CN115274420A - 一种基于柔性基底ald二氧化铪薄膜的制备方法 - Google Patents

一种基于柔性基底ald二氧化铪薄膜的制备方法 Download PDF

Info

Publication number
CN115274420A
CN115274420A CN202210972129.3A CN202210972129A CN115274420A CN 115274420 A CN115274420 A CN 115274420A CN 202210972129 A CN202210972129 A CN 202210972129A CN 115274420 A CN115274420 A CN 115274420A
Authority
CN
China
Prior art keywords
hafnium oxide
thin film
preparation
ald
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210972129.3A
Other languages
English (en)
Other versions
CN115274420B (zh
Inventor
孙浩
胡波
贾原
东辉
杨磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210972129.3A priority Critical patent/CN115274420B/zh
Publication of CN115274420A publication Critical patent/CN115274420A/zh
Application granted granted Critical
Publication of CN115274420B publication Critical patent/CN115274420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种基于柔性基底ALD二氧化铪薄膜的制备方法,在柔性电子器件不断发展的基础下,硬基底器件以及柔性薄膜较厚的器件都会影响柔性FET发展。随着MOSFET尺寸的不断缩小,其等效氧化物层的厚度减小到纳米数量级别,传统的栅介质材料二氧化硅已经接近物理极限,这时由于量子效应导致MOS的隧穿漏电流急剧增大,从而影响了器件的可靠性和稳定性。本发明的目的是为了克服Si等硬基底制备的器件应用的局限性、将二氧化铪栅介电层代替SiO2,由钛成核层、二氧化铪薄膜层的组合,可以实现高的介电常数,使其在柔性FET和柔性可穿戴器件上应用的性能得到较大改善。

Description

一种基于柔性基底ALD二氧化铪薄膜的制备方法
技术领域
本发明涉及半导体技术领域,具体公开了一种基于柔性基底ALD二氧化铪薄膜的制备方法。
背景技术
如今,在柔性电子器件不断发展的基础下,柔性材料为基底的FET电子器件以及柔性可穿戴器件,以其优异的性能引起了研究者们的极大关注。目前,大多数研究者采用的是PEN薄膜、PET薄膜、溶性分子薄膜等,硬基底器件以及柔性薄膜较厚的器件都会影响柔性FET以及柔性可穿戴器件的发展。同时,在微电子领域中,集成电路的发展是一直遵循摩尔定律的发展而发展的。随着MOSFET特征尺寸的不断缩小,其等效氧化物层的厚度减小到纳米数量级别,此时作为传统的栅介质材料二氧化硅已经接近物理极限,这时由于量子效应导致MOS的隧穿漏电流急剧增大,从而影响了器件的可靠性和稳定性。因此,寻找应用于下一代的MOSFET的高介电常数材料替代传统的氧化硅成为当前微电子领域研究的热点和重点。高介电常数材料中,氧化铪具有较高的介电常数,较大的禁带宽度,适中的价带和导带偏移,以及与硅基底的良好热稳定性。因此,氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数材料。
通过对比专利1高 K 二氧化铪非晶薄膜的制备方法,申请公布号 CN 103451612A;专利2适用于栅介质层的低漏电流HfO2薄膜的制备方法,授权公告号 CN 103451611 B;专利3一种基于金属铪沉积二氧化铪薄膜的方法,授权公告号 CN 111500987 B。
通过对比现有专利,发现基于柔性衬底的原子层沉积二氧化铪薄膜的制备方法未有人提及,本发明提出了基于聚亚酰胺柔性薄膜ALD(原子层沉积)二氧化铪薄膜的制备方法。
发明内容
本发明的目的是为了克服Si等硬基底制备的器件应用的局限性、以及将二氧化铪栅介电层代替SiO2,由柔性衬底PI薄膜、钛成核层、二氧化铪薄膜层的组合,可以实现高的介电常数,使其在柔性FET和柔性可穿戴器件上应用的性能得到较大改善。
针对上述问题,提供一种基于聚亚酰胺薄膜原子层沉积(ALD)二氧化铪薄膜的制备方法,很大程度上促进了柔性FET和柔性可穿戴器件的发展。本发明中在沉积完二氧化铪薄膜后制备的器件或者在沉积完二氧化铪薄膜后继续增加工艺后制备的器件需要从Si衬底上撕下来,与Si等硬基底分离,即轻撕之前在Si上覆盖的PI薄膜即可,从而实现柔性器件的制备。
为实现上述目的,本发明采用如下技术方案:
一种基于柔性基底ALD二氧化铪薄膜的制备方法,包括下述步骤:
(1)首先对硅片进行超声清洗工作后,将PDMS和固化剂按质量比10~15:1配置的混合液抽真空后旋涂在硅片上,然后将一层聚酰亚胺薄膜贴上,85~125℃加热4-5h;
(2)在所述聚酰亚胺薄膜薄膜上利用掩膜版光刻,制备第一电极;
(3)在所述第一电极上形成金属成核层;
(4)将上述基片放入原子层沉积设备反应室的样品槽上,同时通过氮气瓶调整压力泵数值,设置外管道与铪源和水源管道氮气载气流量;
(5)设置反应腔温度及ALD 工作cycle,对反应室进行抽真空;
(6)根据设置的温度加热和保温后,经过沉积形成二氧化铪薄膜。
进一步的,所述聚酰亚胺薄膜的厚度为10-25μm。
进一步的,所述步骤(1)具体操作为:将硅片利用超声清洗机在50~60℃的恒温下,依次经过丙酮、酒精、超纯水各10~15分钟清洗后,利用氮气完全吹干后,在速度1为500~1000rpm/min 5~10s、速度2为1000~2000rpm/min 40~50s的转速下,在上述硅片上旋涂10~15:1质量配比且抽真空后的PDMS溶液,然后贴覆经过酒精、超纯水各两分钟清洗、且干燥后的聚酰亚胺薄膜,最后在85~125℃下加热4-5小时。
进一步的,制备的第一电极为金铬电极。
进一步的,所述金铬电极分为金层和铬层,且金层和铬层的厚度比为1:30-50。
进一步的,所述金属成核层为钛,且厚度为1-2nm,形成薄膜后在85~120℃下加热氧化2~3小时。
进一步的,步骤(4)中,所述压力泵数值为4.5~5.5,外管道氮气载体流量IMS flow为200~300sccm,铪源管道氮气载体流量为100~140sccm,水源管道氮气载体流量为180~250sccm。
进一步的,步骤(5)中,所述设置的反应腔温度为200-300℃,ALD 工作cycle为70~120,所述抽真空的真空度小于等于25hPa。
进一步的,步骤(6)中,保温时间为20-25分钟,二氧化铪薄膜厚度为7~12nm,镀膜时间为17-20分钟。
工作原理:
本发明涉及一种基于柔性基底ALD二氧化铪薄膜的制备方法,包括下述步骤:在硅衬底涂覆一层薄膜;在薄膜上制备第一电极;在所述第一电极上形成成核层;然后在所述成核层上形成栅极介电层,本发明采用的制备方法得到的一种基于柔性基底ALD二氧化铪薄膜的制备方法,制备工艺简单,成本较低,重复性好,性能优越。
本发明的优点在于:
本发明采用基于聚酰亚胺薄膜衬底,进行ALD沉积二氧化铪薄膜的制备方法,该方案克服了Si等硬基底在柔性FET以及柔性可穿戴器件的应用的局限性,通过ALD 钛和二氧化铪这种方法,可以实现高介电常数,其次该聚酰亚胺薄膜厚度可以做到10-25μm,可以对后续柔性FET器件以及柔性可穿戴器件的性能得到改善以及应用更加广泛。
附图说明
图1为本发明基于柔性基底ALD二氧化铪薄膜的制备方法的工艺流程图;
图2为本发明基于柔性基底ALD二氧化铪薄膜的制备方法的原理图。
具体实施方式
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,作详细说明。本发明的方法如无特殊说明,均为本领域常规方法。
实施例1
本实施例中采用Picosum R200 原子层沉积薄膜设备,本实施例中一种基于柔性基底ALD二氧化铪薄膜的制备方法,包括如下步骤:
(1)将硅片利用超声清洗机在50℃的恒温下,依次经过丙酮、酒精、超纯水各10分钟清洗后,利用氮气完全吹干后,在速度1为500rpm/min 5s、速度2为1000rpm/min 40s的转速下,在上述Si上旋涂10:1质量配比且抽真空后的PDMS和固化剂的混合液,然后贴覆经过酒精、超纯水各两分钟清洗、且干燥后的PI薄膜,最后在85℃下加热4小时。
(2)掩膜版光刻后利用热蒸镀方法进行第一电极的蒸镀,形成一层Au/Cr金属层,金层和铬层的厚度比为1nm:30nm。
(3)利用ALD原子层沉积镀膜的方法形成一层Ti成核层,厚度为1nm,并进行85℃加热氧化2小时。
(4)将上述基片放入原子层沉积设备反应室的样品槽上;同时通过氮气瓶调整压力泵数值,设置外管道与铪源和水源管道氮气载气流量,所述压力泵数值为5,外管道氮气载体流量IMS flow为250sccm,铪源为120sccm,水源为200sccm。
(5)设置反应腔温度及ALD 工作cycle,对反应室进行抽真空,所述设置的反应腔温度为250℃,ALD 工作cycle为100。所述抽真空的真空度小于等于25hPa。
(6)根据设置的温度加热和保温后,经过沉积形成二氧化铪薄膜,保温时间为25分钟,镀膜时间为20分钟,二氧化铪薄膜厚度为10nm。测得其介电常数为25。
对比例1
将实施例1步骤(3)中沉积的Ti成核层改为沉积Hf成核层,厚度为1nm,其余操作与实施例1同,得到二氧化铪薄膜。测得其介电常数为22。
对比例2
将实施例1中步骤(3)沉积Ti成核层的步骤去掉,直接将制备Au/Cr第一电极后的基片用于沉积二氧化铪薄膜,其余操作与实施例1同,得到二氧化铪薄膜。测得其介电常数为20。
金属成核层(例如Al、Hf、Ti等)对随后生长的电介质HfO2薄膜的介电常数和形态具有显著影响,但是不同类型的成核层对本发明镀的HfO2薄膜影响不同。镀Ti后的光滑表面在低至1~2nm的厚度下提供了优异的表面覆盖率,TEM(透射电子显微镜)分析表明,使用Al、Hf成核层的HfO2薄膜为非结晶区(孔隙过多绝缘性相对较差,介电常数相对Ti成核层的HfO2薄膜低),而使用Ti为成核层后的HfO2薄膜存在结晶区,从而有效的提高了HfO2薄膜介电层的介电常数,通常HfO2的介电常数为17-22,加Ti成核层后大致在23-28。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,包括下述步骤:
(1)首先对硅片进行超声清洗工作后,将PDMS和固化剂按质量比10~15:1配置的混合液抽真空后旋涂在硅片上,然后将一层聚酰亚胺薄膜贴上,85~125℃加热4-5h;
(2)在所述聚酰亚胺薄膜薄膜上利用掩膜版光刻,制备第一电极;
(3)在所述第一电极上形成金属成核层;
(4)将上述基片放入原子层沉积设备反应室的样品槽上,同时通过氮气瓶调整压力泵数值,设置外管道与铪源和水源管道氮气载气流量;
(5)设置反应腔温度及ALD 工作cycle,对反应室进行抽真空;
(6)根据设置的温度加热和保温后,经过沉积形成二氧化铪薄膜。
2.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,所述聚酰亚胺薄膜的厚度为10-25μm。
3.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,所述步骤(1)具体操作为:将硅片利用超声清洗机在50~60℃的恒温下,依次经过丙酮、酒精、超纯水各10~15分钟清洗后,利用氮气完全吹干后,在速度1为500~1000rpm/min 5~10s、速度2为1000~2000rpm/min 40~50s的转速下,在上述硅片上旋涂10~15:1质量配比且抽真空后的PDMS溶液,然后贴覆经过酒精、超纯水各两分钟清洗、且干燥后的聚酰亚胺薄膜,最后在85~125℃下加热4-5小时。
4.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,制备的第一电极为金铬电极。
5.根据权利要求4所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,所述金铬电极分为金层和铬层,且金层和铬层的厚度比为1:30-50。
6.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,所述金属成核层为钛,且厚度为1-2nm,形成薄膜后在85~120℃下加热氧化2~3小时。
7.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,步骤(4)中,所述压力泵数值为4.5~5.5,外管道氮气载体流量IMS flow为200~300sccm,铪源管道氮气载体流量为100~140sccm,水源管道氮气载体流量为180~250sccm。
8.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,步骤(5)中,所述设置的反应腔温度为200-300℃,ALD 工作cycle为70~120,所述抽真空的真空度小于等于25hPa。
9.根据权利要求1所述的一种基于柔性基底ALD二氧化铪薄膜的制备方法,其特征在于,步骤(6)中,保温时间为20-25分钟,二氧化铪薄膜厚度为7~12nm,镀膜时间为17-20分钟。
CN202210972129.3A 2022-08-15 2022-08-15 一种基于柔性基底ald二氧化铪薄膜的制备方法 Active CN115274420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210972129.3A CN115274420B (zh) 2022-08-15 2022-08-15 一种基于柔性基底ald二氧化铪薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210972129.3A CN115274420B (zh) 2022-08-15 2022-08-15 一种基于柔性基底ald二氧化铪薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN115274420A true CN115274420A (zh) 2022-11-01
CN115274420B CN115274420B (zh) 2024-07-26

Family

ID=83750627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210972129.3A Active CN115274420B (zh) 2022-08-15 2022-08-15 一种基于柔性基底ald二氧化铪薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115274420B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034196A2 (en) * 2003-09-30 2005-04-14 Aviza Technology, Inc. Atomic layer deposition of hafnium-based high-k dielectric
US20060189154A1 (en) * 2005-02-23 2006-08-24 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
CN103451611A (zh) * 2013-08-29 2013-12-18 电子科技大学 适用于栅介质层的低漏电流HfO2 薄膜的制备方法
CN106683791A (zh) * 2016-12-20 2017-05-17 南京工业大学 一种制备具备多级金属网格结构的柔性透明导电电极的方法
US20190378932A1 (en) * 2018-06-06 2019-12-12 Intel Corporation Multi-dielectric gate stack for crystalline thin film transistors
CN112309833A (zh) * 2020-10-30 2021-02-02 山东华芯半导体有限公司 一种基于ald沉积igzo膜的闪存单元及其制备方法和应用
CN114411124A (zh) * 2022-01-28 2022-04-29 福州大学 一种化学液相沉积法制备氧化铪薄膜的方法
WO2022127012A1 (zh) * 2020-12-14 2022-06-23 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034196A2 (en) * 2003-09-30 2005-04-14 Aviza Technology, Inc. Atomic layer deposition of hafnium-based high-k dielectric
US20060189154A1 (en) * 2005-02-23 2006-08-24 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
CN103451611A (zh) * 2013-08-29 2013-12-18 电子科技大学 适用于栅介质层的低漏电流HfO2 薄膜的制备方法
CN106683791A (zh) * 2016-12-20 2017-05-17 南京工业大学 一种制备具备多级金属网格结构的柔性透明导电电极的方法
US20190378932A1 (en) * 2018-06-06 2019-12-12 Intel Corporation Multi-dielectric gate stack for crystalline thin film transistors
CN112309833A (zh) * 2020-10-30 2021-02-02 山东华芯半导体有限公司 一种基于ald沉积igzo膜的闪存单元及其制备方法和应用
WO2022127012A1 (zh) * 2020-12-14 2022-06-23 南京大学 一种柔性超高灵敏度宽量程氢气传感器及其制备方法
CN114411124A (zh) * 2022-01-28 2022-04-29 福州大学 一种化学液相沉积法制备氧化铪薄膜的方法

Also Published As

Publication number Publication date
CN115274420B (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
US6869821B2 (en) Method for producing organic electronic devices on deposited dielectric materials
CN106910776B (zh) 基于高k栅介质的大面积二硫化钼场效应晶体管及其制备
US6448127B1 (en) Process for formation of ultra-thin base oxide in high k/oxide stack gate dielectrics of mosfets
JP2005509299A (ja) シロキサンポリマー界面を有する有機薄膜トランジスタ
WO2013174138A1 (zh) 一种基于石墨烯的双栅mosfet的制备方法
EP1425806A2 (en) Surface modifying layers for organic thin film transistors
EP2110856A1 (en) Thin film semiconductor device fabrication method and thin film semiconductor device
Oh Organic thin-film transistors using pentacene and SiOC film
CN106876585A (zh) 一种通过快速退火提高有机场效应晶体管迁移率的方法
CN111969058A (zh) 一种二硫化钼场效应晶体管及其制备方法和应用
JP2007027525A (ja) 半導体装置の製造方法、および半導体装置、ならびに絶縁膜の形成方法
CN115274420B (zh) 一种基于柔性基底ald二氧化铪薄膜的制备方法
Shaari et al. Correlation between physical and electrical properties in pentacene and C8-BTBT-based organic thin film transistors
Ma et al. Low-voltage organic single-crystal field-effect transistors and inverters enabled by a solution processable high-k dielectric
CN112687799A (zh) 一种高结晶度半导体膜转移制造方法
WO2021027903A1 (zh) GaN基HEMT无金欧姆接触电极及其热氮化形成方法
CN112820831A (zh) 一种基于溶剂汽相退火工艺调控阈值电压制备的低压有机薄膜晶体管及其方法
CN111430228A (zh) 一种超高介电常数介质薄膜的制备方法
Li et al. Batch fabrication of MoS2 devices directly on growth substrates by step engineering
CN108231871B (zh) 一种MoS2基量子阱型调制掺杂场效应晶体管及其制备方法
CN112820639A (zh) 一种改进的碳化硅mosfet器件的制备工艺
CN111293085A (zh) 基于二维过渡金属硫族化合物和碲的三维cmos及其制备方法
CN118213409B (zh) 一种铁电负电容晶体管及其制备方法
WO2019153431A1 (zh) 一种高频氮化镓/石墨烯异质结热电子晶体管的制备方法
CN116376408B (zh) 一种一致高分子有机聚合物链取向薄膜及基于该薄膜的晶体管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant