CN115945163B - 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法 - Google Patents

一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法 Download PDF

Info

Publication number
CN115945163B
CN115945163B CN202310083369.2A CN202310083369A CN115945163B CN 115945163 B CN115945163 B CN 115945163B CN 202310083369 A CN202310083369 A CN 202310083369A CN 115945163 B CN115945163 B CN 115945163B
Authority
CN
China
Prior art keywords
aerogel
sno
palladium
solution
heterojunction type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310083369.2A
Other languages
English (en)
Other versions
CN115945163A (zh
Inventor
魏雄邦
陈为
廖家轩
睢路希
邱宇洪
龙鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310083369.2A priority Critical patent/CN115945163B/zh
Publication of CN115945163A publication Critical patent/CN115945163A/zh
Priority to US18/343,251 priority patent/US20230340703A1/en
Application granted granted Critical
Publication of CN115945163B publication Critical patent/CN115945163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/20Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种钯负载异质结型复合骨架气凝胶制备方法,包括如下步骤:步骤1.制备中空SnO2纳米纤维;步骤2.将中空SnO2纳米纤维充分研磨后形成TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液;步骤3.制备PdCl2前驱体溶液;步骤4.步骤3得到的PdCl2前驱体溶液加入异质结型双网络复合骨架预制备液,形成异质结型双网络复合骨架凝胶;步骤5.形成负载钯纳米颗粒的钯负载异质结型双网络复合骨架气凝胶。本发明构筑出“点‑线”式半导体异质结结构模式,以TiO2气凝胶的三维网络结构作为一级网络结构,而所加入的中空SnO2纳米纤维作为二级网络结构,具有更高的电子迁移率,提升了响应特性与灵敏度。

Description

一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法
技术领域
本发明属于分子传感器技术领域,涉及氢传感器技术,具体涉及一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法。
背景技术
近些年来,人们一直提倡并致力于绿色能源的开发与利用然后将其应用于人类生活的各个方面。氢能源是低碳和零碳的能源产业,在现代的发展如日方升。氢气作为一种重要的工业化学品和绿色能源,为全球的可持续发展提供了能源支持并可以广泛应用在各种领域,比如汽车、燃料电池、火箭发动机、化学工业等;此外,氢气有效应用于各种疾病,在促进医学和生物学领域的发展中具有无限的可能性。但是氢气作为能源使用时要十分小心,氢气是无色无味且能量密度较高(120-140 MJ/kg)的,4%是氢气在空气中的极限浓度,此时其高度易燃易爆炸。所以在氢气储存、运输和使用等方面需要极高的安全标准,因此,氢能源得到广泛应用的前提是要解决生产、存储和运输氢气时有可能发生的安全问题,也就是说氢气传感器的研制与发展是氢能源技术发展的基础保障,因此开发出一种高灵敏度、快速响应-恢复特性以及稳定性氢传感器具有十分重要的经济效益和社会效益。
现有报道的气凝胶氢敏材料要么结构单一,无法达到更高要求的氢敏特性;要么只是通过简单的物理复合的方式,比如以物理气相沉积或者磁控溅射的方式,使两种材料在宏观尺度上进行复合,相比单一结构确实有不少提升。但是这种方法往往不能优化纳米颗粒的尺寸,无法形成介孔结构,对气体分子筛分作用不强,比表面积往往远低于气凝胶结构,氧化物内部和表面无法形成更多的活性位点,不利于待测气体和氧气的吸附与脱附。
发明内容
为克服现有技术存在的技术缺陷,本发明公开了一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法。
本发明所述钯负载异质结型复合骨架气凝胶制备方法,其特征在于,包括如下步骤:步骤1.制备中空SnO2纳米纤维;
步骤2. 将中空SnO2纳米纤维充分研磨后加入钛酸四丁酯与无水乙醇混合溶液之中,其中钛酸四丁酯与无水乙醇的体积比为1:23,中空SnO2纳米纤维与混合溶液的质量比为1:50-100,常温下搅拌,形成TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液;
步骤3. 制备pH值范围为1.9~4.7的PdCl2前驱体溶液;
步骤4.步骤2得到的异质结型双网络复合骨架预制备液在常温剧烈搅拌状态下,将步骤3得到的PdCl2前驱体溶液以1~2滴/秒的速率下缓慢加入其中至形成凝胶状态,随后经过陈化及多次无水乙醇溶剂置换后,形成异质结型双网络复合骨架凝胶;
步骤5.将异质结型双网络复合骨架凝胶置于超临界干燥釜内部,用无水乙醇完全浸没其中,调控干燥釜温度和压强使釜内达到超临界流体状态;
通过调控压强,使异质结型双网络复合骨架凝胶在二氧化碳气体中保持三维网络结构,然后经过排气以及保压后,使钯离子在可控条件下进行原位生长为钯纳米颗粒,形成负载钯纳米颗粒的钯负载异质结型双网络复合骨架气凝胶。
优选的,所述步骤1中,制备中空SnO2纳米纤维的方法为:
将SnCl2·H2O溶于甲酰胺、乙醇与丙酮按照体积比为2.5:2.5:1混合得到的混合溶液之中,并搅拌形成透明澄清的SnO2前驱体溶液;比例为每1克SnCl2·H2O对应32ml~38ml混合溶液;
将2-3倍SnCl2·H2O质量的PVP粉末溶于上述SnO2前驱体溶液之中,并在45-55℃条件下加热搅拌4h以上,使其充分溶解形成透明粘稠的PVP/ SnO2纺丝液;
将上述PVP/ SnO2纺丝液采用静电纺丝技术得到PVP/ SnO2纳米纤维毡,其纤维直径为20~100nm,比表面积为13~17m2/g;
在480-515℃高温条件下,在程序升温炉中煅烧得到单一的典型四方晶系的中空SnO2纳米纤维。
优选的,所述步骤3中制备PdCl2前驱体溶液的具体方法为:
将PdCl2粉末溶解于一定量浓盐酸之中,静置后变成橙褐色透明的氯钯酸溶液;
将一定比例的甲酰胺、乙醇与去离子水的混合溶液加入到上述氯钯酸溶液之中,常温下搅拌2h得到均一的橙褐色透明溶液;PdCl2粉末与浓盐酸的质量比为1:1~1:5;甲酰胺、乙醇与去离子水混合溶液中三种组分的体积比为1:13~16:2~2.5;
将PVP粉末加入到上述橙褐色透明溶液之中,常温下剧烈搅拌均匀并进行超声分散,最后得到pH值范围为1.9~4.7的澄清橙黄色PdCl2前驱体溶液。
本发明还公开了一种氢传感器制备方法,包括如下步骤:
制备金叉指电极,将钯负载异质结型复合骨架气凝胶经过研磨后得到纳米级别粉体,加入去离子水混合得到涂料。将涂料均匀涂抹在金叉指电极上得到氢传感器,纳米级别粉体与去离子水质量比为1:10~20。
优选的,金叉指电极的制备方式为:采用离子溅射的方式,在工作距离为25mm,电流为10mA的条件下轰击金靶材进行镀膜,金离子通过掩膜板后到达氧化铝基板上,形成具备金膜的金叉指电极。
本发明将两种或两种以上的金属-氧化物-半导体场效应管材料(MOS 材料)以静电纺丝技术和溶胶-凝胶法的方式,在微观尺度上结合形成“点-线”式异质结,可实现互补优势,提高传感性能。由于催化活性的增强、电子耗尽层的形成、更多的吸附位点以及异质结引起的能带结构的改变,改善了氢传感器的响应,进一步提升了气敏材料的灵敏度和响应速度。
本发明与现有技术相比,具有如下的优点和有益效果:
首先,本发明结合TiO2气凝胶的三维网络结构特性以及中空SnO2纳米纤维的结构特性,以静电纺丝技术和溶胶-凝胶法为主要技术支撑,构筑出“点-线”式半导体异质结结构模式,其优点在于相比单一的氧化物半导体结构,具有更高的电子迁移率,有利于待测气体吸附之后,载流子有效传输,电阻信号变化明显。
其次,本发明中TiO2气凝胶的三维网络结构作为一级网络结构,而所加入的中空SnO2纳米纤维作为二级网络结构在一定程度上增强了该复合气凝胶的整体结构强度;由于中空SnO2纳米纤维所带来的中空管道结构特性,也提升了该复合气凝胶与待测气体的接触面积以及待测气体分子的传输通道,从而进一步的提升响应特性与灵敏度。
本发明结合贵金属Pd的氢特异性,采用了原位生长技术和超临界干燥技术,使钯离子在可控条件下进行原位生长为钯纳米颗粒,充分的负载于“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架气凝胶之中或之上。
本发明所制备出的氢传感器是由上述复合气凝胶与金叉指电极结合封装而成,金叉指电极表现出的多叉指对数能够迅速采集到复合气凝胶的电阻变化信号。这一系列的氢敏结构设计、氢敏靶材的选择以及制备工艺对今后开发出具有高性能的氢敏材料具有前瞻性意义,对未来氢气在各领域实时性监测拥有着远大前景以及潜在价值。
附图说明
图1为实施例1得到的PVP/ SnO2纳米纤维与中空SnO2纳米纤维傅里叶红外光谱图;
图2为实施例1得到的PVP/ SnO2纳米纤维与中空SnO2纳米纤维扫描电镜图;
图3为实施例2得到的PVP/ SnO2纳米纤维与中空SnO2纳米纤维扫描电镜图;
图4为实施例1得到的PVP/ SnO2纳米纤维与中空SnO2纳米纤维的X射线衍射图;
图5为实施例1得到的PVP/ SnO2纳米纤维与中空SnO2纳米纤维的比表面积图;
图6为实施例3得到的负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的比表面积;
图5和图6中,横坐标表示无量纲的相对压力,纵坐标表示单位质量体积,单位为立方厘米每克;
图7为实施例3得到的负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的扫描电镜图;
图8为实施例4得到的氢传感器在275、300和325℃下,对100~1000ppm氢气的灵敏度特性曲线;
图8中,横坐标表示时间,单位为秒,纵坐标表示灵敏度;
图9为实施例5得到的氢传感器在300℃下,对100ppm~1000ppm氢气浓度变化响应-恢复曲线;
图10为实施例5得到的氢传感器在300℃条件下,对100ppm~1000ppm氢气浓度变化的灵敏度曲线;
图11为实施例5得到的氢传感器在300℃条件下,对100ppm~1000ppm氢气浓度变化的浓度梯度曲线,
图12为纯二氧化钛气凝胶传感器在500℃条件下的氢气浓度测试灵敏度曲线;
图13为纯二氧化钛气凝胶传感器在500℃下,对100ppm~1000ppm氢气浓度变化响应-恢复曲线。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
为了进一步阐述本发明的目的、技术方案以及优点,下面通过实施例和附图对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明保护范围的限定。
实施例1
本实施例提供一种负载钯纳米颗粒的异质结型双网络复合骨架气凝胶,制备步骤如下所示:
步骤一:中空SnO2纳米纤维的制备:
将0.4g SnCl2·H2O溶于总体积为13ml~15ml的甲酰胺、乙醇与丙酮的混合溶液(体积比为2.5:2.5:1)之中,并搅拌30min形成透明澄清的SnO2前驱体溶液;
将0.8g的PVP粉末溶于上述SnO2前驱体溶液之中,并在50℃条件下加热搅拌5h,使其充分溶解形成透明粘稠的PVP/ SnO2纺丝液;
将上述PVP/ SnO2纺丝液倒入20ml规格的注射器中,在25kv,6ul/min条件下采用静电纺丝技术得到PVP/ SnO2纳米纤维毡,如图1所示,其纤维直径为20~100nm,如图2所示,比表面积为13~17m2/g,如图5所示。
最后在500℃高温条件下,在程序升温炉中煅烧2h得到单一的典型四方晶系的中空SnO2纳米纤维,其纤维直径为10~70nm,如图2所示,比表面积为36~42m2/g,如图5所示。
步骤二:异质结型双网络复合骨架预制备液的制备:
将上述典型四方晶系中空SnO2纳米纤维充分研磨,随后加入到一定比例的钛酸四丁酯与无水乙醇混合溶液之中,常温下剧烈搅拌,形成均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液。
步骤三:PdCl2前驱体溶液的制备:
将0.02g~0.06g的PdCl2粉末溶解于一定量6mol/L的浓盐酸之中,静置10min后变成橙褐色透明的氯钯酸溶液;
将一定比例的甲酰胺、乙醇与去离子水的混合溶液加入到上述氯钯酸溶液之中,常温下搅拌2h得到均一的橙褐色透明溶液;
将0.12~0.36g的PVP粉末加入到上述溶液之中,常温下剧烈搅拌均匀并进行100W超声分散,最后得到透明澄清的橙黄色PdCl2前驱体溶液,其pH值范围为1.9~4.7。
步骤四:“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶的制备:
异质结型双网络复合骨架预制备液在常温剧烈搅拌条件下,将具有一定pH值的PdCl2前驱体溶液以1~2滴/秒的速率下缓慢加入其中,30min后初步形成凝胶状态,随后经过2~3天的陈化以及4~5次,每次24h的无水乙醇溶剂置换后,形成具有一定结构强度且均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶。
步骤五:负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的制备:
将上述的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶置于超临界干燥釜内部,用无水乙醇完全浸没其中,液面高出凝胶3~4cm,通过调控干燥釜温度为45℃,压强为10~14MPa使釜内达到超临界流体状态;
通过调控压强,使凝胶在二氧化碳气体中保持三维网络结构,然后经过5次排气以及5次保压(每次1h)之后,从而使钯离子在可控条件下进行原位生长为钯纳米颗粒,异质结型双网络复合骨架凝胶内的溶剂被空气代替,最终形成负载钯纳米颗粒的异质结型双网络复合骨架气凝胶,所述钯纳米颗粒粒径为10~20nm,负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的孔径为7~30nm,比表面积为500~1000m2/g,密度为0.1599~0.2159g/cm3
步骤六:氢传感器的制备:
采用离子溅射的方式,在工作距离为25mm,电流为10mA的条件下轰击金靶材进行镀膜,金离子通过掩膜板后到达氧化铝基板上,从而得到完整的叉指电极金膜,该叉指电极大小为10mm*10mm,叉指对数为20对,线距50um,线宽80um,指长7.5mm;
将负载钯纳米颗粒的异质结型双网络复合骨架气凝胶经过研磨后得到纳米级别粉体,通过加入一定量的去离子水进行混合,从而得到涂料;
将金叉指电极置于印刷板下方,将涂料倒于印刷板上面,经过丝网印刷技术以及器件老化之后得到氢传感器。
实施例2
本实施例提供一种负载钯纳米颗粒的异质结型双网络复合骨架气凝胶,制备步骤如下所示:
步骤一:中空SnO2纳米纤维的制备:
将0.5g SnCl2·H2O溶于总体积为13ml~15ml的甲酰胺、乙醇与丙酮的混合溶液(体积比为2.5:2.5:1)之中,并搅拌30min形成透明澄清的SnO2前驱体溶液;
将1g的PVP粉末溶于上述SnO2前驱体溶液之中,并在50℃条件下加热搅拌5h,使其充分溶解形成透明粘稠的PVP/ SnO2纺丝液;
将上述PVP/ SnO2纺丝液倒入20ml规格的注射器中,在25kv,6ul/min条件下采用静电纺丝技术得到PVP/ SnO2纳米纤维毡,其纤维直径为60~180nm(见图3),比表面积为14~20m2/g。
最后在500℃高温条件下,在程序升温炉中煅烧2h得到单一的中空SnO2纳米纤维,其纤维直径为50~120nm(见图3),比表面积为40~50m2/g。
步骤二:异质结型双网络复合骨架预制备液的制备:
将上述典型四方晶系中空SnO2纳米纤维充分研磨,随后加入到一定比例的钛酸四丁酯与无水乙醇混合溶液之中,常温下剧烈搅拌,形成均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液。
步骤三:PdCl2前驱体溶液的制备方法:
将0.02g~0.06g的PdCl2粉末溶解于一定量6mol/L的浓盐酸之中,静置10min后变成橙褐色透明的氯钯酸溶液;
将一定比例的甲酰胺、乙醇与去离子水的混合溶液加入到上述氯钯酸溶液之中,常温下搅拌2h得到均一的橙褐色透明溶液;
将0.12~0.36g的PVP粉末加入到上述溶液之中,常温下剧烈搅拌均匀并进行100W超声分散,最后得到透明澄清的橙黄色PdCl2前驱体溶液,其pH值范围为1.9~4.7。
步骤四:“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶的制备:
异质结型双网络复合骨架预制备液在常温剧烈搅拌条件下,将具有一定pH值的PdCl2前驱体溶液以1~2滴/秒的速率下缓慢加入其中,30min后初步形成凝胶状态,随后经过2~3天的陈化以及4~5次,每次24h的无水乙醇溶剂置换后,形成具有一定结构强度且均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶。
步骤五:负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的制备:
将上述的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶置于超临界干燥釜内部,用无水乙醇完全浸没其中,液面高出凝胶3~4cm,通过调控干燥釜温度为45℃,压强为10~14MPa使釜内达到超临界流体状态;
通过调控压强,使凝胶在二氧化碳气体中保持三维网络结构,然后经过5次排气以及5次保压(每次1h)之后,从而使钯离子在可控条件下进行原位生长为钯纳米颗粒,异质结型双网络复合骨架凝胶内的溶剂被空气代替,最终形成负载钯纳米颗粒的异质结型双网络复合骨架气凝胶,所述钯纳米颗粒粒径为10~20nm,负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的孔径为7~30nm,比表面积为500~1000m2/g,密度为0.1599~0.2159g/cm3
步骤六:氢传感器的制备:
采用离子溅射的方式,在工作距离为25mm,电流为10mA的条件下轰击金靶材进行镀膜,金离子通过掩膜板后到达氧化铝基板上,从而得到完整的叉指电极金膜,该叉指电极大小为10mm*10mm,叉指对数为20对,线距50um,线宽80um,指长7.5mm;
将负载钯纳米颗粒的异质结型双网络复合骨架气凝胶经过研磨后得到纳米级别粉体,通过加入一定量的去离子水进行混合,从而得到涂料;
将金叉指电极置于印刷板下方,将涂料倒于印刷板上面,经过丝网印刷技术以及器件老化之后得到氢传感器。
实施例3
本实施例提供通过上述实施例1和2制备负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的方法,选取实施例2中的中空SnO2纳米纤维,分别制备出负载0.02g,0.04g以及0.06g钯纳米颗粒的异质结型双网络复合骨架气凝胶,其制备步骤如下所示:
步骤一:中空SnO2纳米纤维的制备:
将0.5g SnCl2·H2O溶于总体积为13ml~15ml的甲酰胺、乙醇与丙酮的混合溶液(体积比为2.5:2.5:1)之中,并搅拌30min形成透明澄清的SnO2前驱体溶液;
将1g的PVP粉末溶于上述SnO2前驱体溶液之中,并在50℃条件下加热搅拌5h,使其充分溶解形成透明粘稠的PVP/ SnO2纺丝液;
将上述PVP/ SnO2纺丝液倒入20ml规格的注射器中,在25kv,6ul/min条件下采用静电纺丝技术得到PVP/ SnO2纳米纤维毡,其纤维直径为60~180nm(见图3),比表面积为14~20m2/g。
最后在500℃高温条件下,在程序升温炉中煅烧2h得到单一的中空SnO2纳米纤维,其纤维直径为50~120nm(见图3),比表面积为40~50m2/g。
