WO2022105370A1 - 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 - Google Patents
基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 Download PDFInfo
- Publication number
- WO2022105370A1 WO2022105370A1 PCT/CN2021/116759 CN2021116759W WO2022105370A1 WO 2022105370 A1 WO2022105370 A1 WO 2022105370A1 CN 2021116759 W CN2021116759 W CN 2021116759W WO 2022105370 A1 WO2022105370 A1 WO 2022105370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite material
- loofah
- biomass carbon
- ethylenedioxythiophene
- preparation
- Prior art date
Links
- 244000280244 Luffa acutangula Species 0.000 title claims abstract description 84
- 235000009814 Luffa aegyptiaca Nutrition 0.000 title claims abstract description 84
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- 239000002028 Biomass Substances 0.000 title claims abstract description 69
- 238000002360 preparation method Methods 0.000 title claims abstract description 50
- 239000003610 charcoal Substances 0.000 title abstract 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 93
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 53
- 239000000843 powder Substances 0.000 claims abstract description 52
- 239000010931 gold Substances 0.000 claims abstract description 40
- 229910052737 gold Inorganic materials 0.000 claims abstract description 38
- 239000006185 dispersion Substances 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 24
- 239000008367 deionised water Substances 0.000 claims description 21
- 229910021641 deionized water Inorganic materials 0.000 claims description 21
- 239000003575 carbonaceous material Substances 0.000 claims description 20
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 20
- 238000001354 calcination Methods 0.000 claims description 19
- 239000000706 filtrate Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 229910052786 argon Inorganic materials 0.000 claims description 14
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 12
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 11
- 239000000178 monomer Substances 0.000 claims description 11
- 238000005119 centrifugation Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 238000003760 magnetic stirring Methods 0.000 claims description 9
- 238000001291 vacuum drying Methods 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052573 porcelain Inorganic materials 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- 239000012154 double-distilled water Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000007772 electrode material Substances 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 238000001548 drop coating Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical compound O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 claims 1
- 230000003213 activating effect Effects 0.000 abstract description 5
- 238000010000 carbonizing Methods 0.000 abstract description 5
- -1 poly(3,4-ethylenedioxythiophene) Polymers 0.000 abstract description 5
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 7
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 7
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 7
- 235000009498 luteolin Nutrition 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000009656 pre-carbonization Methods 0.000 description 5
- 238000004506 ultrasonic cleaning Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 229910021389 graphene Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000835 electrochemical detection Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001903 differential pulse voltammetry Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
- C01B32/324—Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/342—Preparation characterised by non-gaseous activating agents
- C01B32/348—Metallic compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/38—Cleaning of electrodes
Definitions
- the invention relates to the technical field of electrochemical sensors, in particular to a preparation method of an electrochemical sensor based on a loofah biomass carbon composite material and a preparation method of the composite material.
- a preparation method of an electrochemical sensor based on a loofah biomass carbon composite material is provided.
- the loofah biomass carbon composite material prepared by the method has a controllable morphology and good electrocatalysis performance, which can be applied to the electrochemical detection of luteolin.
- a preparation method of an electrochemical sensor based on loofah biomass carbon composite material comprising the steps of: pre-carbonizing loofah; activating loofah powder with potassium hydroxide; preparing porous biomass carbon/poly3,4-ethylenedioxythiophene - Gold composites; preparation of composite dispersions; preparation of electrochemical sensors.
- the pre-carbonized loofah includes the following steps: first soak the loofah alternately with deionized water and ethanol, ultrasonically wash the surface to remove dirt and impurities, and then place it in a drying box to dry; Place it in a porcelain boat, move it into a high-temperature tube furnace, pass in argon gas, heat it up at a constant rate to a certain temperature for calcination, and then naturally cool to room temperature and pulverize to obtain loofah powder.
- potassium hydroxide activated loofah powder includes the following steps: weighing and mixing loofah powder and potassium hydroxide powder, adding a certain amount of water, ultrasonically dispersing and then placing in a drying box to dry until the solution evaporates Finished; moved into a high temperature tubular furnace for activation, passed argon gas, heated at a constant rate to a certain temperature for calcination, and after cooling to room temperature, treated with dilute hydrochloric acid and repeatedly soaked, washed, filtered and washed with deionized water until the filtrate was The pH is neutral, and the filtrate is detected by silver nitrate solution without white precipitate, and then dried in a vacuum drying oven to obtain a porous biomass carbon material.
- the preparation of the porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material includes the following steps: weighing the porous biomass carbon material into an aqueous solution of chloroauric acid at room temperature, and ultrasonically After dispersion, slowly add 3,4-ethylenedioxythiophene monomer solution dropwise, and then place the suspension in magnetic stirring to react; after the reaction, centrifuge the suspension to obtain porous biomass carbon/polycarbonate. 3,4-Ethylenedioxythiophene-gold composites.
- the preparation of the composite material dispersion includes the following steps: dispersing the composite material in 30 mL of distilled water, and ultrasonically dispersing for 30 minutes to obtain the composite material dispersion.
- the preparation of the electrochemical sensor includes the following steps: first, the glassy carbon electrode with a diameter of 3 mm is polished with 0.3 ⁇ m alumina powder and 0.05 ⁇ m alumina powder in turn, and polished into a mirror surface, and then in anhydrous Ultrasonic cleaning is carried out in ethanol and double distilled water; a certain amount of dispersed droplets of the composite material are applied on the surface of the electrode, and dried under an infrared lamp to obtain an electrochemical sensor.
- a method for preparing a porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material is also provided, which is simple, efficient, environmentally friendly, low consumption, good in stability, and has the advantages
- the detection has high sensitivity, and is expected to be applied in large-scale commercialization, with strong practicability.
- a preparation method of porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material comprising the following steps: pre-carbonizing loofah; activating loofah powder with potassium hydroxide; preparing porous biomass carbon/poly3, 4-Ethylenedioxythiophene-gold composites.
- the porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material is used as an electrode material of an electrochemical sensor.
- loofah is cheap, widely available, and simple in carbonization process, which provides new practical value for loofah, and broadens the source of precursors for modified electrode materials in electrochemical sensors.
- a new preparation method of biomass porous material is provided.
- the loofah biomass carbon prepared by this method is The composite material has controllable morphology and good electrocatalytic performance, which can be applied to the electrochemical detection of luteolin.
- the preparation method of the electrochemical sensor of the present application is simple, efficient, environmentally friendly, low-consumption, good in stability, has high sensitivity for substance detection, is expected to be used in large-scale commercial applications, and has strong practicability.
- FIG. 1 is a scanning electron microscope image of loofah after pre-carbonization according to some embodiments.
- FIG. 2 is a scanning electron microscope image of loofah after activation by potassium hydroxide to create pores according to some embodiments.
- FIG. 3 is a scanning electron microscope image of a porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite according to some embodiments.
- a is a bare glassy carbon electrode; b is a porous biomass carbon/glassy carbon electrode sensor; c is a poly3,4-ethylenedioxythiophene-gold/glassy carbon electrode sensor; d is a porous biomass carbon/poly3, 4-Ethylenedioxythiophene-gold/glassy carbon electrode sensor.
- the present application provides a preparation method of an electrochemical sensor based on loofah biomass carbon composite material, comprising the steps of: pre-carbonizing loofah; activating loofah powder with potassium hydroxide; preparing porous biomass carbon/poly-3,4-ethylene Dioxythiophene-gold composite material; preparation of composite material dispersion; preparation of electrochemical sensor.
- the pre-carbonized loofah includes the following steps: firstly soak the loofah with deionized water and ethanol alternately, ultrasonically wash the surface to remove dirt and impurities, and then place it in a drying box to dry; The loofah is placed in a porcelain boat, moved into a high-temperature tube furnace, fed with argon gas, heated at a constant rate to a certain temperature for calcination, and then naturally cooled to room temperature, and pulverized to obtain loofah powder.
- the drying temperature of the drying oven is 100 ° C;
- the constant heating rate is 5 ° C/min, and the temperature of heating is 400 ° C C ⁇ 600 ° C, calcination time is 1h ⁇ 3h.
- potassium hydroxide activated loofah powder includes the following steps: weighing and mixing loofah powder and potassium hydroxide powder, adding a certain amount of water, and ultrasonically dispersing and then placing in a drying box to dry until The solution is evaporated; it is moved into a high-temperature tube furnace for activation, and argon gas is introduced, and the temperature is increased at a constant rate to a certain temperature for calcination. After cooling to room temperature, it is treated with dilute hydrochloric acid and repeatedly soaked and washed with deionized water. The pH of the filtrate is neutral, and the filtrate has no white precipitate detected by the silver nitrate solution, and is then dried in a vacuum drying oven to obtain a porous biomass carbon material.
- the mass ratio of the loofah powder and the potassium hydroxide powder is 1:1 ⁇ 3; the addition amount of the deionized water is 20mL;
- the constant temperature rise rate is 5 °C/min, the temperature of temperature rise is 600 °C ⁇ 800 °C, and the calcination time is 1h ⁇ 3h;
- Described pH is 7;
- the drying temperature of described vacuum drying oven is 60°C.
- the preparation of the porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material includes the following steps: at room temperature, weighing the porous biomass carbon material and adding it to an aqueous solution of chloroauric acid , after ultrasonic dispersion, slowly add 3,4-ethylenedioxythiophene monomer solution dropwise, and then place the suspension in magnetic stirring to react; after the reaction, centrifuge the suspension to obtain porous biomass carbon /Poly3,4-ethylenedioxythiophene-gold composites.
- the weighing amount of the porous biomass carbon material is 5 mg-15 mg; the aqueous solution of chloroauric acid The concentration is 1 mmol/L, and the volume of the aqueous solution of chloroauric acid added is 50 mL; the concentration of the 3,4-ethylenedioxythiophene monomer solution is 20 mmol/L, and the 3,4-ethylenedioxythiophene monomer solution is The volume of the body solution added is 5mL; the reaction time of the magnetic stirring is 4h ⁇ 8h.
- the centrifugation step is: washing and centrifuging the product with ethanol and deionized water, and the centrifugal speed is 6000r/min, and the centrifugation time is 10min.
- preparing the composite material dispersion includes the following steps: dispersing the composite material in 30 mL of distilled water, and ultrasonically dispersing for 30 min to obtain a composite material dispersion.
- the preparation of the electrochemical sensor includes the following steps: first, the glassy carbon electrode with a diameter of 3 mm is polished with 0.3 ⁇ m alumina powder and 0.05 ⁇ m alumina powder in sequence, and polished into a mirror surface, and then the Ultrasonic cleaning is carried out in absolute ethanol and double distilled water; a certain amount of the composite material dispersion is applied to the surface of the electrode and dried under an infrared lamp to obtain an electrochemical sensor.
- the drop coating amount of the composite material dispersion liquid is 8 ⁇ L.
- the present application also provides a preparation method of porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material, comprising the following steps: pre-carbonizing loofah; activating loofah powder with potassium hydroxide; preparing porous biomass carbon /Poly3,4-ethylenedioxythiophene-gold composites.
- pre-carbonized loofah potassium hydroxide activated loofah powder
- preparation of porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material The steps and methods are the same, and will not be repeated here.
- the porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material is applied as an electrode material of an electrochemical sensor.
- the preparation method of the electrochemical sensor of this embodiment includes the following steps.
- Pre-carbonized loofah first soak the loofah with deionized water and ethanol alternately, ultrasonically wash to remove dirt and impurities on the surface, and then place it in a drying oven at 100°C to dry.
- loofah powder place the dried loofah in the porcelain boat, move into the high-temperature tube furnace, feed argon, be warming up to 400°C at a constant speed at a rate of 5°C/min and calcinate, be incubated for 1 hour and then naturally cooled to room temperature , crushed to obtain loofah powder.
- Potassium hydroxide activated loofah powder Weigh the loofah powder and the potassium hydroxide powder and mix them according to the mass ratio of 1:1, add 20mL of deionized water to ultrasonically disperse, and place them in a drying oven at 100°C to dry until the solution evaporates.
- porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material at room temperature, weigh 5 mg of porous biomass carbon material and add it to 50 mL of 1 mmol/L chloroauric acid aqueous solution. After ultrasonic dispersion, slowly 5 mL of 20 mmol/L 3,4-ethylenedioxythiophene monomer solution was added dropwise.
- the suspension was centrifuged at a speed of 6000 r/min and a centrifugation time of 10 min to obtain a porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material.
- the composite material was dispersed in 30 mL of distilled water, and ultrasonically dispersed for 30 min to obtain a composite material dispersion liquid.
- Preparation of electrochemical sensor First, a glassy carbon electrode with a diameter of 3 mm is polished with 0.3 ⁇ m alumina powder and 0.05 ⁇ m alumina powder in turn, and polished into a mirror surface.
- the electrochemical sensor was prepared by taking 8 ⁇ L of the composite material dispersion and coating it on the surface of the electrode and drying it under an infrared lamp.
- the preparation method of the electrochemical sensor of this embodiment includes the following steps.
- Pre-carbonized loofah first soak the loofah with deionized water and ethanol alternately, ultrasonically wash to remove dirt and impurities on the surface, and then place it in a drying oven at 100°C to dry.
- loofah is placed in the porcelain boat, moved into a high-temperature tubular furnace, fed with argon, heated to 500°C at a uniform speed at a rate of 5°C/min and calcined, incubated for 2 hours and then naturally cooled to room temperature , crushed to obtain loofah powder.
- Potassium hydroxide activated loofah powder Weigh the loofah powder and potassium hydroxide powder and mix them according to the mass ratio of 1:2, add 20 mL of deionized water to ultrasonically disperse, and place them in a drying oven at 100 ° C to dry until the solution evaporates.
- porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material at room temperature, weigh 10 mg of porous biomass carbon material and add it to 50 mL of 1 mmol/L chloroauric acid aqueous solution. After ultrasonic dispersion, slowly 5 mL of 20 mmol/L 3,4-ethylenedioxythiophene monomer solution was added dropwise.
- the suspension was centrifuged at a speed of 6000 r/min and a centrifugation time of 10 min to obtain a porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material.
- the composite material was dispersed in 30 mL of distilled water, and ultrasonically dispersed for 30 min to obtain a composite material dispersion liquid.
- Preparation of electrochemical sensor First, a glassy carbon electrode with a diameter of 3 mm is polished with 0.3 ⁇ m alumina powder and 0.05 ⁇ m alumina powder in turn, and polished into a mirror surface.
- the electrochemical sensor was prepared by taking 8 ⁇ L of the composite material dispersion and coating it on the surface of the electrode and drying it under an infrared lamp.
- the preparation method of the electrochemical sensor of this embodiment includes the following steps.
- Pre-carbonized loofah first soak the loofah with deionized water and ethanol alternately, ultrasonically wash to remove dirt and impurities on the surface, and then place it in a drying oven at 100°C to dry.
- loofah is placed in the porcelain boat, moved into a high-temperature tubular furnace, fed with argon, heated to 600°C at a uniform rate at a rate of 5°C/min and calcined, incubated for 3 hours and then naturally cooled to room temperature , crushed to obtain loofah powder.
- Potassium hydroxide activated loofah powder Weigh the loofah powder and the potassium hydroxide powder and mix them according to the mass ratio of 1:3, add 20mL of deionized water to ultrasonically disperse them, and place them in a drying oven at 100°C to dry until the solution evaporates.
- porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material at room temperature, weigh 15 mg of porous biomass carbon material and add it to 50 mL of 1 mmol/L chloroauric acid aqueous solution. After ultrasonic dispersion, slowly 5 mL of 20 mmol/L 3,4-ethylenedioxythiophene monomer solution was added dropwise.
- the suspension was centrifuged at a speed of 6000 r/min and a centrifugation time of 10 min to obtain a porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material.
- the composite material was dispersed in 30 mL of distilled water, and ultrasonically dispersed for 30 min to obtain a composite material dispersion liquid.
- Preparation of electrochemical sensor First, a glassy carbon electrode with a diameter of 3 mm is polished with 0.3 ⁇ m alumina powder and 0.05 ⁇ m alumina powder in turn, and polished into a mirror surface.
- the electrochemical sensor was prepared by taking 8 ⁇ L of the composite material dispersion and coating it on the surface of the electrode and drying it under an infrared lamp.
- Figure 1 is the scanning electron microscope image of the loofah after pre-carbonization; it can be seen from Figure 1 that the surface of the loofah is wrinkled; it can be seen from the cross-sectional observation that each fiber is composed of a plurality of densely arranged channels. These channels are polygonal and straight through the hollow shape, and the channels are tightly combined to form a tubular bundle structure, and the cross-sectional surface is similar to a honeycomb.
- Figure 2 is the scanning electron microscope image of the loofah after activation by potassium hydroxide; it can be seen from Figure 2 that the carbon surface collapsed due to potassium hydroxide etching, forming clear and uniformly distributed porous These porous structures are conducive to the transportation of electrolyte in the fiber, increase the contact area between the material and the electrolyte, and greatly improve the utilization rate of the material.
- FIG. 3 is a scanning electron microscope image of the porous biomass carbon/poly3,4-ethylenedioxythiophene-gold composite material.
- Figure 4 is the Raman diffractogram of the loofah after pre-carbonization and after the loofah is activated by potassium hydroxide; It can be seen from Figure 4 that two distinct characteristic peaks appear in this material, and the bands around 1335cm-1 and 1589cm-1 represent the D band and G band of graphene, respectively; Among them, the D band represents the vibration of defective carbon and disordered carbon, which characterizes the lattice defects of carbon atoms; the G band represents the stretching vibration of carbon atoms caused by sp3 hybridization and sp2 hybridization, which characterizes the porous material. degree of graphitization. The intensity ratio (ID/IG) of the two represents the degree of graphitization of the carbon material. The strength of ID/IG increases after activation by potassium hydroxide, which indicates that the lattice defects of the loofah carbon material increase, which will cause more oxygen vacancies, which are beneficial to capture electrons and improve the activity of the material.
- the preparation method of the invention is simple. Using loofah as a raw material, the porous biomass carbon material (LSAC) is synthesized in two steps by pre-carbonization and potassium hydroxide activation, and the poly-3,4-ethylenedioxythiophene (PEDT) is further supported by a one-pot method. and gold nanoparticles (Au), and finally the composite was dispersed in an aqueous solution, and the porous biomass carbon/poly-3,4-ethylenedioxythiophene-gold composite (LSAC/PEDT-Au) was drop-coated by a drop-coating method. On the surface of glassy carbon electrode, the modified electrode can be obtained after curing.
- LSAC porous biomass carbon material
- PEDT poly-3,4-ethylenedioxythiophene
- the performance of the electrochemical sensor was studied by cyclic voltammetry and differential pulse voltammetry, and the standard addition method was used to detect the pulse.
- Catalytic performance, the invention not only promotes the development of the electrochemical sensor field, but also has broad application prospects in the fields of food, medicine and environmental detection.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及复合材料的制备方法,复合材料的制备方法包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。电化学传感器的制备方法包括上述步骤,并在制备复合材料之后,制备复合材料分散液;通过复合材料分散液制备电化学传感器。
Description
相关申请的交叉引用。
本申请要求于2020年11月17日提交中国专利局、申请号为“202011286746.5”、发明名称为“基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及电化学传感器技术领域,特别是涉及基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法。
目前,以石墨烯、碳纳米管等碳材料修饰电极的电化学传感器得到了高速的发展。石墨烯和碳纳米管均具有良好的导电性、较高的比表面积和优越的电催化能力,提高了修饰电极的灵敏度,在食品、医药和环境等检测领域应用广泛。
石墨烯和碳纳米管的制备工艺复杂,成本较高,容易产生环境污染物等弊端限制了它们在电化学传感器的商业化应用。
根据本申请的各种实施例,提供一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法,该方法制备得到的丝瓜络生物质炭复合材料形貌可控,具有良好的电催化性能,可应用于木犀草素的电化学检测。
一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法,包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料;制备复合材料分散液;制备电化学传感器。
在其中一个实施例中,预碳化丝瓜络包括如下步骤:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于干燥箱中干燥;对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,然后自然冷却至室温,粉碎,获得丝瓜络粉末。
在其中一个实施例中,氢氧化钾活化丝瓜络粉末包括如下步骤:称量丝瓜络粉末和氢氧化钾粉末混合,加入一定量的水,经超声分散后置于干燥箱中干燥,直至溶液蒸发完;移入高温管式炉中活化,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为中性,且滤液经硝酸银溶液检测无白色沉淀,再置于真空干燥箱中干燥,得到多孔生物质碳材料。
在其中一个实施例中,制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料包括如下步骤:室温条件下,称取多孔生物质碳材料加入到氯金酸水溶液中,超声分散后,缓慢滴加3,4-乙烯二氧噻吩单体溶液,接着将悬浊液置于磁力搅拌中反应;反应结束后,将悬浊液进行离心处理,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
在其中一个实施例中,制备复合材料分散液包括如下步骤:将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液。
在其中一个实施例中,制备电化学传感器包括如下步骤:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面,接着在无水乙醇及二次蒸馏水中进行超声清洗;取一定量的复合材料分散液滴涂于电极表面,在红外灯下晾干,即可制得电化学传感器。
根据本申请的各种实施例,还提供一种多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的制备方法,简单、高效、环保低耗、稳定性好,对物质的检测具有很高的灵敏度,在有望大规模商业化应用,实用性强。
一种多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的制备方法,包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
在其中一个实施例中,所述多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料应用于电化学传感器的电极材料。
首先,丝瓜络价格低廉、来源广泛、碳化工艺简单,为丝瓜络提供了新的实用价值,同时扩宽了电化学传感器中修饰电极材料的前驱体来源。其次,利用丝瓜络天然的纤维结构为基底负载聚3,4-乙烯二氧噻吩-金纳米颗粒,提供了一种新型的生物质多孔材料的制备方法,该方法制备得到的丝瓜络生物质炭复合材料形貌可控,具有良好的电催化性能,可应用于木犀草素的电化学检测。最后,本申请的电化学传感器的制备方法简单、高效、环保低耗、稳定性好,对物质的检测具有很高的灵敏度,在有望大规模商业化应用,实用性强。
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一些实施例的丝瓜络预碳化后的扫描电镜图。
图2为根据一些实施例的丝瓜络经氢氧化钾活化造孔后的扫描电镜图。
图3为根据一些实施例的多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的扫描电镜图。
图4为根据一些实施例的丝瓜络预碳化后和丝瓜络经氢氧化钾活化造孔后的拉曼衍射谱图。
图5为根据一些实施例在5µmoldm-3木犀草素的BR缓冲溶液(pH=2)的循环伏安图。
其中,a为裸玻碳电极;b为多孔生物质碳/玻碳电极传感器;c为聚3,4-乙烯二氧噻吩-金/玻碳电极传感器;d为多孔生物质碳/聚3,4-乙烯二氧噻吩-金/玻碳电极传感器。
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请提供一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法,包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料;制备复合材料分散液;制备电化学传感器。
在一个或多个实施例中,预碳化丝瓜络包括如下步骤:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于干燥箱中干燥;对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,然后自然冷却至室温,粉碎,获得丝瓜络粉末。
进一步地,在所述预碳化丝瓜络步骤中,所述干燥箱的干燥温度为100°C;在高温管式炉煅烧中,恒定的升温速率为5°C/min,升温的温度是400°C~600°C,煅烧时间为1h~3h。
在一个或多个实施例中,氢氧化钾活化丝瓜络粉末包括如下步骤:称量丝瓜络粉末和氢氧化钾粉末混合,加入一定量的水,经超声分散后置于干燥箱中干燥,直至溶液蒸发完;移入高温管式炉中活化,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为中性,且滤液经硝酸银溶液检测无白色沉淀,再置于真空干燥箱中干燥,得到多孔生物质碳材料。
进一步地,在所述氢氧化钾活化丝瓜络粉末步骤中,所述丝瓜络粉末和氢氧化钾粉末的质量比为1:1~3;所述去离子水的添加量为20mL;在高温管式炉煅烧中,恒定的升温速率为5°C/min,升温的温度是600°C~800°C,煅烧时间为1h~3h;所述的pH为7;所述真空干燥箱的干燥温度为60°C。
在一个或多个实施例中,制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料包括如下步骤:室温条件下,称取多孔生物质碳材料加入到氯金酸水溶液中,超声分散后,缓慢滴加3,4-乙烯二氧噻吩单体溶液,接着将悬浊液置于磁力搅拌中反应;反应结束后,将悬浊液进行离心处理,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
进一步地,在所述制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料步骤中,所述多孔生物质碳材料的称取量为5mg~15mg;所述氯金酸水溶液浓度为1mmol/L,所述氯金酸水溶液浓度加入的体积为50mL;所述3,4-乙烯二氧噻吩单体溶液的浓度为20mmol/L,所述3,4-乙烯二氧噻吩单体溶液加入的体积为5mL;所述磁力搅拌的反应时间为4h~8h。
进一步地,在所述制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料步骤中,所述离心处理的步骤为:采用乙醇和去离子水对产物进行洗涤离心,离心速度是6000r/min,离心时间是10min。
在一个或多个实施例中,制备复合材料分散液包括如下步骤;将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液。
在一个或多个实施例中,制备电化学传感器包括如下步骤:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面,接着在无水乙醇及二次蒸馏水中进行超声清洗;取一定量的复合材料分散液滴涂于电极表面,在红外灯下晾干,即可制得电化学传感器。
进一步地,在所述制备电化学传感器步骤中,所述复合材料分散液的滴涂量为8μL。
本申请还提供一种多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的制备方法,包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
由于在复合材料的制备方法和电化学传感器的制备方法中,预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料这三个步骤方法相同,再此不再赘述。
在一个或多个实施例中,所述多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料应用于电化学传感器的电极材料。
以下为电化学传感器的制备方法的各个实施例说明。
实施例1。
本实施例的电化学传感器的制备方法,包括如下步骤。
预碳化丝瓜络:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于100°C干燥箱中干燥。
然后对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以5°C/min的速率匀速升温至400°C进行煅烧,保温1小时然后自然冷却至室温,粉碎,获得丝瓜络粉末。
氢氧化钾活化丝瓜络粉末:称量丝瓜络粉末和氢氧化钾粉末按照质量比1:1混合,加入20mL去离子水超声分散后置于100°C干燥箱中干燥,直至溶液蒸发完。
然后移入高温管式炉中活化,通入氩气,以5°C/min的速率匀速升温至600°C进行煅烧1h,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为7,且滤液经硝酸银溶液检测无白色沉淀。
再置于60°C真空干燥箱中干燥,得到多孔生物质碳材料。
制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料:室温条件下,称取5mg多孔生物质碳材料加入到50mL的1mmol/L氯金酸水溶液中,超声分散后,缓慢滴加5mL的20mmol/L3,4-乙烯二氧噻吩单体溶液。
接着将悬浊液置于磁力搅拌中反应4h。
反应结束后,将悬浊液进行离心处理,离心速度是6000r/min,离心时间是10min,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
制备复合材料分散液:将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液。
制备电化学传感器:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面。
接着在无水乙醇及二次蒸馏水中进行超声清洗。
取8μL的复合材料分散液滴涂于电极表面,红外灯下晾干,即可制得电化学传感器。
实施例2。
本实施例的电化学传感器的制备方法,包括如下步骤。
预碳化丝瓜络:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于100°C干燥箱中干燥。
然后对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以5°C/min的速率匀速升温至500°C进行煅烧,保温2小时然后自然冷却至室温,粉碎,获得丝瓜络粉末。
氢氧化钾活化丝瓜络粉末:称量丝瓜络粉末和氢氧化钾粉末按照质量比1:2混合,加入20mL去离子水超声分散后置于100°C干燥箱中干燥,直至溶液蒸发完。
然后移入高温管式炉中活化,通入氩气,以5°C/min的速率匀速升温至700°C进行煅烧2h,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为7,且滤液经硝酸银溶液检测无白色沉淀。
再置于60°C真空干燥箱中干燥,得到多孔生物质碳材料。
制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料:室温条件下,称取10mg多孔生物质碳材料加入到50mL的1mmol/L氯金酸水溶液中,超声分散后,缓慢滴加5mL的20mmol/L3,4-乙烯二氧噻吩单体溶液。
接着将悬浊液置于磁力搅拌中反应6h。
反应结束后,将悬浊液进行离心处理,离心速度是6000r/min,离心时间是10min,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
制备复合材料分散液:将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液。
制备电化学传感器:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面。
接着在无水乙醇及二次蒸馏水中进行超声清洗。
取8μL的复合材料分散液滴涂于电极表面,红外灯下晾干,即可制得电化学传感器。
实施例3。
本实施例的电化学传感器的制备方法,包括如下步骤。
预碳化丝瓜络:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于100°C干燥箱中干燥。
然后对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以5°C/min的速率匀速升温至600°C进行煅烧,保温3小时然后自然冷却至室温,粉碎,获得丝瓜络粉末。
氢氧化钾活化丝瓜络粉末:称量丝瓜络粉末和氢氧化钾粉末按照质量比1:3混合,加入20mL去离子水超声分散后置于100°C干燥箱中干燥,直至溶液蒸发完。
然后移入高温管式炉中活化,通入氩气,以5°C/min的速率匀速升温至800°C进行煅烧3h,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为7,且滤液经硝酸银溶液检测无白色沉淀。
再置于60°C真空干燥箱中干燥,得到多孔生物质碳材料。
制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料:室温条件下,称取15mg多孔生物质碳材料加入到50mL的1mmol/L氯金酸水溶液中,超声分散后,缓慢滴加5mL的20mmol/L3,4-乙烯二氧噻吩单体溶液。
接着将悬浊液置于磁力搅拌中反应8h。
反应结束后,将悬浊液进行离心处理,离心速度是6000r/min,离心时间是10min,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
制备复合材料分散液:将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液。
制备电化学传感器:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面。
接着在无水乙醇及二次蒸馏水中进行超声清洗。
取8μL的复合材料分散液滴涂于电极表面,红外灯下晾干,即可制得电化学传感器。
如图1所示,图1为丝瓜络预碳化后的扫描电镜图;由图1可以看出,丝瓜络表面褶皱;由横断面观察可见,每根纤维由多个密集排布的孔道组成,这些孔道呈多边形,直通中空状,孔道之间紧密结合堆砌成管状束结构,横断切面类似蜂窝状。
如图2所示,图2为丝瓜络经氢氧化钾活化造孔后的扫描电镜图;由图2可以看出,由于氢氧化钾刻蚀导致碳表面塌陷形成了清晰明显而且均匀分布的多孔结构,这些多孔结构有利于电解液在纤维里面的运输,增加了材料与电解液的接触面积,极大地提高了材料的利用率。
如图3所示,图3为多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的扫描电镜图。
如图4所示,图4为丝瓜络预碳化后和丝瓜络经氢氧化钾活化造孔后的拉曼衍射谱图;LSC为预碳化后的丝瓜络,LSAC为经氢氧化钾活化造孔后的丝瓜络;由图4可以看出,该材料出现了两个明显的特征峰,在1335cm-1和1589cm-1附近出现的谱带分别代表了石墨烯的D谱带和G谱带;其中,D谱带代表了缺陷碳和无序碳的振动,表征了碳原子的晶格缺陷情况;G谱带代表了碳原子在sp3杂化和sp2杂化引起的伸缩振动,表征了多孔材料的石墨化程度。两者的强度比(ID/IG)代表了碳材料的石墨化程度。经氢氧化钾活化造孔后,ID/IG的强度增加,说明了丝瓜络碳材料晶格缺陷增加了,会造成更多的氧空位,有利于捕获电子,提高材料的活性。
如图5所示,图5在5µmoldm-3木犀草素的BR缓冲溶液(pH=2)的循环伏安图;其中,a为裸玻碳电极;b为多孔生物质碳/玻碳电极传感器;c为聚3,4-乙烯二氧噻吩-金/玻碳电极传感器;d为多孔生物质碳/聚3,4-乙烯二氧噻吩-金/玻碳电极传感器。由图5可以看出,裸玻碳电极在电位约0.605V处出现了一对较弱的氧化还原峰,多孔生物质碳/玻碳电极传感器和聚3,4-乙烯二氧噻吩-金/玻碳电极传感器均对此电化学信号有明显的增强作用。其中,木犀草素在多孔生物质碳/聚3,4-乙烯二氧噻吩-金/玻碳电极传感器上的电化学信号最强;改氧化峰和还原峰电流的增强,归因于多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料活性比表面积大和电子还原能力强。
本发明制备方法简单,以丝瓜络为原料,采用预碳化和氢氧化钾活化两步合成多孔生物质碳材料(LSAC),进一步通过一锅法负载聚3,4-乙烯二氧噻吩(PEDT)和金纳米颗粒(Au),最后将该复合材料分散于水溶液中,采用滴涂法将多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料(LSAC/PEDT-Au)滴涂于玻碳电极表面,固化后即可制得修饰电极;以木犀草素为研究对象,采用循环伏安法和差分脉冲伏安法研究该电化学传感器的性能,并采用标准加入法检测脉舒胶囊中木犀草素的含量;丝瓜络原料来源广泛、价格低廉,制备的复合材料具有较大的比表面积、导电性强和多孔结构,制得的电化学传感器具有良好的导电性和优越的电催化性能,本发明不仅推动了电化学传感器领域的发展,而且在食品、医药和环境检测等领域具有广阔的应用前景。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (8)
- 一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法,包括如下步骤:预碳化丝瓜络:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于干燥箱中干燥;对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,然后自然冷却至室温,粉碎,获得丝瓜络粉末;氢氧化钾活化丝瓜络粉末:称量丝瓜络粉末和氢氧化钾粉末混合,加入一定量的水,经超声分散后置于干燥箱中干燥,直至溶液蒸发完;移入高温管式炉中活化,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为中性,且滤液经硝酸银溶液检测无白色沉淀,再置于真空干燥箱中干燥,得到多孔生物质碳材料;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料:室温条件下,称取多孔生物质碳材料加入到氯金酸水溶液中,超声分散后,缓慢滴加3,4-乙烯二氧噻吩单体溶液,接着将悬浊液置于磁力搅拌中反应;反应结束后,将悬浊液进行离心处理,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料;制备复合材料分散液:将该复合材料分散在30mL蒸馏水中,超声分散30min,得到复合材料分散液;制备电化学传感器:先将直径3mm的玻碳电极依次用0.3μm的氧化铝粉及0.05μm的氧化铝粉进行抛光处理,打磨成镜面,接着在无水乙醇及二次蒸馏水中进行超声清洗;取一定量的复合材料分散液滴涂于电极表面,在红外灯下晾干,即可制得电化学传感器。
- 根据权利要求1所述的方法,在所述预碳化丝瓜络步骤中,所述干燥箱的干燥温度为100°C;在高温管式炉煅烧中,恒定的升温速率为5°C/min,升温的温度是400°C~600°C,煅烧时间为1h~3h。
- 根据权利要求1所述的方法,在所述氢氧化钾活化丝瓜络粉末步骤中,所述丝瓜络粉末和氢氧化钾粉末的质量比为1:1~3;所述去离子水的添加量为20mL;在高温管式炉煅烧中,恒定的升温速率为5°C/min,升温的温度是600°C~800°C,煅烧时间为1h~3h;所述的pH为7;所述真空干燥箱的干燥温度为60°C。
- 根据权利要求1所述的方法,在所述制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料步骤中,所述多孔生物质碳材料的称取量为5mg~15mg;所述氯金酸水溶液浓度为1mmol/L,所述氯金酸水溶液浓度加入的体积为50mL;所述3,4-乙烯二氧噻吩单体溶液的浓度为20mmol/L,所述3,4-乙烯二氧噻吩单体溶液加入的体积为5mL;所述磁力搅拌的反应时间为4h~8h。
- 根据权利要求1所述的方法,在所述制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料步骤中,所述离心处理的步骤为:采用乙醇和去离子水对产物进行洗涤离心,离心速度是6000r/min,离心时间是10min。
- 根据权利要求1所述的方法,在所述制备电化学传感器步骤中,所述复合材料分散液的滴涂量为8μL。
- 一种多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料的制备方法,包括如下步骤:预碳化丝瓜络:先将丝瓜络用去离子水和乙醇交替浸泡,超声洗涤去除表面的尘垢杂质,接着放置于干燥箱中干燥;对干燥好的丝瓜络放置于瓷舟内,移入高温管式炉中,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,然后自然冷却至室温,粉碎,获得丝瓜络粉末;氢氧化钾活化丝瓜络粉末:称量丝瓜络粉末和氢氧化钾粉末混合,加入一定量的水,经超声分散后置于干燥箱中干燥,直至溶液蒸发完;移入高温管式炉中活化,通入氩气,以恒定的速率匀速升温至一定的温度进行煅烧,待冷却至室温后,用稀盐酸处理和去离子水反复浸泡洗涤过滤洗涤至滤液的pH为中性,且滤液经硝酸银溶液检测无白色沉淀,再置于真空干燥箱中干燥,得到多孔生物质碳材料;制备多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料:室温条件下,称取多孔生物质碳材料加入到氯金酸水溶液中,超声分散后,缓慢滴加3,4-乙烯二氧噻吩单体溶液,接着,将悬浊液置于磁力搅拌中反应;反应结束后,将悬浊液进行离心处理,可得到多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料。
- 根据权利要求7所述的方法,所述多孔生物质碳/聚3,4-乙烯二氧噻吩-金复合材料应用于电化学传感器的电极材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011286746.5 | 2020-11-17 | ||
CN202011286746.5A CN112345611B (zh) | 2020-11-17 | 2020-11-17 | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022105370A1 true WO2022105370A1 (zh) | 2022-05-27 |
Family
ID=74364059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/116759 WO2022105370A1 (zh) | 2020-11-17 | 2021-09-06 | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112345611B (zh) |
WO (1) | WO2022105370A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115069215A (zh) * | 2022-07-04 | 2022-09-20 | 辽宁大学 | 一种新型功能化磁性多孔生物炭材料及其制备方法与应用 |
CN115116756A (zh) * | 2022-07-15 | 2022-09-27 | 东华理工大学 | 一种基于高温活化法的蜂窝多孔碳的制备方法 |
CN115178238A (zh) * | 2022-07-15 | 2022-10-14 | 辽宁大学 | 一种磁性吸附剂材料在吸附重金属离子中的应用 |
CN115974046A (zh) * | 2022-12-29 | 2023-04-18 | 江西师范大学 | 废弃的食用菌菌根衍生的生物碳材料及其应用 |
CN116239385A (zh) * | 2023-02-10 | 2023-06-09 | 中国科学院金属研究所 | 一种适用于墨水直写技术的3d打印碳化硅浆料及其制备 |
CN117623439A (zh) * | 2023-11-13 | 2024-03-01 | 江苏海洋大学 | 一种应用于光催化co2还原与海水淡化耦合反应的可回收界面载体材料的制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345611B (zh) * | 2020-11-17 | 2022-10-28 | 东莞理工学院 | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 |
CN113257990B (zh) * | 2021-04-23 | 2024-02-09 | 苏州攀特电陶科技股份有限公司 | 多层压电陶瓷执行器用贱金属内电极材料及其制备方法 |
CN113831686B (zh) * | 2021-09-18 | 2024-05-24 | 安徽农业大学 | 一种兼具屏蔽与吸声功能的多孔网络复合材料的制备方法 |
CN113880083B (zh) * | 2021-10-27 | 2023-06-16 | 中冶集团武汉勘察研究院有限公司 | 一种利用丝瓜络制备生物质活性炭的方法 |
CN114794625A (zh) * | 2022-04-14 | 2022-07-29 | 浙江理工大学 | 一种基于丝瓜络基传感器的智能腰带的制作方法 |
CN115000432B (zh) * | 2022-06-06 | 2023-09-08 | 广东工业大学 | 一种氧化钴-丝瓜络衍生氮掺杂碳复合材料及其制备方法和应用 |
CN115078498B (zh) * | 2022-06-13 | 2023-07-18 | 山西大学 | 一种生物质碳材料负载金属纳米颗粒催化剂及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149267A (zh) * | 2013-02-06 | 2013-06-12 | 河南省科学院高新技术研究中心 | 一种检测多巴胺的电化学生物传感器及其制备方法 |
CN103149258A (zh) * | 2013-02-26 | 2013-06-12 | 山东大学 | 一种基于纳米多孔金-导电聚合物的生物电极的制备方法 |
CN108226253A (zh) * | 2018-01-19 | 2018-06-29 | 牡丹江师范学院 | 基于生物质碳的电化学传感器及其制备方法和电催化应用 |
CN109107612A (zh) * | 2018-09-19 | 2019-01-01 | 平顶山学院 | 一种聚3,4-乙撑二氧噻吩/生物质碳/SnO2-x纳米复合材料的制备方法 |
WO2019161049A1 (en) * | 2018-02-14 | 2019-08-22 | Wisys Technology Foundation, Inc. | FABRICATION OF NON-ENZYMATIC SENSOR BASED ON Pt/PVF OR Au/PVF OR Ir/ PVF ON A MODIFIED Pt ELECTRODE FOR DETERMINATION OF GLUCOSE |
CN111346642A (zh) * | 2020-02-05 | 2020-06-30 | 临沂大学 | 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用 |
US20200309771A1 (en) * | 2017-11-02 | 2020-10-01 | Elisha Systems Limited | Biosensor manufacture |
CN112345611A (zh) * | 2020-11-17 | 2021-02-09 | 东莞理工学院 | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108535339B (zh) * | 2018-03-28 | 2019-10-22 | 海南师范大学 | 纳米金-生物质碳复合材料修饰电极及其在木犀草素检测中的应用 |
CN109473288B (zh) * | 2018-10-22 | 2020-12-18 | 江苏大学 | 一种制备三维石墨烯/泡沫镍复合材料的方法 |
CN109822107B (zh) * | 2019-02-27 | 2022-06-28 | 齐鲁工业大学 | 一种金纳米粒子复合生物质碳材料的制备方法 |
CN109884147B (zh) * | 2019-03-22 | 2021-07-02 | 石河子大学 | 一种核桃壳基炭材料修饰玻碳电极检测痕量重金属的电化学方法 |
CN110161096A (zh) * | 2019-04-30 | 2019-08-23 | 海南师范大学 | 一种基于铂-生物质炭纳米复合材料的电化学传感器的制备与木犀草素检测的应用 |
CN110196270A (zh) * | 2019-06-20 | 2019-09-03 | 海南师范大学 | 一种基于生物质炭-纳米金的电化学生物传感器的构建方法与分析应用 |
-
2020
- 2020-11-17 CN CN202011286746.5A patent/CN112345611B/zh active Active
-
2021
- 2021-09-06 WO PCT/CN2021/116759 patent/WO2022105370A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149267A (zh) * | 2013-02-06 | 2013-06-12 | 河南省科学院高新技术研究中心 | 一种检测多巴胺的电化学生物传感器及其制备方法 |
CN103149258A (zh) * | 2013-02-26 | 2013-06-12 | 山东大学 | 一种基于纳米多孔金-导电聚合物的生物电极的制备方法 |
US20200309771A1 (en) * | 2017-11-02 | 2020-10-01 | Elisha Systems Limited | Biosensor manufacture |
CN108226253A (zh) * | 2018-01-19 | 2018-06-29 | 牡丹江师范学院 | 基于生物质碳的电化学传感器及其制备方法和电催化应用 |
WO2019161049A1 (en) * | 2018-02-14 | 2019-08-22 | Wisys Technology Foundation, Inc. | FABRICATION OF NON-ENZYMATIC SENSOR BASED ON Pt/PVF OR Au/PVF OR Ir/ PVF ON A MODIFIED Pt ELECTRODE FOR DETERMINATION OF GLUCOSE |
CN109107612A (zh) * | 2018-09-19 | 2019-01-01 | 平顶山学院 | 一种聚3,4-乙撑二氧噻吩/生物质碳/SnO2-x纳米复合材料的制备方法 |
CN111346642A (zh) * | 2020-02-05 | 2020-06-30 | 临沂大学 | 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用 |
CN112345611A (zh) * | 2020-11-17 | 2021-02-09 | 东莞理工学院 | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 |
Non-Patent Citations (8)
Title |
---|
DA SILVA ARUÃ, MINADEO MARCO, DE TORRESI SUSANA: "Gold Nanoparticles and [PEDOT-Poly(D,L-Lactic Acid)] Composite: Synthesis, Characterization and Application to H2O2 Sensing", JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, SOCIEDADE BRASILEIRA DE QUíMICA, SAO PAULO, BR, vol. 30, 1 January 2019 (2019-01-01), Sao Paulo, BR , pages 2066 - 2075, XP055933786, ISSN: 0103-5053, DOI: 10.21577/0103-5053.20190063 * |
FAN XIAOJIAN; LIN PEIPEI; LIANG SHAOPING; HUI NI; ZHANG RUIQIAO; FENG JIUJU; XU GUIYUN: "Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite", IONICS, KIEL, DE, vol. 23, no. 4, 26 November 2016 (2016-11-26), DE , pages 997 - 1003, XP036194414, ISSN: 0947-7047, DOI: 10.1007/s11581-016-1865-0 * |
HUI YUN; BIAN CHAO; XIA SHANHONG; TONG JIANHUA; WANG JINFEN: "Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review", ANALYTICA CHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 1022, 14 March 2018 (2018-03-14), AMSTERDAM, NL , pages 1 - 19, XP085392352, ISSN: 0003-2670, DOI: 10.1016/j.aca.2018.02.080 * |
KHAN M. Z. H., AHOMMED M. S., DAIZY M.: "Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT:PSS and functionalized gold nanoparticles", RSC ADVANCES, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 10, no. 59, 30 September 2020 (2020-09-30), GB , pages 36147 - 36154, XP055933791, ISSN: 2046-2069, DOI: 10.1039/D0RA06806C * |
LI TING, XU JIAQUAN; HUANG WEIHUA: "Construction of PEDOT/CNTs/TiO2 Electrochemical Sensor for Detection of NO Released from HUVECs", FENXI KEXUE XUEBAO - JOURNAL OF ANALYTICAL SCIENCE, HUBEI WUCHANG WUHAN DAXUE HUAXUE XUEYUAN, WUHAN, CN, vol. 36, no. 5, 1 October 2020 (2020-10-01), CN , pages 701 - 709, XP055933780, ISSN: 1006-6144, DOI: 10.13526/j.issn.1006-6144.2020.05.013 * |
PAN YANHUI, ZHAO FAQIONG, ZENG BAIZHAO: "Electrochemical sensors of octylphenol based on molecularly imprinted poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene–gold nanoparticles)", RSC ADVANCES, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 71, 1 January 2015 (2015-01-01), GB , pages 57671 - 57677, XP055933793, ISSN: 2046-2069, DOI: 10.1039/C5RA08094K * |
RAJARAM RAJENDRAN; KANAGAVALLI PANDIYARAJ; SENTHILKUMAR SHANMUGAM; MATHIYARASU JAYARAMAN: "Au Nanoparticle-decorated Nanoporous PEDOT Modified Glassy Carbon Electrode: A New Electrochemical Sensing Platform for the Detection of Glutathione", BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, KOREAN SOCIETY FOR BIOTECHNOLOGY AND BIOENGINEERING, SEOUL, KR, vol. 25, no. 5, 1 September 2020 (2020-09-01), KR , pages 715 - 723, XP037288328, ISSN: 1226-8372, DOI: 10.1007/s12257-020-0065-y * |
VU THI THU; DAU THI NGOC NGA; LY CONG THANH; PHAM DO CHUNG; NGUYEN THI THANH NGAN; PHAM VAN TRINH: "Aqueous electrodeposition of (AuNPs/MWCNT–PEDOT) composite for high-affinity acetylcholinesterase electrochemical sensors", JOURNAL OF MATERIAL SCIENCE, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, vol. 55, no. 21, 26 April 2020 (2020-04-26), Dordrecht , pages 9070 - 9081, XP037112334, ISSN: 0022-2461, DOI: 10.1007/s10853-020-04657-9 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115069215A (zh) * | 2022-07-04 | 2022-09-20 | 辽宁大学 | 一种新型功能化磁性多孔生物炭材料及其制备方法与应用 |
CN115116756A (zh) * | 2022-07-15 | 2022-09-27 | 东华理工大学 | 一种基于高温活化法的蜂窝多孔碳的制备方法 |
CN115178238A (zh) * | 2022-07-15 | 2022-10-14 | 辽宁大学 | 一种磁性吸附剂材料在吸附重金属离子中的应用 |
CN115974046A (zh) * | 2022-12-29 | 2023-04-18 | 江西师范大学 | 废弃的食用菌菌根衍生的生物碳材料及其应用 |
CN116239385A (zh) * | 2023-02-10 | 2023-06-09 | 中国科学院金属研究所 | 一种适用于墨水直写技术的3d打印碳化硅浆料及其制备 |
CN117623439A (zh) * | 2023-11-13 | 2024-03-01 | 江苏海洋大学 | 一种应用于光催化co2还原与海水淡化耦合反应的可回收界面载体材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112345611B (zh) | 2022-10-28 |
CN112345611A (zh) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022105370A1 (zh) | 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法 | |
Hu et al. | MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application | |
Li et al. | Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors | |
CN105742074B (zh) | 一种基于聚多巴胺的多孔碳纤维/二硒化钼复合材料及其制备方法 | |
Manickam et al. | Activated carbon nanofiber anodes for microbial fuel cells | |
Guo et al. | High-performance biofuel cell made with hydrophilic ordered mesoporous carbon as electrode material | |
CN104241661B (zh) | 一种全钒液流电池用复合电极的制备方法 | |
CN104332640B (zh) | 全钒液流电池用热还原氧化石墨烯/纳米碳纤维复合电极制备方法 | |
CN102658108A (zh) | 电纺法制备基于石墨烯/半导体光催化滤膜的方法 | |
CN105734725B (zh) | 一种“囊泡串”结构纯碳纤维材料及其制备方法 | |
CN107376888B (zh) | 一种柔性氧化钛/氧化硅/碳复合纳米纤维膜及其制备方法 | |
CN105870426A (zh) | 一种用于储能器件电极的v2o5纳米线纸及制备方法 | |
Thirugnanam et al. | Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications | |
CN113880073B (zh) | 一种木质素基碳纳米管及其制备方法 | |
CN109390577A (zh) | Si/SiO2/C复合纳米纤维材料及其制备方法与负极材料 | |
CN111495401A (zh) | 一种氧缺陷的一水合三氧化钨/碳化钛纳米复合材料的制备方法 | |
CN103316711B (zh) | 一种类石墨烯氮化碳光催化材料的制备方法 | |
CN110544592A (zh) | 一种不需金属集流体的电化学储能电极片 | |
CN110136977A (zh) | 一种用于超级电容器电极材料的有序介孔碳负载二氧化锰壳核型纳米带的制备方法 | |
CN112864478A (zh) | 一种氧化钒基水系锌离子电池、性能优化方法及正极材料 | |
WO2023139862A1 (ja) | 燃料電池カソード用多層カーボンナノチューブ触媒及びその調製方法 | |
CN105060272B (zh) | 一种以卤虫卵壳作为碳源低温下制备碳纳米管的方法 | |
CN104599863B (zh) | 一种制备复合材料的方法、复合材料及其应用 | |
CN112233911B (zh) | 二氧化钒纳米碳纤维复合材料及其制备方法和用途 | |
CN112670097B (zh) | 一种三维网络结构的丝瓜络基衍生碳电极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21893521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/10/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21893521 Country of ref document: EP Kind code of ref document: A1 |