55282GHz、τf=-11.36ppm/℃(A=Zr4+,B=W6+,x=0.04)。
发明内容
针对上述存在问题或不足,为改善NdNbO4陶瓷的品质因数,提高其温度稳定性,本发明提供了一种高温烧结微波介质陶瓷材料及其制备方法,实现了NdNbO4的优良改性。
该高温烧结微波介质陶瓷材料的化学通式为NdNb1-x(AB)xO4,A=Mg2+、Al3+、Si4+、Zr4+,B=W6+、Mo6+,x=0~0.07,其中AB的具体组合为Mg1/4W3/4,Al1/3W2/3,Zr1/2W1/2,Mg1/4Mo3/4,Al1/3Mo2/3,Zr1/2Mo1/2,通过固相烧结法制得。
其所有离子取代改性后的陶瓷均为纯相单斜褐钇铌矿NdNbO4固溶体,介电常数小于20,34000GHz≤Q×f≤60000GHz,-42ppm/℃≤τf≤+10ppm/℃。
上述高温烧结微波介质陶瓷材料的制备方法如下:
步骤1:氧化钕(Nd2O3)、碱式碳酸镁((MgCO3)4·Mg(OH)2·5H2O)、二氧化锆(ZrO2)、二氧化硅(SiO2)、氧化铝(Al2O3)、氧化钨(WO3)、氧化铌(Nb2O5)和氧化钼(MoO3)按照化学式NdNb1-x(AB)xO4(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+;x=0~0.07)进行配料,其中(AB)的具体组合为(Mg1/4W3/4),(Al1/3W2/3),(Zr1/2W1/2),(Mg1/4Mo3/4),(Al1/3Mo2/3),(Zr1/2Mo1/2)。
步骤2:将步骤1配好的粉体装入尼龙球磨罐,锆球和去离子水作为研磨介质,按照粉料、锆球、去离子水质量比为1:5:1.5~1:5:2进行球磨,行星球磨4~7小时,取出后在80~120℃烘箱中烘干,以40~60目筛网过筛,后在900~1100℃大气气氛中预烧2~4小时合成晶相(NdNbO4相);
步骤3:将步骤2预烧后的粉体,以粉体、锆球、去离子水质量比为1:5:0.8~1:5:1.5进行球磨,行星球磨混合3~6小时,取出烘干后,添加剂量占原料总质量的2~5%的PVA溶液作为粘结剂造粒,压制成型,最后在1225℃~1300℃大气气氛中烧结2~6小时,即可制得NdNbO4基的高温烧结微波介质陶瓷材料。
本发明采用复合掺杂,按比例将异价A、B(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+)原子等价取代NdNbO4中的Nb离子,考虑各离子半径、电负性、和极化率,选用的离子组合为(Mg1/4W3/4)5+、(Al1/3W2/3)5+、(Zr1/2W1/2)5+、(Mg1/4Mo3/4)5+、(Al1/3Mo2/3)5+、(Zr1/2Mo1/2)5+和(Si1/ 2Mo1/2)5+,最终制备得到有限固溶体,该固溶体的总晶格能大于未取代的NdNbO4晶格能,使得晶体结构更加稳定,从而改善了其品质因数和频率温度系数。其制备方法为固相烧结法,工艺简单。
综上所述,本发明同时改善了NdNbO4陶瓷的品质因数和温度稳定性,介电常数小于20,34000GHz≤Q×f≤60000GHz,-42ppm/℃≤τf≤+10ppm/℃。
附图说明
图1(a)对应实施例1、2、3、4号的XRD衍射图谱,(b)对应实施例1、5、6、7、8号的XRD衍射图谱;
图2为实施例1,2,3,4号样品对应于(a),(b),(c),(d)的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
本发明材料组成按化学式NdNb1-x(AB)xO4(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+;x=0~0.07)进行配比,由固相反应即可制得本发明材料,其中(AB)的具体组合为(Mg1/4W3/4),(Al1/3W2/3),(Zr1/2W1/2),(Mg1/4Mo3/4),(Al1/3Mo2/3),(Zr1/2Mo1/2)。
NdNb1-x(AB)xO4的制造原料为:氧化钕(Nd2O3)、碱式碳酸镁((MgCO3)4·Mg(OH)2·5H2O)、二氧化锆(ZrO2)、二氧化硅(SiO2)、氧化铝(Al2O3)、氧化钨(WO3)、氧化铌(Nb2O5)和氧化钼(MoO3)。通过固相反应法即可获得本材料,具体步骤同上述步骤一样。
具体实施例的成分和微波介电性能如下
Figure GDA0001854975010000021
Figure GDA0001854975010000031
Figure GDA0001854975010000032
Figure GDA0001854975010000033
Figure GDA0001854975010000041
从上表格数据可以看出,未进行离子取代的样品(1号)的微波介电性能接近文献报道性能,按一定摩尔比例的异价A、B(A=Mg2+,Al3+,Si4+,Zr4+;B=W6+,Mo6+)原子等价取代NdNbO4中的Nb离子后,其品质因数得到大幅提升,频率温度系数在-42ppm/℃≤τf≤+10ppm/℃范围内波动。其微波介电性能最佳的组合为εr=19.2、Q×f=55282GHz、τf=-11.36ppm/℃(A=Zr4+,B=W6+,x=0.04)。该实验结果表明对NdNbO4陶瓷的Nb位进行离子取代后,能够有效改善该陶瓷的品质因数和谐振频率温度系数。
图1展示了本发明陶瓷材料进行不同组合的离子取代后其最佳的烧结温度下烧结后的XRD衍射图谱,图1(a)对应样品1、2、3和4号,(b)为1、5、6、7和8号样品。
从图1(a)和(b)可以看出,对不同组分的陶瓷样品,在其最佳烧结温度下,该样品均呈现出单一的纯相单斜褐钇铌矿NdNbO4(JCPDS#32-0680),且进行离子取代后的样品的衍射峰都存在一定的偏移。
为探讨不同组合的离子取代对样品的晶粒生长的影响,从SEM图(图2,(a),(b),(c),(d)分别对应于1,2,3,4号样品)可以看出,不同的离子取代后,使得未取代样品中的在晶界处的小晶粒(晶粒尺寸为1μm左右)逐渐长大,使得晶粒更加均匀,从而提高了其品质因素。

Claims (2)

1.一种高温烧结微波介质陶瓷材料,其特征在于:
化学通式为NdNb1-x(AB)xO4,A=Mg2+、Al3+、Si4+、Zr4+,B=W6+、Mo6+,x=0~0.07,其中AB的具体组合为Mg1/4W3/4,Al1/3W2/3,Zr1/2W1/2,Mg1/4Mo3/4,Al1/3Mo2/3,Zr1/2Mo1/2,Si1/2Mo1/2,通过固相烧结法制得;
其所有离子取代改性后的陶瓷均为纯相单斜褐钇铌矿NdNbO4固溶体,介电常数小于20,34000GHz≤Q×f≤60000GHz,-42ppm/℃≤τf≤+10ppm/℃。
2.如权利要求1所述高温烧结微波介质陶瓷材料的制备方法,具体步骤如下:
步骤1、氧化钕Nd2O3、碱式碳酸镁(MgCO3)4·Mg(OH)2·5H2O、二氧化锆ZrO2、二氧化硅SiO2、氧化铝Al2O3、氧化钨WO3、氧化铌Nb2O5和氧化钼MoO3按照化学式NdNb1-x(AB)xO4,A=Mg2 +、Al3+、Si4+、Zr4+,B=W6+、Mo6+,x=0~0.07进行配料,其中AB的具体组合为Mg1/4W3/4,Al1/ 3W2/3,Zr1/2W1/2,Mg1/4Mo3/4,Al1/3Mo2/3,Zr1/2Mo1/2,Si1/2Mo1/2
步骤2、将步骤1配好的粉体装入尼龙球磨罐,锆球和去离子水作为研磨介质,按照粉料、锆球、去离子水质量比为1:5:1.5~1:5:2进行球磨,行星球磨4~7小时,取出后在80~120℃烘箱中烘干,以40~60目筛网过筛,后在900~1100℃大气气氛中预烧2~4小时合成晶相NdNbO4相;
步骤3、将步骤2预烧后的粉体,以粉体、锆球、去离子水质量比为1:5:0.8~1:5:1.5进行球磨,行星球磨混合3~6小时,取出烘干后,添加剂量占原料总质量的2~5%的PVA溶液作为粘结剂造粒,压制成型,最后在1225℃~1300℃大气气氛中烧结2~6小时,即可制得NdNbO4基的高温烧结微波介质陶瓷材料。
CN201811072366.4A 2018-09-14 2018-09-14 一种高温烧结微波介质陶瓷材料及其制备方法 Active CN109111229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811072366.4A CN109111229B (zh) 2018-09-14 2018-09-14 一种高温烧结微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811072366.4A CN109111229B (zh) 2018-09-14 2018-09-14 一种高温烧结微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109111229A CN109111229A (zh) 2019-01-01
CN109111229B true CN109111229B (zh) 2021-02-02

Family

ID=64858486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811072366.4A Active CN109111229B (zh) 2018-09-14 2018-09-14 一种高温烧结微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109111229B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121219B (zh) * 2020-01-16 2022-06-14 中国科学院上海硅酸盐研究所 一种低介低损耗高导热的微波介质陶瓷及其制备方法
CN111302795A (zh) * 2020-02-07 2020-06-19 天津大学 一种锂镁铌铝钨系微波介质陶瓷及其制备方法
CN111302796A (zh) * 2020-02-07 2020-06-19 天津大学 一种低介低损耗介质材料及其制备方法
CN111302794A (zh) * 2020-02-07 2020-06-19 天津大学 一种高性能岩盐结构介质材料及其制备方法
CN116751059A (zh) * 2023-06-21 2023-09-15 西南石油大学 Abo4型稀土铌/钽酸盐ltcc材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794022A (ja) * 1993-06-07 1995-04-07 Tdk Corp 誘電体材料およびセラミック部品
CN1246104A (zh) * 1997-12-01 2000-03-01 皇家菲利浦电子有限公司 介电陶瓷组合物
CN101186501A (zh) * 2007-12-11 2008-05-28 北京科技大学 一种铌酸盐压电陶瓷及其制备方法
CN102603296A (zh) * 2012-03-21 2012-07-25 天津大学 高品质因数铌酸钕系微波介质陶瓷及其制备方法
CN102674828A (zh) * 2012-05-16 2012-09-19 桂林电子科技大学 一种低介电损耗温度稳定型微波介电陶瓷材料及其制备方法
CN103073292A (zh) * 2013-02-05 2013-05-01 天津大学 高品质因数铌酸钕系微波介质陶瓷及其制备方法
CN103951432A (zh) * 2014-04-25 2014-07-30 济南大学 一种利用湿化学工艺制备褐钇铌矿结构NdNbO4微波介质陶瓷
CN104844194A (zh) * 2015-04-13 2015-08-19 电子科技大学 Ab位同时取代的微波介质陶瓷材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794022A (ja) * 1993-06-07 1995-04-07 Tdk Corp 誘電体材料およびセラミック部品
CN1246104A (zh) * 1997-12-01 2000-03-01 皇家菲利浦电子有限公司 介电陶瓷组合物
CN101186501A (zh) * 2007-12-11 2008-05-28 北京科技大学 一种铌酸盐压电陶瓷及其制备方法
CN102603296A (zh) * 2012-03-21 2012-07-25 天津大学 高品质因数铌酸钕系微波介质陶瓷及其制备方法
CN102674828A (zh) * 2012-05-16 2012-09-19 桂林电子科技大学 一种低介电损耗温度稳定型微波介电陶瓷材料及其制备方法
CN103073292A (zh) * 2013-02-05 2013-05-01 天津大学 高品质因数铌酸钕系微波介质陶瓷及其制备方法
CN103951432A (zh) * 2014-04-25 2014-07-30 济南大学 一种利用湿化学工艺制备褐钇铌矿结构NdNbO4微波介质陶瓷
CN104844194A (zh) * 2015-04-13 2015-08-19 电子科技大学 Ab位同时取代的微波介质陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Influence of (Al1/3W2/3)(5+) co-substitution for Nb5+ in NdNbO4 and the impact on the crystal structure and microwave dielectric properties;Yang Hongcheng等;《DALTON TRANSACTIONS》;20181128;第47卷(第44期);第15808-15815页 *
NdNb1-x(Mg1/4W3/4)(x)O-4 (0.02 <= x <= 0.06) solid solution characterized by infrared spectrum and complex chemical theory;Yang Hongcheng等;《JOURNAL OF ALLOYS AND COMPOUNDS》;20190126;第787卷;第358-366页 *

Also Published As

Publication number Publication date
CN109111229A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109111229B (zh) 一种高温烧结微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107140981B (zh) 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
Fang et al. High-Q microwave dielectric properties in the Na0. 5Sm0. 5TiO3+ Cr2O3 ceramics by one synthetic process
CN112457010B (zh) 岩盐型重构超晶格结构微波介质陶瓷材料及制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN111848153A (zh) 一种微波介质陶瓷、微波介质陶瓷的制备方法及通信器件
CN101555135A (zh) 中介电常数超高q值微波介质陶瓷材料
Lu et al. Correlation of heating rates, crystal structures, and microwave dielectric properties of Li 2 ZnTi 3 O 8 ceramics
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN113307615B (zh) 一种微波介质陶瓷材料及其制备方法
CN103570349A (zh) 掺杂改性的复合钙钛矿型微波介质陶瓷Ba(Co,Nb)O3及其制备方法
CN105272213A (zh) 高介低损微波介质陶瓷材料及其制备方法
CN109467432B (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN105837213B (zh) 添加ReAlO3的微波介质陶瓷材料及其制备方法
CN108975911B (zh) 复相岩盐结构超低损耗微波介质陶瓷材料及其制备方法
CN113896530A (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN109467433B (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
Fang et al. Effects of Zr-Substitution on Microwave Dielectric Properties of Na 0.5 Nd 0.2 Sm 0.3 Ti 1− x Zr x O 3 Ceramics (x= 0.00∼ 0.30)
CN114605142A (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant