CN115504780A - 一种在高温超导材料中均匀地掺杂纳米颗粒的方法 - Google Patents

一种在高温超导材料中均匀地掺杂纳米颗粒的方法 Download PDF

Info

Publication number
CN115504780A
CN115504780A CN202211306687.2A CN202211306687A CN115504780A CN 115504780 A CN115504780 A CN 115504780A CN 202211306687 A CN202211306687 A CN 202211306687A CN 115504780 A CN115504780 A CN 115504780A
Authority
CN
China
Prior art keywords
temperature
nanoparticles
uniformly
temperature superconductor
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211306687.2A
Other languages
English (en)
Inventor
邵玲
陈英伟
赵国盟
柳琦杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Zhejiang University Taizhou
Original Assignee
Research Institute of Zhejiang University Taizhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Zhejiang University Taizhou filed Critical Research Institute of Zhejiang University Taizhou
Priority to CN202211306687.2A priority Critical patent/CN115504780A/zh
Publication of CN115504780A publication Critical patent/CN115504780A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明属于超导材料技术领域,提供了一种在高温超导材料中均匀地掺杂纳米颗粒的方法。本发明提供的方法利用柠檬酸和乙二醇混合的有机凝胶将纳米颗粒分散开,保证纳米颗粒不团聚,且通过固化粉碎后的有机凝胶固化物粉末的尺寸与单相高温超导体粉末的尺寸相近,从而能使两者均匀地混合,之后将柠檬酸和乙二醇混合有机凝胶在430‑500℃下保温数个小时使其完全分解,制备得到掺杂纳米颗粒的单相高温超导体。本发明提供的方法简单方便,效率高,可控性好,能够使纳米颗粒在掺杂的单相高温超导体中均匀分布。

Description

一种在高温超导材料中均匀地掺杂纳米颗粒的方法
本申请是申请日为2021年01月09日、申请号为202110028075.0、发明名称为《在高温超导材料中均匀地掺杂纳米颗粒的方法》的分案申请。
技术领域
本发明属于超导材料技术领域,具体涉及一种在高温超导材料中均匀地掺杂纳米颗粒的方法。
背景技术
超导材料按超导现象出现的温度范围可分为两类:液氦温区的低温超导体和液氮温区的高温超导体。由于低温超导体的超导转变温度很低且运行时需要极昂贵的液氦,它们在实际应用中就受到很大限制。高温超导材料主要是铜氧化物陶瓷材料,由于它们具有很大的各向异性和低的载流子密度,它们的临界电流密度Jc较低且随磁场增高而很快下降。由于它们是陶瓷材料,难以形成高质量的线材或带材,从而阻碍了它们的广泛应用。
高温超导体的实际应用必须解决一个关键问题:提高临界电流密度和不可逆临界磁强。当磁通钉扎力较弱时,高场下的临界电流密度就较低,这影响了高温超导体在高温(比如77K)和高磁场(比如>4T)下的实际应用。解决上述关键问题的途径之一是增加磁通钉扎中心的密度。在高温超导材料中引入弥散分布的纳米颗粒,使它们成为有效的磁通钉扎中心,从而有效地提高高温超导材料的临界电流密度和不可逆临界磁强。
E.Hannachi等人[1]在YBa2Cu3Oy高温超导体中掺入TiO2纳米颗粒来提高其临界电流密度;M.K.BenSalem等人[2]通过掺入SiO2纳米颗粒来提高YBa2Cu3Oy高温超导体的临界电流密度;M.Hafiz等人[3]在(Bi,Pb)2Sr2Ca2Cu3O10高温超导体中掺入CoFe2O4磁性纳米颗粒来提高其临界电流密度;N.A.A.Yahya等人[4]通过掺入Bi2O3纳米颗粒来提高Bi1.6Pb0.4Sr2Ca2Cu3O10高温超导体的临界电流密度。这些研究都没有考虑到纳米颗粒会团聚且纳米颗粒的尺寸远小于超导粉末的尺寸,从而导致两者混合不均匀。包括在CN101450859B专利中,一种用BaCeO3纳米颗粒掺杂来提高Y-Ba-Cu-O高温超导体性能的方法,也只是将BaCeO3纳米颗粒直接加入Y1.8Ba2.4Cu3.4Oy粉末中进行球磨混合,并没有考虑纳米颗粒的团聚和极小尺寸会导致掺杂不均匀的问题。
团聚是指当材料颗粒间的作用力远大于重力时,此时颗粒的行为已不再受重力的束缚,而在颗粒间作用力的影响下相互靠拢从而发生聚集的现象。纳米颗粒与高温超导前驱粉末混合时会发生团聚且由于两者的尺寸相差甚远,两者的混合不可能均匀,进而会影响到高温超导复合材料的临界电流密度。为了获得高临界电流密度的高温超导复合材料,必须避免纳米颗粒的团聚和混合的不均匀性。
发明内容
本发明的目的是针对在高温超导材料中掺杂纳米颗粒的不均匀性问题,通过利用柠檬酸(citricacid,CA)和乙二醇(ethyleneglycol,EG)的混合物有机凝胶,来解决纳米颗粒在高温超导材料中团聚和不均匀分散的问题。
为实现以上发明目的,本发明提供一种在高温超导材料中均匀地掺杂纳米颗粒的方法,步骤为:
(1)按一定的比例称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在70-100℃的恒温水浴或油浴中预热后,往水浴或油浴中的乙二醇倒入柠檬酸并搅拌一定的时间达到完全互溶,形成有机凝胶,此时再往水浴或油浴中的有机凝胶倒入适量的纳米颗粒持续搅拌一定的时间达到均匀混合;
(2)将混合均匀的乙二醇和柠檬酸有机凝胶与纳米颗粒混合物倒进固化模中,再放入鼓风干燥箱在130-150℃固化,固化时间大于8h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430-500℃保温数个小时后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在高温超导体烧结温度下烧结一定的时间,经过这样的混合处理后达到高温超导体与纳米颗粒均匀混合。
优选的,所述步骤(1)中柠檬酸和乙二醇的摩尔比在1:2与1:4的范围之间。
优选的,所述步骤(1)中采用磁力搅拌器将混合物搅拌均匀。
优选的,所述步骤(2)中固化模用的是固化后容易将固化物脱模取出且耐130-150℃固化温度的硅胶软模。
优选的,所述步骤(5)中混合处理后的高温超导体仍是单相高温超导体。
优选的,当所述步骤(1)中所述纳米颗粒为CoFe2O4磁性纳米颗粒时,所述步骤(5)中单相高温超导体粉末为铋系Bi2-xPbxSr2Ca2Cu3O10+y(Bi-2223)单相高温超导体粉末;或:当所述步骤(1)中所述纳米颗粒为NiFe2O4磁性纳米颗粒时,所述步骤(5)中单相高温超导体粉末为钇系YBa2Cu3O7-y(Y-123)单相高温超导体粉末。
本发明在高温超导材料中均匀地掺杂纳米颗粒的方法巧妙地利用柠檬酸和乙二醇混合有机凝胶将纳米颗粒分散开,保证纳米颗粒不团聚,且有机凝胶固化物粉末的尺寸与超导粉末的尺寸相近,从而能使两者均匀地混合,再让柠檬酸和乙二醇混合有机凝胶在430-500℃下保温数个小时使其完全分解,最后剩下的是单相高温超导体和掺杂均匀的纳米颗粒。此方法具有操作简单方便,效率高,可控性好等优点。
附图说明
图1是本发明一个实施例的工艺流程图。
具体实施方式
下面结合附图和具体实施例对本发明作优选说明。
实施例1
如图1所示,一种高温超导材料中均匀地掺杂纳米颗粒的方法,高温超导体是铋系Bi2-xPbxSr2Ca2Cu3O10+y(Bi-2223)单相高温超导体,工艺流程如下:
(1)按摩尔比为1:2称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在90℃的水浴中预热后,往水浴中的乙二醇倒入柠檬酸并用磁力搅拌器搅拌15min达到完全互溶,此时再往水浴中的乙二醇和柠檬酸混合物倒入适量的CoFe2O4磁性纳米颗粒,持续搅拌30min的时间达到均匀混合,磁力搅拌的转速为900r/min;
(2)将混合均匀的乙二醇、柠檬酸和CoFe2O4磁性纳米颗粒混合物倒进硅胶软模中,再放入鼓风干燥箱在130℃固化12h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的Bi-2223单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430℃下保温3h后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在867℃下保温40h后冷却到室温,经过这样的混合处理后达到Bi-2223单相高温超导体与CoFe2O4磁性纳米颗粒的均匀混合。
本实施例巧妙地利用柠檬酸和乙二醇混合有机凝胶将CoFe2O4磁性纳米颗粒分散开,使CoFe2O4磁性纳米颗粒不团聚后与Bi-2223单相高温超导体混合均匀,再让柠檬酸和乙二醇混合有机凝胶在430℃下保温3h使其完全分解,最后剩下的是Bi-2223单相高温超导体和掺杂均匀的CoFe2O4磁性纳米颗粒。此方法具有操作简单方便,效率高,可控性好及能保证最后获得的是Bi-2223单相高温超导体和CoFe2O4磁性纳米颗粒且已达到均匀混合等优点。
实施例2
如图1所示,一种高温超导材料中均匀地掺杂纳米颗粒的方法,高温超导体是钇系YBa2Cu3O7-y(Y-123)单相高温超导体,工艺流程如下:
(1)按摩尔比为1:2称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在90℃的水浴中预热后,往水浴中的乙二醇倒入柠檬酸并用磁力搅拌器搅拌15min达到完全互溶,此时再往水浴中的乙二醇和柠檬酸混合物倒入适量的NiFe2O4磁性纳米颗粒持续搅拌30min的时间达到均匀混合,磁力搅拌的转速为900r/min;
(2)将混合均匀的乙二醇、柠檬酸和NiFe2O4磁性纳米颗粒混合物倒进硅胶软模中,再放入鼓风干燥箱在130℃固化12h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的Y-123单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430℃下保温3h后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在920℃下保温20h后冷却到室温,经过这样的混合处理后达到Y-123单相高温超导体与NiFe2O4磁性纳米颗粒的均匀混合。
本实施例巧妙地利用柠檬酸和乙二醇混合有机凝胶将NiFe2O4磁性纳米颗粒分散开,使NiFe2O4磁性纳米颗粒不团聚后与Y-123单相高温超导体混合均匀,再让柠檬酸和乙二醇混合有机凝胶在430℃下保温3h使其完全分解,最后剩下的是Y-123单相高温超导体和掺杂均匀的NiFe2O4磁性纳米颗粒。此方法具有操作简单方便,效率高,可控性好及能保证最后获得的依旧是Y-123单相高温超导体和NiFe2O4磁性纳米颗粒且已达到均匀混合等优点。
在高温超导材料中掺杂纳米颗粒一般都是直接将纳米颗粒与高温超导粉末直接混合,没有考虑纳米颗粒会团聚且纳米颗粒的尺寸远小于超导粉末的尺寸,从而导致两者混合不均匀的问题。纳米颗粒与高温超导前驱粉末混合时会发生团聚且由于两者的尺寸相差甚远,两者的混合不可能均匀,进而会影响到高温超导复合材料的临界电流密度。为了获得高临界电流密度的高温超导复合材料,必须避免纳米颗粒的团聚和混合的不均匀性。本发明巧妙地利用柠檬酸和乙二醇混合有机凝胶将纳米颗粒分散开,保证纳米颗粒不团聚,且有机凝胶固化物粉末的尺寸与超导粉末的尺寸相近,从而能使两者均匀地混合,再让柠檬酸和乙二醇混合有机凝胶在430-500℃下保温数个小时使其完全分解,最后剩下的是单相高温超导体和掺杂均匀的纳米颗粒。
背景技术部分引用的参考文献如下:
[1]E.Hannachi,Y.Slimani,F.Ben Azzouz,A.Ekicibil.Higher intra-granularand inter-granular performances of YBCO superconductor with TiO2 nan o-sizedparticles addition,Ceramics International 44(2018)18836-18843.
[2]M.K.Ben,Salem,E.Hannachi,Y.Slimani,A.Hamrita,M.Zouaoui,L.Bessais,M.Ben Salem,F.Ben Azzouz.SiO2 nanoparticles addition effect onmicrostructureand pinning properties in YBa2Cu3Oy,Ceramics International 40(2014)4953-4962.
[3]M.Hafiz,R.Abd-Shukor.Transport critical current density of(Bi1.6Pb0.4)Sr2Ca2Cu3O10/Ag superconductor tapes with addition of nanosizedCoFe2O4,Applied Physics A 120(2015)1573-1578.
[4]N.A.A.Yahya,A.Al-Sharabi,N.R.M.Suib,W.S.Chiu,R.Abd-Shukor.Enhancedtransport critical current density of(Bi,Pb)-2223/Agsuperconducto r tapesadded with nano-sized Bi2O3,Ceramics International 42(2016)18347-18351.
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

1.一种在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,步骤为:(1)按一定的比例称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在70-100℃的恒温水浴或油浴中预热后,往水浴或油浴中的乙二醇倒入柠檬酸并搅拌一定的时间达到完全互溶,形成有机凝胶,此时再往水浴或油浴中的有机凝胶倒入适量的纳米颗粒持续搅拌一定的时间达到均匀混合;
(2)将混合均匀的乙二醇和柠檬酸有机凝胶与纳米颗粒混合物倒进固化模中,再放入鼓风干燥箱在130-150℃固化,固化时间大于8h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430-500℃保温数个小时后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在高温超导体烧结温度下烧结一定的时间,经过这样的混合处理后达到高温超导体与纳米颗粒均匀混合。
2.如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(1)中柠檬酸和乙二醇的摩尔比在1:2与1:4的范围之间。
3.如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(1)中采用磁力搅拌器将混合物搅拌均匀。
4.如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(2)中固化模用的是固化后容易将固化物脱模取出且耐130-150℃固化温度的硅胶软模。
5.如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(5)中混合处理后的高温超导体仍是单相高温超导体。
6.如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,当所述步骤(1)中所述纳米颗粒为CoFe2O4磁性纳米颗粒时,所述步骤(5)中单相高温超导体粉末为铋系Bi2-xPbxSr2Ca2Cu3O10+y(Bi-2223)单相高温超导体粉末;
或:当所述步骤(1)中所述纳米颗粒为NiFe2O4磁性纳米颗粒时,所述步骤(5)中单相高温超导体粉末为钇系YBa2Cu3O7-y(Y-123)单相高温超导体粉末。
CN202211306687.2A 2021-01-09 2021-01-09 一种在高温超导材料中均匀地掺杂纳米颗粒的方法 Pending CN115504780A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211306687.2A CN115504780A (zh) 2021-01-09 2021-01-09 一种在高温超导材料中均匀地掺杂纳米颗粒的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211306687.2A CN115504780A (zh) 2021-01-09 2021-01-09 一种在高温超导材料中均匀地掺杂纳米颗粒的方法
CN202110028075.0A CN112811893A (zh) 2021-01-09 2021-01-09 在高温超导材料中均匀地掺杂纳米颗粒的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202110028075.0A Division CN112811893A (zh) 2021-01-09 2021-01-09 在高温超导材料中均匀地掺杂纳米颗粒的方法

Publications (1)

Publication Number Publication Date
CN115504780A true CN115504780A (zh) 2022-12-23

Family

ID=75868607

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211306687.2A Pending CN115504780A (zh) 2021-01-09 2021-01-09 一种在高温超导材料中均匀地掺杂纳米颗粒的方法
CN202110028075.0A Pending CN112811893A (zh) 2021-01-09 2021-01-09 在高温超导材料中均匀地掺杂纳米颗粒的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110028075.0A Pending CN112811893A (zh) 2021-01-09 2021-01-09 在高温超导材料中均匀地掺杂纳米颗粒的方法

Country Status (2)

Country Link
CN (2) CN115504780A (zh)
WO (1) WO2022148214A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504780A (zh) * 2021-01-09 2022-12-23 浙江大学台州研究院 一种在高温超导材料中均匀地掺杂纳米颗粒的方法
CN115072793A (zh) * 2022-07-12 2022-09-20 浙江大学台州研究院 一种高结晶性抗氧化磁性纳米颗粒的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429019A (zh) * 2008-12-08 2009-05-13 北京科技大学 一种提高单畴ybco超导块临界电流的方法
CN101872655A (zh) * 2010-05-21 2010-10-27 武汉大学 一种通过一次烧结制备纳米晶多孔厚薄膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230490C (zh) * 2003-09-05 2005-12-07 中国科学院上海硅酸盐研究所 稀土氧化物基纳米发光粉体的制备方法
CN101450859B (zh) * 2007-11-30 2011-08-17 北京有色金属研究总院 用BaCeO3掺杂提高YBaCuO超导体性能的方法
CN101471162B (zh) * 2007-12-28 2011-01-19 北京有色金属研究总院 用掺杂低温燃烧合成法制备的Gd211相提高GdBaCuO高温超导体性能的方法
CN102676860B (zh) * 2012-05-23 2013-12-04 天津大学 碳纳米管增强铝基复合材料的制备方法
CN103420675B (zh) * 2013-08-12 2015-09-30 昆明理工大学 一种Nd2-xCexCuO4-δ超导纳米瓷粉的低温制备方法
CN104030676B (zh) * 2014-06-26 2015-09-09 天津大学 钛酸锶钡纳米粉体的制备方法
CN108899146A (zh) * 2018-05-06 2018-11-27 桂林理工大学 一种室温磁制冷材料及其制备方法
CN109326401B (zh) * 2018-11-08 2020-06-16 国网湖南省电力有限公司 一种纳米氧化锌复合粉体压敏电阻片的制备工艺
CN115504780A (zh) * 2021-01-09 2022-12-23 浙江大学台州研究院 一种在高温超导材料中均匀地掺杂纳米颗粒的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429019A (zh) * 2008-12-08 2009-05-13 北京科技大学 一种提高单畴ybco超导块临界电流的方法
CN101872655A (zh) * 2010-05-21 2010-10-27 武汉大学 一种通过一次烧结制备纳米晶多孔厚薄膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO-ZHENG LI ET AL.: "Significant Improvement of Superconducting Properties in Nano-NiFe2O4-Doped Y–Ba–Cu–O Single-Grain Superconductor", vol. 99, pages 388 *
KIMBERLY A. DEFRIEND ET AL.: "The normal state properties of nano-sized CoFe 2 O 4 added Bi-based superconductors in bipolaron model", vol. 1569, pages 423 - 426 *
冀芳,李忠涛: "复合材料概论", 电子科技大学出版社, pages: 168 *

Also Published As

Publication number Publication date
CN112811893A (zh) 2021-05-18
WO2022148214A1 (zh) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2022148214A1 (zh) 在高温超导材料中均匀地掺杂纳米颗粒的方法
US5306700A (en) Dense melt-based ceramic superconductors
CN109727720A (zh) 一种Bi2212高温超导粉末的制备方法
US5430010A (en) Process for preparing oxide superconductor
Naik et al. Influence of processing conditions on the microstructure and physical properties in infiltration growth processed mixed REBCO bulk superconductors
JP3155333B2 (ja) 臨界電流密度の高い酸化物超電導体の製造方法
CN116606131B (zh) 一种铕钡铜氧化物超导溅射靶材的制备方法及其产品
JPH07509686A (ja) 一定pHにおける共沈澱による超伝導酸化物
CN106431403B (zh) 一种纳米铁酸铋掺杂的钇钡铜氧超导块材的制备方法
CN87101063A (zh) 钇钡铜钛氧化物超导材料的制造方法
Yong et al. Effect of Ho addition on the properties of Y-system superconductors
CN101450858B (zh) 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
CN105845270A (zh) 一种利用铋系超导材料制备超导薄膜的方法
JP4628042B2 (ja) 酸化物超電導材料及びその製造方法
JP3159764B2 (ja) 希土類系超電導体の製造方法
KR0174385B1 (ko) 형상이방성을 갖는 고온초전도체 분말의 제조방법
CN104790036A (zh) 用镱基液相源熔渗生长纳米复合钇钡铜氧超导块材的方法
Jin et al. Superconductivity and microstructure of n‐type Ln1. 85Ce0. 15CuO4− y (Ln= Pr, Sm, Eu) produced under high‐pressure sintering
JPH0532415A (ja) 酸化物超電導体の製造方法
JPH02252620A (ja) 結晶の方向性が揃った鱗片状Bi系超電導酸化物粉末の製造法
JPH01160861A (ja) 超電導セラミクスの異方成長法
JP3115357B2 (ja) 酸化物超電導材料の製造方法
Richardson et al. Traveling reaction zone method for preparation of textured ceramic superconductor thick films
CN108053943A (zh) 一种高温超导材料的制备方法
JPH04254466A (ja) イットリウム系超電導バルク材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221223