步骤二:异质结型双网络复合骨架预制备液的制备:
将上述典型四方晶系中空SnO2纳米纤维充分研磨,随后加入到一定比例的钛酸四丁酯与无水乙醇混合溶液之中,常温下剧烈搅拌,形成均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液。
步骤三:不同含量PdCl2前驱体溶液的制备方法:
将0.02g~0.06g的PdCl2粉末溶解于0.5ml~1.5ml 的6mol/L的浓盐酸之中,静置10min后分别得到含量为0.02g,0.04g以及0.06g的PdCl2橙褐色透明的氯钯酸溶液;
将体积比为1:15:3的甲酰胺、乙醇与去离子水的混合溶液加入到上述氯钯酸溶液之中,常温下搅拌2h得到均一的橙褐色透明溶液;
将0.12g,0.24g以及0.36g的PVP粉末分别加入到上述溶液之中,常温下剧烈搅拌均匀并进行100W超声分散,最后得到透明澄清的橙黄色PdCl2前驱体溶液,其pH值分别为1.9、3.5以及4.7。
步骤四:“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶的制备:
异质结型双网络复合骨架预制备液在常温剧烈搅拌条件下,分别将pH为1.9、3.5以及4.7的PdCl2前驱体溶液以1~2滴/秒的速率下缓慢加入其中,30min后初步形成凝胶状态,随后经过2~3天的陈化以及4~5次,每次24h的无水乙醇溶剂置换后,形成具有一定结构强度且均一的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶。
步骤五:负载0.02g,0.04g以及0.06g钯纳米颗粒的异质结型双网络复合骨架气凝胶的制备:
将上述的“点-线”接触式TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架凝胶置于超临界干燥釜内部,用无水乙醇完全浸没其中,液面高出凝胶3~4cm,通过调控干燥釜温度为45℃,压强为10~14MPa使釜内达到超临界流体状态;
通过调控压强,使凝胶在二氧化碳气体中保持三维网络结构,然后经过5次排气以及5次保压(每次1h)之后,从而使钯离子在可控条件下进行原位生长为钯纳米颗粒,异质结型双网络复合骨架凝胶内的溶剂被空气代替,最终分别制备出负载0.02g,0.04g以及0.06g钯纳米颗粒的异质结型双网络复合骨架气凝胶,如图7所示,所述钯纳米颗粒粒径为10~20nm,负载钯纳米颗粒的异质结型双网络复合骨架气凝胶的孔径为7~30nm,比表面积为500~1000m2/g。如图6所示,密度为0.1599~0.2159g/cm3
步骤六:不同含量氢传感器的制备:
采用离子溅射的方式,在工作距离为25mm,电流为10mA的条件下轰击金靶材进行镀膜,金离子通过掩膜板后到达氧化铝基板上,从而得到完整的叉指电极金膜,该叉指电极大小为10mm*10mm,叉指对数为20对,线距50um,线宽80um,指长7.5mm;
分别将负载0.02g、0.04g以及0.06g钯纳米颗粒的异质结型双网络复合骨架气凝胶经过研磨后得到纳米级别粉体,通过加入1ml去离子水进行充分混合研磨,从而得到均一的涂料;
将金叉指电极置于印刷板下方,将涂料倒于印刷板上面,经过丝网印刷技术以及器件老化之后,分别得到负载0.02g,0.04g以及0.06g钯纳米颗粒的钯负载异质结型双网络复合骨架气凝胶的氢传感器。
实施例4
本实施例进行上述负载0.06g钯纳米颗粒的钯负载异质结型双网络复合骨架气凝胶的氢传感器的最佳温度测试,其测试步骤如下所示:
将上述氢传感器放置于加热台上,加热台设置温度分别为275~325℃,氢气浓度范围设置为100ppm~1000ppm,氢气通气时间为120s,空气通气时间为100s。进行气敏测试,测试结果见图8,图12为纯二氧化钛气凝胶在500℃(本发明的实施例为300摄氏度)条件下,氢气浓度测试结果。
通过对比图8和图12,在275℃、300℃以及325℃条件的测试下,可以发现,在300℃条件下时,该传感器对氢气的灵敏度更高,因此将300℃作为此传感器的最佳工作温度,灵敏度为6.1。另外将本发明与纯二氧化钛气凝胶最佳温度500℃以及灵敏度2.25对比发现,本发明在大大降低了气敏材料的工作温度,另外灵敏度也有显著提升。
实施例5
本实施例进行上述负载0.06g钯纳米颗粒的异质结型双网络复合骨架气凝胶氢传感器在最佳温度300℃条件下进行响应恢复曲线测试、灵敏度测试以及浓度梯度测试,其测试步骤如下所示:
将上述氢传感器放置于加热台上,加热台设置温度分别为300℃,氢气浓度范围设置为100ppm~1000ppm,氢气通气时间为120s,空气通气时间为100s,进行气敏测试,响应恢复曲线测试以及灵敏度测试分别见图9至图11。相对比于图12与图13,从图9至图11可以看出,本发明的响应时间为2.5s左右,与纯二氧化钛气凝胶的响应时间1s无太大差异,但是本发明的恢复时间为6s左右,而纯二氧化钛气凝胶的恢复时间为35s左右,因此本发明无论是在最佳工作温度参数、灵敏度参数还是在响应恢复时间参数上都具有显著的优化和提升,根据上述两者的最终测试结果,说明本发明在技术方案,结构设计以及气敏性能上都有显著优势。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
前文所述的为本发明的各个优选实施例,各个优选实施例中的优选实施方式如果不是明显自相矛盾或以某一优选实施方式为前提,各个优选实施方式都可以任意叠加组合使用,所述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (5)

1.一种钯负载异质结型复合骨架气凝胶制备方法,其特征在于,包括如下步骤:步骤1.制备中空SnO2纳米纤维;
步骤2. 将中空SnO2纳米纤维充分研磨后加入钛酸四丁酯与无水乙醇混合溶液之中,其中钛酸四丁酯与无水乙醇的体积比为1:23,中空SnO2纳米纤维与混合溶液的质量比为1:50-100,常温下搅拌,形成TiO2气凝胶和中空SnO2纳米纤维异质结型双网络复合骨架预制备液;
步骤3. 制备pH值范围为1.9~4.7的PdCl2前驱体溶液;
步骤4.步骤2得到的异质结型双网络复合骨架预制备液在常温剧烈搅拌状态下,将步骤3得到的PdCl2前驱体溶液以1~2滴/秒的速率下缓慢加入其中至形成凝胶状态,随后经过陈化及多次无水乙醇溶剂置换后,形成异质结型双网络复合骨架凝胶;
步骤5.将异质结型双网络复合骨架凝胶置于超临界干燥釜内部,用无水乙醇完全浸没其中,调控干燥釜温度和压强使釜内达到超临界流体状态;
通过调控压强,使异质结型双网络复合骨架凝胶在二氧化碳气体中保持三维网络结构,然后经过排气以及保压后,使钯离子在可控条件下进行原位生长为钯纳米颗粒,形成负载钯纳米颗粒的钯负载异质结型双网络复合骨架气凝胶。
2.如权利要求1所述的钯负载异质结型复合骨架气凝胶制备方法,其特征在于,所述步骤1中,制备中空SnO2纳米纤维的方法为:
将SnCl2·H2O溶于甲酰胺、乙醇与丙酮按照体积比为2.5:2.5:1混合得到的混合溶液之中,并搅拌形成透明澄清的SnO2前驱体溶液;比例为每1克SnCl2·H2O对应32ml~38ml混合溶液;
将2-3倍SnCl2·H2O质量的PVP粉末溶于上述SnO2前驱体溶液之中,并在45-55℃条件下加热搅拌4h以上,使其充分溶解形成透明粘稠的PVP/ SnO2纺丝液;
将上述PVP/ SnO2纺丝液采用静电纺丝技术得到PVP/ SnO2纳米纤维毡,其纤维直径为20~100nm,比表面积为13~17m2/g;
在480-515℃高温条件下,在程序升温炉中煅烧得到单一的典型四方晶系的中空SnO2纳米纤维。
3.如权利要求1所述钯负载异质结型复合骨架气凝胶制备方法,其特征在于,所述步骤3中制备PdCl2前驱体溶液的具体方法为:
将PdCl2粉末溶解于一定量浓盐酸之中,静置后变成橙褐色透明的氯钯酸溶液;
将一定比例的甲酰胺、乙醇与去离子水的混合溶液加入到上述氯钯酸溶液之中,常温下搅拌2h得到均一的橙褐色透明溶液;PdCl2粉末与浓盐酸的质量比为1:1~1:5;甲酰胺、乙醇与去离子水混合溶液中三种组分的体积比为1:13~16:2~2.5;
将PVP粉末加入到上述橙褐色透明溶液之中,常温下剧烈搅拌均匀并进行超声分散,最后得到pH值范围为1.9~4.7的澄清橙黄色PdCl2前驱体溶液。
4.氢传感器制备方法,其特征在于,包括如下步骤:
制备金叉指电极,将钯负载异质结型复合骨架气凝胶经过研磨后得到纳米级别粉体,加入去离子水混合得到涂料,将涂料均匀涂抹在金叉指电极上得到氢传感器,纳米级别粉体与去离子水质量比为1:10~20;
所述钯负载异质结型复合骨架气凝胶为根据权利要求1至3任意一项所述制备方法制备得到的钯负载异质结型双网络复合骨架气凝胶。
5.如权利要求4所述氢传感器制备方法,其特征在于,金叉指电极的制备方式为:采用离子溅射的方式,在工作距离为25mm,电流为10mA的条件下轰击金靶材进行镀膜,金离子通过掩膜板后到达氧化铝基板上,形成具备金膜的金叉指电极。
CN202310083369.2A 2023-02-08 2023-02-08 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法 Active CN115945163B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310083369.2A CN115945163B (zh) 2023-02-08 2023-02-08 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法
US18/343,251 US20230340703A1 (en) 2023-02-08 2023-06-28 Method for preparing palladium-loaded heterojunction composite framework aerogel and method for preparing hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310083369.2A CN115945163B (zh) 2023-02-08 2023-02-08 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法

Publications (2)

Publication Number Publication Date
CN115945163A CN115945163A (zh) 2023-04-11
CN115945163B true CN115945163B (zh) 2024-04-30

Family

ID=87282704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310083369.2A Active CN115945163B (zh) 2023-02-08 2023-02-08 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法

Country Status (2)

Country Link
US (1) US20230340703A1 (zh)
CN (1) CN115945163B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579751A (en) * 1983-08-30 1986-04-01 Cerberus Ag Method of producing constituent materials for gas sensors
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
KR20170024311A (ko) * 2015-08-25 2017-03-07 한국과학기술연구원 나노 입자를 포함하는 셀룰로오스 기반 에어로젤 및 그 제조방법
CN108020588A (zh) * 2017-11-13 2018-05-11 中北大学 一种低功耗微热板型高温气体传感器及制作方法
CN108918633A (zh) * 2018-07-02 2018-11-30 北京镭硼科技有限责任公司 Pd-SnO2纳米复合材料制备及在氢气传感器的应用
CN109759005A (zh) * 2019-03-13 2019-05-17 郑州大学 一种快速响应Pd-TiO2纳米颗粒氢敏材料的制备方法
CN110632142A (zh) * 2019-08-28 2019-12-31 江南大学 一种基于金钯-石墨烯量子点复合材料的电化学生物传感器的制备方法及其应用
CN112505107A (zh) * 2020-12-14 2021-03-16 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
CN114295690A (zh) * 2021-12-30 2022-04-08 电子科技大学长三角研究院(衢州) 一种氢气敏感膜、传感器及制备方法
CN114348999A (zh) * 2022-01-21 2022-04-15 中国科学技术大学 Pd修饰的SnO2/rGO纳米复合材料及制备方法、传感器及制备方法
CN115032240A (zh) * 2022-06-09 2022-09-09 中国科学技术大学 基于ZIF-8衍生的Pd-ZnO纳米复合材料及制备方法、传感器及制备方法
CN115321590A (zh) * 2022-08-17 2022-11-11 电子科技大学长三角研究院(衢州) 一种氢敏薄膜及其制备方法、氢传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293178B2 (en) * 2007-11-06 2012-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Chemochromic detector for sensing gas leakage and process for producing the same
KR101734733B1 (ko) * 2015-12-30 2017-05-11 현대자동차주식회사 산화몰리브덴 기반 색가변 수소 검출센서 및 그 제조방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579751A (en) * 1983-08-30 1986-04-01 Cerberus Ag Method of producing constituent materials for gas sensors
CN101290310A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种压电式氢气传感器及其制备和应用
KR20170024311A (ko) * 2015-08-25 2017-03-07 한국과학기술연구원 나노 입자를 포함하는 셀룰로오스 기반 에어로젤 및 그 제조방법
CN108020588A (zh) * 2017-11-13 2018-05-11 中北大学 一种低功耗微热板型高温气体传感器及制作方法
CN108918633A (zh) * 2018-07-02 2018-11-30 北京镭硼科技有限责任公司 Pd-SnO2纳米复合材料制备及在氢气传感器的应用
CN109759005A (zh) * 2019-03-13 2019-05-17 郑州大学 一种快速响应Pd-TiO2纳米颗粒氢敏材料的制备方法
CN110632142A (zh) * 2019-08-28 2019-12-31 江南大学 一种基于金钯-石墨烯量子点复合材料的电化学生物传感器的制备方法及其应用
CN112505107A (zh) * 2020-12-14 2021-03-16 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
CN114295690A (zh) * 2021-12-30 2022-04-08 电子科技大学长三角研究院(衢州) 一种氢气敏感膜、传感器及制备方法
CN114348999A (zh) * 2022-01-21 2022-04-15 中国科学技术大学 Pd修饰的SnO2/rGO纳米复合材料及制备方法、传感器及制备方法
CN115032240A (zh) * 2022-06-09 2022-09-09 中国科学技术大学 基于ZIF-8衍生的Pd-ZnO纳米复合材料及制备方法、传感器及制备方法
CN115321590A (zh) * 2022-08-17 2022-11-11 电子科技大学长三角研究院(衢州) 一种氢敏薄膜及其制备方法、氢传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tian, MY et al..《CERAMICS INTERNATIONAL》 Multilayer porous Pd-doped SnO2 thin film: Preparation and H2 sensing performance.2021,第47卷(第20期),第28429-28436页. *
陈为.《万方数据》TiO2气凝胶的改性及氢敏性能研究.2023,全文. *

Also Published As

Publication number Publication date
US20230340703A1 (en) 2023-10-26
CN115945163A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning
Guo et al. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres
Wang et al. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method
CN109651621B (zh) 一种锆基金属有机框架复合材料及其制备方法和应用
Zhang et al. Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties
WO2022105370A1 (zh) 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法
CN107164839B (zh) 具有超高灵敏度和选择性的甲醛敏感材料CdGa2O4及其制备方法
CN104820008B (zh) 一种氧化锌纳米管/石墨烯复合膜修饰电极的制备方法
CN110823965B (zh) 一种室温检测no2的气敏材料的制备方法
CN105158229A (zh) 一种高灵敏性可循环表面增强拉曼光谱基底制备方法
Hu et al. One–step solvothermal synthesis of 3D tube–globular Dy2O3 nanostructure for ultra–fast response to humidity
CN108956708A (zh) 一种基于铁酸锌纳米敏感材料的乙醇气体传感器及其制备方法
Lv et al. Highly sensitive humidity sensor based on the solid solution Zr0. 2Ti0. 8O2 nanofibers
CN110749581B (zh) 一种荧光溶解氧传感器膜片及其制备方法
CN112357952A (zh) 一种少层石墨烯修饰的氧空位二氧化锡材料及其制备方法
CN110865099A (zh) 一种ZnO-SnO2-Zn2SnO4多孔纳米纤维气敏材料的制备方法及其应用
CN107367528A (zh) 一种基于ZnO复合纤维的乙醇气体传感器
Sun et al. Nitrogen-doped ZnO microspheres with a yolk-shell structure for high sensing response of triethylamine
CN115945163B (zh) 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法
CN113552184B (zh) 一种In2O3(ZnO)19基复合纳米管材料及其制备方法和气敏检测NO2中的应用
CN113791123B (zh) 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
TWI566830B (zh) Preparation of Photocatalyst Composite Nanofibers
CN107029687A (zh) 一种含碳点的二氧化硅/二氧化钛复合材料及其制备方法
CN108816228A (zh) 一种改性纳米级光催化材料及其制备方法
CN108217749B (zh) 一种中空球铁酸锌气体传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant