CN112505107A - 一种柔性超高灵敏度宽量程氢气传感器及其制备方法 - Google Patents

一种柔性超高灵敏度宽量程氢气传感器及其制备方法 Download PDF

Info

Publication number
CN112505107A
CN112505107A CN202011472415.0A CN202011472415A CN112505107A CN 112505107 A CN112505107 A CN 112505107A CN 202011472415 A CN202011472415 A CN 202011472415A CN 112505107 A CN112505107 A CN 112505107A
Authority
CN
China
Prior art keywords
flexible
hydrogen sensor
film
substrate
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011472415.0A
Other languages
English (en)
Other versions
CN112505107B (zh
Inventor
李爱东
任强
陈佶安
房佳斌
韩民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011472415.0A priority Critical patent/CN112505107B/zh
Publication of CN112505107A publication Critical patent/CN112505107A/zh
Priority to US18/033,072 priority patent/US11774425B1/en
Priority to PCT/CN2021/093518 priority patent/WO2022127012A1/zh
Application granted granted Critical
Publication of CN112505107B publication Critical patent/CN112505107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0023Forming specific nanostructures comprising flexible or deformable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种柔性超高灵敏度宽量程氢气传感器及其制备方法,属于氢气传感器领域,解决了氢气传感器的灵敏度低、检测量程窄、选择性差、工作温度高等缺点。本发明的传感器包括从上到下依次为导电电极层、敏感层、柔性衬底层;所述敏感层为MOx薄膜和Pd纳米粒子,所述Pd纳米粒子覆盖在MOx薄膜上;在柔性聚合物基底上利用原子层沉积和团簇束流沉积技术,将传统金属氧化物型氢气传感器和基于量子电导型氢气传感器结合起来,获得了一种柔性超高灵敏度宽量程、可低温工作的氢气传感器。

Description

一种柔性超高灵敏度宽量程氢气传感器及其制备方法
技术领域
本发明属于氢气传感器领域,尤其涉及一种柔性超高灵敏度宽量程氢气传感器及其制备方法。
背景技术
氢气作为一种密度最轻的气体,在工业合成、石油化工领域加氢、脱氢以及作为还原剂应用方面有着重要的价值,而氢能作为一种清洁和可再生的二次能源,在未来世界新能源领域中起着举足轻重的作用,尤其是燃料电池、动力汽车。然而氢气无色、无味,且在空气中浓度范围为4 - 75 vol%时具有爆炸的危险,这些都极大地限制了氢气的生产、储存、运输和使用。发展高灵敏度、高选择性、使用方便、安全可靠的氢气传感器成为一项紧迫的任务。
金属氧化物半导体阻变型氢气传感器作为一种常用的氢气传感器,具有灵敏度高、稳定性好、成本低等优点,但选择性差,操作温度较高,一般在300℃左右。且低温或室温时,灵敏度低,响应时间慢,无法正常工作。如常用的SnO2和ZnO气敏材料均存在此类痼疾。除了金属氧化物半导体式阻变型氢气传感器之外,基于量子电导型的新型阻变型氢气传感器近年来也得到了研究者们的极大关注。这类传感器利用贵金属Pd纳米线或纳米粒子作为敏感介质,具有响应速度快且选择性优异等特点,但量程较窄、灵敏度低,且稳定性差。此外,随着万物互联的不断发展,人们对于柔性器件的需求也日益剧增。开发柔性氢气传感器替代传统刚性氢气传感器,对于柔性电子技术的发展至关重要。
原子层沉积(Atomic layer deposition,ALD)和团簇束流沉积(Cluster beamdeposition, CBD)技术方法均为正在蓬勃发展中的新型材料制备技术。ALD是通过将气相前驱体脉冲交替地通入反应器并在沉积基体表面上发生化学吸附反应形成薄膜的一种方法,其独特的自限制性与自饱和性反应机理,保证了沉积薄膜的大面积均匀性、优异的三维共形性和膜厚的精确可控性(埃尺度)。近些年来,原子层沉积在微电子、光电子、纳米技术、新能源、催化、生物医学等领域展现出广阔的应用前景。然而将ALD技术应用于氢气传感器领域工作,相对较少,特别是应用于超高灵敏度柔性氢气传感器制备的研究还极其匮乏。CBD技术通过气相聚集过程形成团簇,并通过气体动力学喷嘴膨胀形成团簇束流,然后在真空中以声速或被加速后沉积于基底上。CBD技术可以精确控制纳米粒子的大小和分布,可以获得均匀密集分布、尺寸结构成分单一的纳米粒子点阵。CBD技术在基于量子电导型氢气传感器领域已经显示出巨大的技术优势,有希望发展成为一种工业通用的基于纳米粒子的纳米结构的规模化制备技术。
发明内容
本发明提供了一种柔性超高灵敏度宽量程氢气传感器及其制备方法,获得了一种柔性超高灵敏度宽量程、可低温工作的氢气传感器,从而解决了氢气传感器的灵敏度低、检测量程窄、选择性差、工作温度高等缺点。
为实现以上目的,本发明采用以下技术方案:
一种柔性超高灵敏度宽量程氢气传感器,包括从上到下依次为导电电极层、敏感层、柔性衬底层;所述敏感层为MOx薄膜和Pd纳米粒子(Nanoparticles, NPs),所述Pd纳米粒子覆盖在MOx薄膜上。
以上所述结构中,所述柔性衬底层为柔性聚合物衬底,所述柔性聚合物衬底包括但不限于聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚苯胺(PANI)、聚萘二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚碳酸酯(PC)、玻璃纸;
所述导电电极层为金属叉指电极,所述金属叉指电极的长度为5-6mm,宽度为4-5mm,电极的齿长为1-2mm,齿间隙的长度为100-200μm,电极齿的宽度为100-200μm,所述金属叉指电极材料为金、银、铂、铝等金属,厚度约为100-200nm;
所述MOx薄膜厚度为5-50nm,所述M为Sn、Zn、Ti、Ta、Hf或Zr,所述的Pd纳米粒子在MOx薄膜上覆盖率为5% - 50%,所述的覆盖率是指单位面积下的Pd纳米粒子的占据面积。
一种柔性超高灵敏度宽量程氢气传感器的制备方法,包括以下步骤:
(1)将柔性聚合物基底依次用异丙醇、乙醇、去离子水超声清洗,超声时间为5-10分钟,并用高纯氮气(99.999%)吹干,备用;
(2)在步骤(1)处理后的柔性聚合物衬底上,用热ALD或等离子体增强ALD(plasma-enhanced ALD, PEALD)低温生长一层厚度为5-50nm的MOx薄膜;
(3)在步骤(2)生长后的MOx薄膜上,使用CBD技术沉积覆盖率为10% - 50%的Pd纳米粒子;
(4)使用掩模版,在步骤(3)中Pd纳米粒子的MOx薄膜上沉积厚度为100-200nm的金属叉指电极作为导电电极,引线和封装后即可得到负载有Pd纳米粒子的MOx基柔性氢气传感器。
以上所述步骤中,步骤(2)中所述ALD低温沉积的温度为室温至350℃;
步骤(3)中所述CBD沉积的参数为:腔室真空度为 10-5Pa,沉积时团簇源内充入100pa氩气,溅射功率为20-50W,冷凝距离为30-80mm,所用金属Pd靶材的纯度为99.9999%;
步骤(4)中制备导电电极采用磁控溅射、真空镀膜或电子束热蒸发方法。
有益效果:本发明提供了一种柔性超高灵敏度宽量程氢气传感器及其制备方法,在柔性聚合物衬底上生长MOx薄膜后沉积Pd纳米粒子,制备工艺与半导体工艺兼容,适合大规模生产,所制备的氢气传感器具有优异的氢气传感器性能,具有亚ppm(千万分之一)级的低探测浓度,超宽的检测量程范围,超高的氢气选择特性。由于柔性聚合物衬底具有可弯折的特性,这种基于柔性聚合物衬底的氢气传感器在柔性传感器件领域具有广阔的应用前景。
附图说明
图1为本发明超高灵敏度柔性氢气传感器结构示意图,其中1-柔性衬底、 2- ALD沉积的MOx薄膜、3- CBD沉积的Pd纳米粒子、4-叉指型导电电极;
图2 为本发明叉指电极的掩模版示意图,其中5-白色部分代表掩模版金属材质、6-黑色代表掩模版的空隙、7-叉指电极的齿长、8-叉指电极齿的间隙长度、9-叉指电极的齿宽、10-叉指电极的宽度、11-叉指电极的长度;
图3为本发明实施例中Pd NPs/SnO2样品扫描电子显微镜(SEM)照片(a)和透射电子显微镜(TEM)照片(b);
图4为本发明实施例中Pd NPs/SnO2样品的XPS图谱:(a) Sn,(b) O, (c) Pd;
图5为本发明实施例中Pd NPs/SnO2样品在125℃操作温度下对不同氢气浓度的响应曲线;
图6为本发明实施例中Pd NPs/SnO2样品在25℃操作温度下对不同氢气浓度的响应曲线;
图7(a)为本发明实施例中Pd NPs/SnO2 样品在125℃操作温度下通30ppm H2和30ppm CO的选择性比较;(b)为本发明实施例中Pd NPs/SnO2 样品在125℃操作温度下通30ppm H2的稳定性曲线;
图8为本发明实施例中Pd NPs/SnO2柔性氢气传感器的弯折稳定性(a)和弯折前后其对氢气的响应曲线(b)。
具体实施方式
实施例1
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:柔性聚合物PI衬底、MOx (M = Sn, X = 2)薄膜、Pd纳米粒子、铂叉指电极,从上至下依次为铂叉指电极、Pd纳米粒子、SnO2薄膜、PI衬底,Pd纳米粒子在SnO2薄膜上的覆盖率为20%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取PI作为传感器的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用异丙醇、乙醇、去离子水分别超声清洗5分钟,最后将清洗后的PI衬底用高纯氮气(99.999%)吹干,备用;
(2)采用热ALD在步骤(1)中清洗后的PI衬底上沉积一层超薄SnO2薄膜,沉积温度为120℃,采用的前驱体源分别为四(二甲基氨基)锡和去离子水,四(二甲基氨基)锡源和去离子水源的脉冲时间和清洗时间均分别为0.2s,6s,沉积的循环数为140循环,椭圆偏振仪器测试结果显示生长速率为0.1nm/循环;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为20%的Pd纳米粒子,沉积时的溅射功率为40W,冷凝距离为60mm,通过控制沉积的时间从而控制Pd纳米粒子的含量,如图3所示,沉积的Pd纳米粒子分布均匀,互相独立没有团聚,纳米粒子直径为8-10nm;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~150nm厚度的金属铂作为导电电极,接线封装后即可作为检测氢 气的柔性敏感元件。
图4为Pd NPs/SnO2的XPS光电子能谱图,从图中可以看出样品表面含有Sn、O、Pd元素,其中Sn为Sn4+,Pd主要为金属Pd,表明通过ALD制备了SnO2薄膜,CBD技术沉积了Pd纳米粒子。
图5为Pd NPs/SnO2氢气传感器样品在125℃使用温度下通入不同浓度H2时的电阻响应情况,可以看出,此氢气传感器具有超高的灵敏度,在通入30ppm H2时其响应高达~30000,而通入5000ppm氢气时其响应高达107量级。从图5(b)显示,在0.1-10000ppm的H2范围下,此氢气传感器均有强烈的电阻响应。可见其具有超低的检测下限和超宽的检测量程,而且还具有较高的检测分辨率。
图6为Pd NPs/SnO2氢气传感器样品在室温下对不同浓度H2的响应性能。室温检测对于氢气传感器能耗的降低和安全性的提高具有很大的帮助。虽然较125℃温度下性能有所下降,但依然对不同浓度的H2具有清晰的响应曲线。该传感器对5000ppm H2依然有104数量级的电阻响应,最低检测下限也可低至0.25ppm。可见该氢气传感器具有优异的室温检测性能。
图7为Pd NPs/SnO2氢气传感器的选择性能及稳定性能对比图。从图7(a)可以看出,分别通入同样30ppm浓度的H2和CO,该传感器对CO几乎没有响应,而对H2的电阻变化响应高达~30000,可见其具有超强的氢气选择性能。图7(b)显示了间隔不同天数测试该传感器的氢气响应性能,显示了其较好的稳定性能。随着放置时间的变长,其氢气传感性能有所下降,但在125℃下对30ppm的H2依然有104量级的电阻响应,反映出改氢气传感器具有较强的稳定性能。
图8为Pd NPs/SnO2柔性氢气传感器的弯折稳定性对比图,其中对本柔性氢气传感器样品实施了凸型弯折和凹型弯折。从图8(a)可以看出,本柔性氢气传感器样品在经历了各500次凸型弯折和凹型弯折后在125℃下对30ppm的氢气依然具有高达104电阻比值响应,可见其具有优异的耐弯折性能。图8(b)显示了本柔性氢气传感器样品在弯折前和弯折1500次后对氢气响应的对比曲线。可以看出,两者在125℃对30ppm氢气的电阻响应曲线大体吻合,具有很好的弯折重复稳定性。
实施例2
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:PET衬底、MOx(M = Zn, X = 1)薄膜、Pd纳米粒子、金叉指电极,从上至下依次为金叉指电极、Pd纳米粒子、ZnO薄膜、PET衬底,Pd纳米粒子在ZnO薄膜上的覆盖率为25%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取PET作为传感器的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用乙醇、去离子水分别超声清洗5分钟,最后将清洗后的PET衬底用高纯氮气(99.999%)吹干,备用;
(2)采用ALD在步骤(1)中清洗后的PET衬底上沉积一层超薄ZnO薄膜,沉积温度为100℃,采用的前驱体源分别为二乙基锌和去离子水。二乙基锌和去离子水源的脉冲时间和清洗时间均分别为0.1s,4s,沉积厚度约为20nm的ZnO薄膜;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为25%的Pd纳米粒子。沉积时的溅射功率为35W,冷凝距离为65mm,通过控制沉积的时间从而控制Pd纳米粒子的含量;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~200nm厚度的金属金作为导电电极,接线封装后即可作为检测氢气的柔性敏感元件。
实施例3
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:玻璃纸衬底、MOx (M = Ti, X = 2)薄膜、Pd纳米粒子、银叉指电极,从上至下依次为银叉指电极、Pd纳米粒子、TiO2薄膜、玻璃纸衬底,Pd纳米粒子在TiO2薄膜上的覆盖率为15%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取玻璃纸作为传感器件的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用乙醇、去离子水分别超声清洗5分钟,最后将清洗后的玻璃纸衬底用高纯氮气(99.999%)吹干,备用;
(2)采用PEALD在步骤(1)中清洗后的玻璃纸衬底上沉积一层超薄TiO2薄膜,沉积温度为25℃,采用的前驱体源分别为四氯化钛和氧气等离子体,四氯化钛源的脉冲时间和清洗时间分别为0.3s,15s,氧气等离子体源的脉冲时间和清洗时间分别为2s,8s。沉积厚度约为10nm的TiO2薄膜;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为15%的Pd纳米粒子,沉积时的溅射功率为30W,冷凝距离为55mm,通过控制沉积的时间从而控制Pd纳米粒子的含量;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~130nm厚度的金属银作为导电电极,接线封装后即可作为检测氢气的柔性敏感元件。
实施例4
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:PANI柔性衬底、MOx (MOx = Ta2O5)薄膜、Pd纳米粒子、铝叉指电极,从上至下依次为铝叉指电极、Pd纳米粒子、Ta2O5薄膜、PANI柔性衬底,Pd纳米粒子在Ta2O5薄膜上的覆盖率为10%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取PANI柔性衬底作为传感器的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用乙醇、去离子水分别超声清洗5分钟,最后将清洗后的PANI衬底用高纯氮气(99.999%)吹干,备用;
(2)采用ALD在步骤(1)中清洗后的PANI衬底上沉积一层超薄Ta2O5薄膜,沉积温度为200℃,采用的前驱体源分别为五(二甲氨基)钽和去离子水,五(二甲氨基)钽源的脉冲时间和清洗时间分别为1.5s,4s,去离子水源的脉冲时间和清洗时间分别为0.1s,4s,沉积厚度约为30nm的Ta2O5薄膜;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为10%的Pd纳米粒子。沉积时的溅射功率为25W,冷凝距离为50mm,通过控制沉积的时间从而控制Pd纳米粒子的含量;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~180nm厚度的金属铝作为导电电极,接线封装后即可作为检测氢气的柔性敏感元件。
实施例5
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:PEN柔性衬底、MOx (M = Hf, X = 2)薄膜、Pd纳米粒子、铂梳状电极,从上至下依次为铂梳状电极、Pd纳米粒子、HfO2薄膜、PEN柔性衬底,Pd纳米粒子在HfO2薄膜上的覆盖率为30%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取PEN柔性衬底作为传感器的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用乙醇、去离子水分别超声清洗5分钟,最后将清洗后PEN衬底用高纯氮气(99.999%)吹干,备用;
(2)采用PEALD在步骤(1)中清洗后的PEN衬底上沉积一层超薄HfO2薄膜,沉积温度为80℃,采用的前驱体源分别为四(二甲基氨基)铪和氧气等离子体,四(二甲基氨基)铪源的脉冲时间和清洗时间分别为0.1s,15s,氧气等离子体源的脉冲时间和清洗时间分别为30s,25s,沉积厚度约为35nm的HfO2薄膜;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为30%的Pd纳米粒子,沉积时的溅射功率为45W,冷凝距离为70mm,通过控制沉积的时间从而控制Pd纳米粒子的含量;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~100nm厚度的金属铂作为导电电极,接线封装后即可作为检测氢气的柔性敏感元件。
实施例6
如图1所示,一种基于柔性聚合物衬底超高灵敏度氢气传感器,包括:PEEK柔性衬底、MOx (M = Zr, X = 2)薄膜、Pd纳米团簇、金梳状电极,从上至下依次为银梳状电极、Pd纳米团簇、ZrO2薄膜、PEEK柔性衬底,Pd纳米团簇在ZrO2薄膜上的覆盖率为35%。
以上所述传感器的制备方法,包括以下步骤:
(1)如图1,选取PEEK柔性衬底作为传感器的衬底,将其放入清洗架上,再将清洗架放入烧杯中,然后采用乙醇、去离子水分别超声清洗5分钟,最后将清洗后的PEEK衬底用高纯氮气(99.999%)吹干,备用;
(2)采用ALD在步骤(1)中清洗后的PEEK衬底上沉积一层超薄ZrO2薄膜,沉积温度为120℃,采用的前驱体源分别四(甲乙胺基)锆和去离子水,四(甲乙胺基)锆源的脉冲时间和清洗时间均分别为0.1s,4s,沉积厚度约为40nm的ZrO2薄膜;
(3)在步骤(2)的基础上,采用CBD技术沉积覆盖率为35%的Pd纳米粒子,沉积时的溅射功率为20w,冷凝距离为60mm,通过控制沉积的时间从而控制Pd纳米粒子的含量;
(4)通过将叉指电极掩模版紧贴在步骤(3)完成后的样品上,采用磁控溅射的方法溅射~160nm厚度的金属金作为导电电极,接线封装后即可作为检测氢气的柔性敏感元件。
以上仅是本发明的优选实施例,将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是对本领域的普通技术人员来说,在不脱离本发明构思的前提下,做出的若干变形和改进都属于本发明的保护。

Claims (10)

1.一种柔性超高灵敏度宽量程氢气传感器,其特征在于,包括从上到下依次为导电电极层、敏感层、柔性衬底层;所述敏感层为MOx薄膜和Pd纳米粒子,所述Pd纳米粒子覆盖在MOx薄膜上。
2.根据权利要求1所述的柔性超高灵敏度宽量程氢气传感器,其特征在于,所述MOx薄膜厚度为5-50nm,所述M为Sn、Zn、Ti、Ta、Hf或Zr。
3.根据权利要求1或2所述的柔性超高灵敏度宽量程氢气传感器,其特征在于,所述的Pd纳米粒子在MOx薄膜上覆盖率为5% - 50%。
4.根据权利要求1所述的柔性超高灵敏度宽量程氢气传感器,其特征在于,所述柔性衬底包括但不限于聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚苯胺(PANI)、聚萘二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚碳酸酯(PC)、玻璃纸。
5.根据权利要求1所述的柔性超高灵敏度宽量程氢气传感器,其特征在于,所述导电电极层为金属叉指电极。
6.根据权利要求5所述的柔性超高灵敏度宽量程氢气传感器,其特征在于,所述金属叉指电极的长度为5-6mm,宽度为4-5mm,厚度为100-200nm,电极的齿长为1-2mm,齿间隙的长度为100-200μm,电极齿的宽度为100-200μm。
7.一种柔性超高灵敏度宽量程氢气传感器的制备方法,其特征在于,包括以下步骤:
(1)将柔性聚合物基底依次用异丙醇、乙醇、去离子水超声清洗,超声时间为5-10分钟,并用高纯氮气吹干,备用;
(2)在步骤(1)处理后的柔性聚合物衬底上,用热ALD或等离子体增强ALD低温生长一层厚度为5-50nm的MOx薄膜;
(3)在步骤(2)生长后的MOx薄膜上,使用CBD技术沉积覆盖率为5% - 50%的Pd纳米粒子;
(4)使用掩模版,在步骤(3)中负载有Pd纳米粒子的MOx薄膜上沉积厚度为100-200nm的金属叉指电极作为导电电极,引线和封装后即可得到负载有Pd纳米粒子的MOx基柔性氢气传感器。
8.根据权利要求7所述的柔性超高灵敏度宽量程氢气传感器的制备方法,其特征在于,步骤(2)中所述ALD低温沉积的温度为室温至350℃。
9.根据权利要求7所述的柔性超高灵敏度宽量程氢气传感器的制备方法,其特征在于,步骤(3)中所述CBD沉积的参数为:腔室真空度为 10-5Pa,沉积时团簇源内充入100pa氩气,溅射功率为20-50W,冷凝距离为30-80mm,所用金属Pd靶材的纯度为99.9999%。
10.根据权利要求7所述的柔性超高灵敏度宽量程氢气传感器的制备方法,其特征在于,步骤(4)中制备导电电极采用磁控溅射、真空镀膜或电子束热蒸发方法。
CN202011472415.0A 2020-12-14 2020-12-14 一种柔性超高灵敏度宽量程氢气传感器及其制备方法 Active CN112505107B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011472415.0A CN112505107B (zh) 2020-12-14 2020-12-14 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
US18/033,072 US11774425B1 (en) 2020-12-14 2021-05-13 Flexible hydrogen sensor with ultra-high sensitivity and wide range and fabrication method therefor
PCT/CN2021/093518 WO2022127012A1 (zh) 2020-12-14 2021-05-13 一种柔性超高灵敏度宽量程氢气传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011472415.0A CN112505107B (zh) 2020-12-14 2020-12-14 一种柔性超高灵敏度宽量程氢气传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN112505107A true CN112505107A (zh) 2021-03-16
CN112505107B CN112505107B (zh) 2022-10-11

Family

ID=74973256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011472415.0A Active CN112505107B (zh) 2020-12-14 2020-12-14 一种柔性超高灵敏度宽量程氢气传感器及其制备方法

Country Status (3)

Country Link
US (1) US11774425B1 (zh)
CN (1) CN112505107B (zh)
WO (1) WO2022127012A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406147A (zh) * 2021-05-08 2021-09-17 中北大学 一种氢气敏感元件及制备方法
CN113776420A (zh) * 2021-07-15 2021-12-10 中国科学院金属研究所 一种超灵敏柔性应变传感器的制备方法
CN113791123A (zh) * 2021-07-30 2021-12-14 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
WO2022127012A1 (zh) * 2020-12-14 2022-06-23 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
CN115945163A (zh) * 2023-02-08 2023-04-11 电子科技大学 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274420A (zh) * 2022-08-15 2022-11-01 福州大学 一种基于柔性基底ald二氧化铪薄膜的制备方法
CN117091653B (zh) * 2023-08-24 2024-04-12 哈尔滨理工大学 一种用于储能系统安全监测的双参量薄膜传感器及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003153A (ja) * 2004-06-16 2006-01-05 Saginomiya Seisakusho Inc 水素ガス検知素子、水素ガスセンサおよび水素ガス検知方法
CN107144600A (zh) * 2017-05-04 2017-09-08 湖北大学 含Pd量子点MoO3纳米纤维纸H2传感器及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS462000Y1 (zh) 1969-04-18 1971-01-22
US20130202489A1 (en) * 2012-02-03 2013-08-08 The Hong Kong Polytechnic University Gas sensor with a highly porous structure constructed of catalyst-capped metal-oxide nanoclusters
KR20150000737A (ko) * 2013-06-25 2015-01-05 울산대학교 산학협력단 플렉시블 수소 센서 및 그 제조방법
KR102190147B1 (ko) * 2018-04-20 2020-12-11 광주과학기술원 수소 가스 센서 및 그 제조 방법
CN112505107B (zh) * 2020-12-14 2022-10-11 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003153A (ja) * 2004-06-16 2006-01-05 Saginomiya Seisakusho Inc 水素ガス検知素子、水素ガスセンサおよび水素ガス検知方法
CN107144600A (zh) * 2017-05-04 2017-09-08 湖北大学 含Pd量子点MoO3纳米纤维纸H2传感器及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JAE-HUN KIM 等: "Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets", 《SENSORS & ACTUATORS:B.CHEMICAL》 *
JIWON LEE 等: "A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method", 《SENSORS AND ACTUATORS B》 *
WU SH等: "Flexible hydrogen sensor based on Pd/TiO2 nanofilm with fast response", 《THE 6TH GLOBAL CONFERENCE ON POLYMER AND COMPOSITE MATERIALS》 *
沈林武 等: "一种基于电子隧穿机制的柔性氢气传感器", 《传感技术学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127012A1 (zh) * 2020-12-14 2022-06-23 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
US11774425B1 (en) 2020-12-14 2023-10-03 Nanjing University Flexible hydrogen sensor with ultra-high sensitivity and wide range and fabrication method therefor
CN113406147A (zh) * 2021-05-08 2021-09-17 中北大学 一种氢气敏感元件及制备方法
CN113776420A (zh) * 2021-07-15 2021-12-10 中国科学院金属研究所 一种超灵敏柔性应变传感器的制备方法
CN113791123A (zh) * 2021-07-30 2021-12-14 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
CN113791123B (zh) * 2021-07-30 2024-02-13 浙江工业大学 基于锡氧化物和贵金属双纳米粒子点阵氢气传感器及其制备方法
CN115945163A (zh) * 2023-02-08 2023-04-11 电子科技大学 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法
CN115945163B (zh) * 2023-02-08 2024-04-30 电子科技大学 一种钯负载异质结型复合骨架气凝胶及氢传感器制备方法

Also Published As

Publication number Publication date
WO2022127012A1 (zh) 2022-06-23
CN112505107B (zh) 2022-10-11
US20230304980A1 (en) 2023-09-28
US11774425B1 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
CN112505107B (zh) 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
Zhu et al. Room-temperature gas sensing of ZnO-based gas sensor: A review
Li et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine
Mahajan et al. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review
Joshi et al. Pd nanoparticles and thin films for room temperature hydrogen sensor
Horprathum et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering
Drmosh et al. Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles
Elam et al. Atomic layer deposition of In2O3 using cyclopentadienyl indium: a new synthetic route to transparent conducting oxide films
Dasgupta et al. Recent advances in atomic layer deposition
Bhowmik et al. Highly selective low-temperature acetone sensor based on hierarchical 3-D TiO 2 nanoflowers
Lee et al. Microstructure-dependent nucleation in atomic layer deposition of Pt on TiO2
Kumar et al. Study of humidity sensing properties and ion beam induced modifications in SnO2-TiO2 nanocomposite thin films
Shankar et al. Racetrack Effect on the Dissimilar Sensing Response of ZnO Thin Film An Anisotropy of Isotropy
Sanger et al. Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application
Ghanbari Shohany et al. Investigation of ZnO thin-film sensing properties for CO 2 detection: effect of Mn doping
Liang et al. NO2 gas sensing performance of a VO2 (B) ultrathin vertical nanosheet array: experimental and DFT investigation
Liu et al. Direct growth of NiO films on Al2O3 ceramics by electrochemical deposition and its excellent H2S sensing properties
An et al. Enhanced ethanol sensing properties of multiple networked Au-doped In2O3 nanotube sensors
Shaalan et al. Synthesis of metal and metal oxide nanostructures and their application for gas sensing
Drmosh et al. Surface-engineered WO3 thin films for efficient NO2 sensing
Kumar et al. MoS2 nanoworm thin films for NO2 gas sensing application
Almaev et al. Oxygen sensors based on gallium oxide thin films with addition of chromium
Sadek et al. Nanoporous TiO2 thin film based conductometric H2 sensor
Sta et al. Surface functionalization of sol–gel grown NiO thin films with palladium nanoparticles for hydrogen sensing
Liu et al. Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant