CN101450859B - 用BaCeO3掺杂提高YBaCuO超导体性能的方法 - Google Patents

用BaCeO3掺杂提高YBaCuO超导体性能的方法 Download PDF

Info

Publication number
CN101450859B
CN101450859B CN2007101784425A CN200710178442A CN101450859B CN 101450859 B CN101450859 B CN 101450859B CN 2007101784425 A CN2007101784425 A CN 2007101784425A CN 200710178442 A CN200710178442 A CN 200710178442A CN 101450859 B CN101450859 B CN 101450859B
Authority
CN
China
Prior art keywords
powder
ybacuo
doping
baceo
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101784425A
Other languages
English (en)
Other versions
CN101450859A (zh
Inventor
肖玲
焦玉磊
郑明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN2007101784425A priority Critical patent/CN101450859B/zh
Publication of CN101450859A publication Critical patent/CN101450859A/zh
Application granted granted Critical
Publication of CN101450859B publication Critical patent/CN101450859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种用BaCeO3掺杂提高YBaCuO超导体性能的方法,其特征在于,将平均粒度为1nm~100nm的BaCe1-xGdxO3粉末加入Y1.8Ba2.4Cu3.4Oy粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块,其中,BaCe1-xGdxO3粉末加入量为Y1.8Ba2.4Cu3.4Oy粉末的0.25wt%~1.00wt%。用本发明的方法制备的单畴YBaCuO超导块的临界电流密度均高于未掺杂的单畴YBaCuO超导块。掺杂量为0.50wt%的超导块的临界电流密度达到了掺杂0.2wt%贵金属Pt样品的同等水平。

Description

用BaCeO<sub>3</sub>掺杂提高YBaCuO超导体性能的方法
技术领域
本发明涉及一种通过纳米颗粒掺杂提高钇钡铜氧(YBaCuO)超导块材性能的方法。
背景技术
YBaCuO超导块的成份以YBa2Cu3O7-y超导相(123相)为主,添加一定量的Y2BaCuO5-x非超导相(211相)。添加非超导的211相的主要目的是防止单畴超导块生长过程中液相的流失。YBaCuO超导块通过包晶反应生成c轴择优取向的晶体结构,最终产物中具有大量颗粒状的211相被俘获在层状123相基体中的特征。大量工艺研究的结果证实,细小的211相颗粒弥散分布在123相基体中可以增加超导材料的磁通钉扎能力,从而提高超导材料的性能。通常细化211相颗粒的方法是在YBaCuO的先驱粉末中掺杂0.2wt%~0.5wt%的铂粉(Pt)。由于Pt是价格昂贵的贵金属元素,Pt的掺杂增加了YBaCuO超导块的成本。
发明内容
本发明的目的是提供一种用BaCeO3掺杂提高YBaCuO超导体性能的方法,可以进一步细化单畴YBaCuO超导块中211颗粒,从而提高超导材料临界电流密度。
为实现上述目的,本发明采取以下技术方案:
一种用BaCeO3掺杂提高YBaCuO超导体性能的方法,将平均粒度为1nm~100nm的BaCeO3粉末加入Y1.8Ba2.4Cu3.4Oy粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴结构的YBaCuO超导块,其中,BaCeO3粉末加入量为Y1.8Ba2.4Cu3.4Oy粉末的0.25wt%~1.00wt%。
本发明所采用的球磨混合、单轴模压成型、顶部籽晶辅助熔融织构生长工艺(TSMTG)均为公知工艺。
采用顶部籽晶辅助熔融织构生长工艺(TSMTG),其中,TSMTG是顶部籽晶辅助熔融织构生长工艺英文Top Seeded Melt Textured Growth的缩写。本发明采用纳米数量级粒度的BaCeO3替代Pt掺杂在YBaCuO先驱粉中,采用顶部籽晶辅助熔融织构生长工艺(TSMTG)的工艺参数没有变化。
使用微米数量级粒度的BaCeO3替代Pt可以取得良好的效果,有细化211相颗粒和提高性能的作用,但总体效果不如Pt。纳米级粒度即平均粒度为1nm~100nm的BaCeO3掺杂在YBaCuO先驱粉中制备单畴YBaCuO超导块,可以进一步细化211相颗粒从而进一步提高超导块的性能。
本发明的优点为:本发明用纳米粒度的BaCeO3掺杂在YBaCuO先驱粉中,掺杂量为0.25wt%~1.00wt%。用其制备的单畴YBaCuO超导块的临界电流密度均高于未掺杂的单畴YBaCuO超导块。掺杂量为0.50wt%的超导块的临界电流密度达到了掺杂0.2wt%贵金属Pt样品的同等水平。
附图说明
图1为不同含量BaCeO3掺杂样品(A、B、C)的临界电流Jc与磁场B的关系及其与未掺杂样品D和掺Pt样品E的比较图。
具体实施方式
将相对于Y1.8Ba2.4Cu3.4Oy先驱粉末的0.25wt%~1.00wt%的平均粒度为1nm~100nm的BaCeO3加入Y1.8Ba2.4Cu3.4Oy粉末中,放入玛瑙罐中用玛瑙球研磨。按300~400目研磨粒度配球,球料重量比约为1∶1.2,研磨时间约4小时。经球磨混合均匀后,用150MPa的压强单轴模压成型。再采用顶部籽晶辅助熔融织构生长工艺(Top Seeded Melt Textured Growth,缩写为TSMTG工艺)生成单畴结构的YBaCuO超导块。TSMTG工艺过程和具体参数如下:将c轴取向的SmBaCuO或NdBaCuO小晶体放在模压成型的圆柱状YBaCuO块的顶表面中心位置,保持其c轴与园柱状材料的对称轴平行。将带有籽晶的成型块放入加热炉中,以250℃~350℃/小时的速率快速升温至1050℃±5℃,保温1~2小时后以400℃~600℃/小时的速率快速降温至1010℃~1015℃,再以0.3~0.5℃/小时的速率缓慢降温至975℃±5℃,然后以100~200℃/小时的速率冷却到室温,使YBaCuO块经历部分熔化后再凝固的过程,生成单畴结构的YBaCuO超导块。
实施例1
将平均粒度为60nm的BaCeO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉末0.25wt%,0.50wt%和1.00wt%的比例分别加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,BaCeO3粉的经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成三种不同成分的单畴YBaCuO超导块A、B和C。
从A、B和C三种超导块上取样,分别测量其在77K温度下的临界电流密度(Jc),结果显示于图1。在0~2T的测量磁场范围内,样品B(掺杂量为0.50wt%)的Jc最高,样品A(掺杂量为0.25wt%)次之,样品C(掺杂量为1.00wt%)最低。在1.0T磁场下A、B样品的Jc均为1.3×104A/cm2,C样品为1.0×104A/cm2;在2.0T磁场下B样品的Jc仍然接近1.0×104A/cm2,而A样品和C样品分别下降为0.4×104A/cm2和0.2×104A/cm2。上述3种样品的Jc与未掺杂样品D相比,均有不同程度的提高。其中掺杂0.50wt%BaCeO3的效果最好,达到掺杂0.2wt%Pt样品E的同等水平。
实施例2
采用和实施例1相同的方法,将平均粒度为20nm的BaCeO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉末0.25wt%,0.50wt%和1.00wt%的比例分别加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,BaCeO3粉的经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成三种不同成分的单畴YBaCuO超导块A’、B’和C’。平均粒度为20nm的BaCeO3掺杂效果与上述平均粒度为60nm的掺杂效果相当。
实施例3
采用和实施例1相同的方法,将平均粒度为90nm的BaCeO3粉按相对于Y1.8Ba2.4Cu3.4Oy先驱粉末0.25wt%,0.50wt%和1.00wt%的比例分别加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,BaCeO3粉的经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成三种不同成分的单畴YBaCuO超导块A”、B”和C”。平均粒度为90nm的BaCeO3掺杂效果与上述平均粒度为60nm的掺杂效果相当。
比较例1
将Y1.8Ba2.4Cu3.4Oy粉末用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块D。
从D超导块上取样,测量其在77K温度下的临界电流密度(Jc),结果也显示于图1。在1.0T磁场下Jc为0.7×104A/cm2,在2.0T磁场下Jc下降至0.1×104A/cm2以下。在0~2T的测量磁场范围内,样品D的Jc均低于掺杂纳米BaCeO3的样品。
比较例2
将Pt粉按0.2wt%的比例加入Y1.8Ba2.4Cu3.4Oy先驱粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺(TSMTG)生成单畴YBaCuO超导块E。
从E超导块上取样,测量其在77K温度下的临界电流密度(Jc),结果也显示于图1。在1.0T磁场下Jc为1.3×104A/cm2,在2.0T磁场下Jc为1.0×104A/cm2以下。在0~2T的测量磁场范围内,样品E的Jc均高于未掺杂样品D,与掺杂0.50wt%内米BaCeO3的样品B相同。
本发明用纳米粒度的BaCeO3掺杂在YBaCuO先驱粉中,掺杂量为0.25wt%,0.50wt%和1.00wt%。用其制备的单畴YBaCuO超导块的临界电流密度均高于未掺杂的单畴YBaCuO超导块。掺杂量为0.50wt%的超导块的临界电流密度达到了掺杂0.2wt%贵金属Pt样品的同等水平。因此,本发明的方法提高超导块材性能同时降低单畴超导块成本。

Claims (1)

1.一种用BaCeO3掺杂提高YBaCuO超导体性能的方法,其特征在于,将平均粒度为1nm~100nm的BaCeO3粉末加入Y1.8Ba2.4Cu3.4Oy粉末中,经球磨混合均匀后,用单轴模压成型,再采用顶部籽晶辅助熔融织构生长工艺生成单畴结构的YBaCuO超导块,其中,BaCeO3粉末加入量为Y1.8Ba2.4Cu3.4Oy粉末的0.25wt%~1.00wt%。
CN2007101784425A 2007-11-30 2007-11-30 用BaCeO3掺杂提高YBaCuO超导体性能的方法 Active CN101450859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101784425A CN101450859B (zh) 2007-11-30 2007-11-30 用BaCeO3掺杂提高YBaCuO超导体性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101784425A CN101450859B (zh) 2007-11-30 2007-11-30 用BaCeO3掺杂提高YBaCuO超导体性能的方法

Publications (2)

Publication Number Publication Date
CN101450859A CN101450859A (zh) 2009-06-10
CN101450859B true CN101450859B (zh) 2011-08-17

Family

ID=40733367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101784425A Active CN101450859B (zh) 2007-11-30 2007-11-30 用BaCeO3掺杂提高YBaCuO超导体性能的方法

Country Status (1)

Country Link
CN (1) CN101450859B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198900B (zh) * 2012-01-05 2016-05-18 李忠让 一种导体材料的制备方法
CN102751044A (zh) * 2012-07-03 2012-10-24 中国科学院电工研究所 一种ybco涂层导体的制备方法
CN115504780A (zh) * 2021-01-09 2022-12-23 浙江大学台州研究院 一种在高温超导材料中均匀地掺杂纳米颗粒的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269488A (zh) * 1999-03-29 2000-10-11 普拉塞尔技术有限公司 用固体电解质离子导体体系增强燃烧的方法
CN1340216A (zh) * 1999-02-17 2002-03-13 索尔瓦钡/锶有限公司 由锌掺杂的氧化铜材料制成的超导体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340216A (zh) * 1999-02-17 2002-03-13 索尔瓦钡/锶有限公司 由锌掺杂的氧化铜材料制成的超导体
CN1269488A (zh) * 1999-03-29 2000-10-11 普拉塞尔技术有限公司 用固体电解质离子导体体系增强燃烧的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2001-307546A 2001.11.02
JP特开平5-28820A 1993.02.05
JP特开平9-295866A 1997.11.18

Also Published As

Publication number Publication date
CN101450859A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
Hamrita et al. Superconducting properties of polycrystalline YBa2Cu3O7–d prepared by sintering of ball-milled precursor powder
Muralidhar et al. A low-cost batch process for high-performance melt-textured GdBaCuO pellets
Aftabi et al. Intergranular coupling, critical current density, and phase formation enhancement of polycrystalline Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10− y superconductors by α-Al 2 O 3 nanoparticle addition
Hamrita et al. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling
ÖZTORNACI et al. The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1. 8Sr2 AuxCa1. 1Cu2. 1Oy (Bi-2212) ceramics
He et al. Investigation of microstructure of textured YBCO with addition of nanopowder SnO2
Nariki et al. Development of Gd–Ba–Cu–O bulk magnets with very high trapped magnetic field
CN101450859B (zh) 用BaCeO3掺杂提高YBaCuO超导体性能的方法
Sotelo et al. Fabrication and properties of textured Bi-based cobaltite thermoelectric rods by zone melting
Li et al. Employment of NdBCO/YBCO/MgO film seed in the infiltration growth technique for fabricating single-grain YBCO bulk superconductors
Moutalibi et al. Alumina nano-inclusions as effective flux pinning centers in Y–Ba–Cu–O superconductor fabricated by seeded infiltration and growth
Zhang et al. Biopolymer mediated synthesis of plate-like YBCO with enhanced grain connectivity and intragranular critical current
Anas et al. Impact of Nano-Sized Diluted Magnetic Semiconductors Addition on (Cu, Tl) 1234 Superconducting Phase
Kruaehong et al. Synthesized and characterization of YBa 2 Cu 3 O y, Y 3 Ba 5 Cu 8 O y, and Y 7 Ba 11 Cu 18 O y superconductors by planetary high-energy ball-milling
Shi et al. Growth rate of YBCO single grains containing Y-2411 (M)
Cai et al. Preparation and thermoelectric properties of AgPbmSbTe2+ m alloys
CN101450858B (zh) 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
Li et al. Fabrication of large single-domain Gd–Ba–Cu–O bulks using Y-based liquid source
Shadab et al. Tuning of superconductivity of bulk MgB2 by ball milling and sieving the boron precursor
Ateş et al. The effects of Ag addition and magnetic field on melt-processed YBa2Cu3Ox superconductors
Zhang et al. Thermoelectric properties of Yb-La-Nb-doped SrTiO3
Wang et al. Effect of Y 2 Ba 4 CuNbO y additions on the levitation force of single domain YBCO bulk superconductor by the top-seeded infiltration and growth process
YUSMI et al. Effect of Yb2O3 Nanoparticle Addition on Superconducting Properties of BSCCO (2223)/Ag Tapes by Acetate Precipitation Method.
Yong et al. Effect of Ho addition on the properties of Y-system superconductors
Ghahfarokhi et al. The role of PbO nanoparticles doping on the stability of Bi-2223 phase in Bi2-xPbxSr2Ca2Cu4Oy compounds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190626

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088, 2, Xinjie street, Beijing

Patentee before: General Research Institute for Nonferrous Metals