WO2022148214A1 - 在高温超导材料中均匀地掺杂纳米颗粒的方法 - Google Patents

在高温超导材料中均匀地掺杂纳米颗粒的方法 Download PDF

Info

Publication number
WO2022148214A1
WO2022148214A1 PCT/CN2021/137694 CN2021137694W WO2022148214A1 WO 2022148214 A1 WO2022148214 A1 WO 2022148214A1 CN 2021137694 W CN2021137694 W CN 2021137694W WO 2022148214 A1 WO2022148214 A1 WO 2022148214A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
temperature
ethylene glycol
uniformly
citric acid
Prior art date
Application number
PCT/CN2021/137694
Other languages
English (en)
French (fr)
Inventor
邵玲
陈英伟
赵国盟
柳琦杰
Original Assignee
浙江大学台州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学台州研究院 filed Critical 浙江大学台州研究院
Publication of WO2022148214A1 publication Critical patent/WO2022148214A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention belongs to the technical field of superconducting materials, and particularly relates to a method for uniformly doping nanoparticles in high-temperature superconducting materials.
  • Superconducting materials can be divided into two categories according to the temperature range in which superconductivity occurs: low temperature superconductors in the liquid helium temperature region and high temperature superconductors in the liquid nitrogen temperature region.
  • Low-temperature superconductors are severely limited in practical applications due to their low superconducting transition temperatures and the need for extremely expensive liquid helium to operate.
  • High-temperature superconducting materials are mainly copper oxide ceramic materials. Due to their large anisotropy and low carrier density, their critical current density Jc is low and decreases rapidly with increasing magnetic field. Since they are ceramic materials, it is difficult to form high-quality wires or tapes, which hinders their widespread use.
  • high-temperature superconductors must solve a key problem: increasing the critical current density and the irreversible critical magnetic intensity.
  • the critical current density under high field is lower, which affects the practical application of high temperature superconductors at high temperature (such as 77K) and high magnetic field (such as >4T).
  • One way to improve is to increase the density of flux pinning centers. Introducing dispersed nanoparticles into high-temperature superconducting materials makes them effective magnetic flux pinning centers, thereby effectively increasing the critical current density and irreversible critical magnetic intensity of high-temperature superconducting materials.
  • E.Hannachi et al. [1] incorporated TiO 2 nanoparticles into YBa 2 Cu 3 O y high-temperature superconductors to improve its critical current density; MKBen Salem et al. [2] improved YBa 2 Cu by doping SiO 2 nanoparticles Critical current density of 3 O y high temperature superconductors; M.Hafiz et al. [3] incorporated CoFe 2 O 4 magnetic nanoparticles into (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 high temperature superconductors to improve its critical current Density; NAAYahya et al.
  • Agglomeration refers to the phenomenon that when the force between material particles is much greater than gravity, the behavior of the particles is no longer bound by gravity, and the phenomenon of aggregation occurs under the influence of the force between particles.
  • the nanoparticles are mixed with the HTS precursor powder, agglomeration will occur, and because the sizes of the two are very different, the mixing of the two cannot be uniform, which will affect the critical current density of the HTS composite material.
  • agglomeration of nanoparticles and inhomogeneity of mixing must be avoided.
  • the purpose of the present invention is to solve the problem of inhomogeneity of doping nanoparticles in high temperature superconducting materials by using a mixture organogel of citric acid (CA) and ethylene glycol (EG).
  • CA citric acid
  • EG ethylene glycol
  • the present invention provides a method for uniformly doping nanoparticles in a high-temperature superconducting material, comprising the following steps:
  • the molar ratio of citric acid and ethylene glycol is in the range of 1:2 and 1:4.
  • a magnetic stirrer is used to stir the mixture uniformly.
  • the curing mold in the step (2) is a soft silicone mold that is easy to demould and take out the cured product after curing and is resistant to a curing temperature of 130-150°C.
  • the high-temperature superconductor after the mixing treatment in the step (5) is still a single-phase high-temperature superconductor.
  • the method for uniformly doping nanoparticles in the high-temperature superconducting material of the present invention skillfully utilizes citric acid and ethylene glycol mixed with organic gel to disperse the nanoparticles, so as to ensure that the nanoparticles do not agglomerate, and the size of the solidified organogel powder is
  • the size of the superconducting powder is similar to that of the superconducting powder, so that the two can be mixed evenly, and then the mixed organogel of citric acid and ethylene glycol is kept at 430-500 ° C for several hours to completely decompose.
  • Phase high temperature superconductors and homogeneously doped nanoparticles This method has the advantages of simple and convenient operation, high efficiency and good controllability.
  • FIG. 1 is a process flow diagram of an embodiment of the present invention.
  • the high-temperature superconductor is a bismuth-based Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O 10+y (Bi-2223) single-phase High temperature superconductor, the process flow is as follows:
  • the CoFe 2 O 4 magnetic nanoparticles are dispersed by cleverly using the mixed organogel of citric acid and ethylene glycol, so that the CoFe 2 O 4 magnetic nanoparticles are not agglomerated and then mixed with the Bi-2223 single-phase high temperature superconductor uniformly.
  • the mixed organogel of citric acid and ethylene glycol was incubated at 430 °C for 3 h to completely decompose, and the last remaining were Bi-2223 single-phase high - temperature superconductors and uniformly doped CoFe2O4 magnetic nanoparticles.
  • This method has the advantages of simple and convenient operation, high efficiency, good controllability, and can ensure that the final obtained Bi-2223 single-phase high temperature superconductor and CoFe 2 O 4 magnetic nanoparticles have achieved uniform mixing and so on.
  • the high-temperature superconductor is a yttrium-based YBa 2 Cu 3 O 7-y (Y-123) single-phase high-temperature superconductor, and the process flow is as follows:
  • the NiFe 2 O 4 magnetic nanoparticles are dispersed by cleverly using the mixed organogel of citric acid and ethylene glycol, so that the NiFe 2 O 4 magnetic nanoparticles are not agglomerated and then mixed with the Y-123 single-phase high temperature superconductor evenly, and then The mixed organogel of citric acid and ethylene glycol was incubated at 430 °C for 3 h to make it completely decomposed, and finally the Y-123 single-phase high-temperature superconductor and uniformly doped NiFe 2 O 4 magnetic nanoparticles were left.
  • This method has the advantages of simple and convenient operation, high efficiency, good controllability, and can ensure that the final obtained Y-123 single-phase high temperature superconductor and NiFe 2 O 4 magnetic nanoparticles have achieved uniform mixing.
  • Doping nanoparticles in high-temperature superconducting materials is generally the direct mixing of nanoparticles and high-temperature superconducting powders, without considering that the nanoparticles will agglomerate and the size of the nanoparticles is much smaller than that of the superconducting powder, resulting in ineffective mixing of the two. Uniform question. When the nanoparticles are mixed with the HTS precursor powder, agglomeration will occur, and because the sizes of the two are very different, the mixing of the two cannot be uniform, which will affect the critical current density of the HTS composite material. In order to obtain high-temperature superconducting composites with high critical current densities, agglomeration of nanoparticles and inhomogeneity of mixing must be avoided.
  • the patent of the present invention cleverly uses the mixed organic gel of citric acid and ethylene glycol to disperse the nanoparticles to ensure that the nanoparticles do not agglomerate, and the size of the solidified organogel powder is similar to the size of the superconducting powder, so that the two After mixing uniformly, the citric acid and ethylene glycol mixed organogel was incubated at 430-500°C for several hours to completely decompose, and finally the single-phase high-temperature superconductor and uniformly doped nanoparticles were left.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明是在高温超导材料中均匀地掺杂纳米颗粒的方法,步骤为:(1)将乙二醇放入玻璃容器中在70-100℃恒温水浴或油浴中预热后,往水浴或油浴中的乙二醇倒入柠檬酸并搅拌达到完全互溶,再往水浴或油浴中的乙二醇和柠檬酸混合物倒入纳米颗粒持续搅拌达到均匀混合;(2)将混合物倒进固化模中;(3)等混合物完全固化后取出,用粉碎机粉碎,粉碎的粉末与一定比例的单相高温超导体粉末均匀混合,再压成块体;(4)将块体放进热处理炉保温数个小时后冷却到室温;(5)取出块体后放回热处理炉在高温超导体烧结温度下热处理一定的时间,达到高温超导体与纳米颗粒均匀混合,并且高温超导体仍是单相高温超导体。本发明操作简单方便,效率高,可控性好。

Description

在高温超导材料中均匀地掺杂纳米颗粒的方法 技术领域
本发明属于超导材料技术领域,具体涉及一种在高温超导材料中均匀地掺杂纳米颗粒的方法。
背景技术
超导材料按超导现象出现的温度范围可分为两类:液氦温区的低温超导体和液氮温区的高温超导体。由于低温超导体的超导转变温度很低且运行时需要极昂贵的液氦,它们在实际应用中就受到大大的限制。高温超导材料主要是铜氧化物陶瓷材料,由于它们具有很大的各向异性和低的载流子密度,它们的临界电流密度J c较低且随磁场增高而很快下降。由于它们是陶瓷材料,难以形成高质量的线材或带材,从而阻碍了它们的广泛应用。
高温超导体的实际应用必须解决一个关键问题:提高临界电流密度和不可逆临界磁强。当磁通钉扎力较弱时,高场下的临界电流密度就较低,这影响了高温超导体在高温(比如77K)和高磁场(比如>4T)下的实际应用。提高的途径之一是增加磁通钉扎中心的密度。在高温超导材料中引入弥散分布的纳米颗粒,使它们成为有效的磁通钉扎中心,从而有效地提高高温超导材料的临界电流密度和不可逆临界磁强。
E.Hannachi等人 [1]在YBa 2Cu 3O y高温超导体中掺入TiO 2纳米颗粒来提高其临界电流密度;M.K.Ben Salem等人 [2]通过掺入SiO 2纳米颗粒来提高YBa 2Cu 3O y高温超导体的临界电流密度;M.Hafiz等人 [3]在(Bi,Pb) 2Sr 2Ca 2Cu 3O 10高温超导体中掺入CoFe 2O 4磁性纳米颗粒来提高其临界电流密度;N.A.A.Yahya等人 [4]通过掺入Bi 2O 3纳米颗粒来提高Bi 1.6Pb 0.4Sr 2Ca 2Cu 3O 10高温超导体的临界电流密度。这些研究都没有考虑到纳米颗粒会团聚且纳米颗粒的尺寸远小于超导粉末 的尺寸,从而导致两者混合不均匀。包括在CN101450859B专利中,一种用BaCeO 3纳米颗粒掺杂来提高Y-Ba-Cu-O高温超导体性能的方法,也只是将BaCeO 3纳米颗粒直接加入Y 1.8Ba 2.4Cu 3.4O y粉末中进行球磨混合,并没有考虑纳米颗粒的团聚和极小尺寸会导致掺杂不均匀的问题。
团聚是指当材料颗粒间的作用力远大于重力时,此时颗粒的行为已不再受重力的束缚,而在颗粒间作用力的影响下相互靠拢从而发生聚集的现象。纳米颗粒与高温超导前驱粉末混合时会发生团聚且由于两者的尺寸相差甚远,两者的混合不可能均匀,进而会影响到高温超导复合材料的临界电流密度。为了获得高临界电流密度的高温超导复合材料,必须避免纳米颗粒的团聚和混合的不均匀性。
发明内容
本发明的目的是针对在高温超导材料中掺杂纳米颗粒的不均匀性问题,通过利用柠檬酸(citric acid,CA)和乙二醇(ethylene glycol,EG)的混合物有机凝胶,来解决纳米颗粒在高温超导材料中团聚和不均匀分散的问题。
为实现以上发明目的,本发明提供一种在高温超导材料中均匀地掺杂纳米颗粒的方法,包括如下步骤:
(1)按一定的比例称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在70-100℃的恒温水浴或油浴中预热后,往水浴或油浴中的乙二醇倒入柠檬酸并搅拌一定的时间达到完全互溶,此时再往水浴或油浴中的乙二醇和柠檬酸混合物倒入适量的纳米颗粒持续搅拌一定的时间达到均匀混合;
(2)将混合均匀的乙二醇、柠檬酸和纳米颗粒混合物倒进固化模中,再放入鼓风干燥箱在130-150℃固化,固化时间大于8h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比 例的单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430-500℃下保温数个小时后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在高温超导体烧结温度下热处理一定的时间,经过这样的混合处理后达到高温超导体与纳米颗粒均匀混合。
进一步地,所述步骤(1)中柠檬酸和乙二醇的摩尔比在1:2与1:4的范围之间。
进一步地,所述步骤(1)中采用磁力搅拌器将混合物搅拌均匀。
进一步地,所述步骤(2)中固化模用的是固化后容易将固化物脱模取出且耐130-150℃固化温度的硅胶软模。
进一步地,所述步骤(5)中混合处理后的高温超导体仍是单相高温超导体。
本发明在高温超导材料中均匀地掺杂纳米颗粒的方法巧妙地利用柠檬酸和乙二醇混合有机凝胶将纳米颗粒分散开,保证纳米颗粒不团聚,且有机凝胶固化物粉末的尺寸与超导粉末的尺寸相近,从而能使两者均匀地混合,再让柠檬酸和乙二醇混合有机凝胶在430-500℃下保温数个小时使其完全分解,最后剩下的是单相高温超导体和掺杂均匀的纳米颗粒。此方法具有操作简单方便,效率高,可控性好等优点。
附图说明
图1是本发明一个实施例的工艺流程图。
具体实施方式
下面结合附图和具体实施例对本发明作优选说明。
实施例1
如图1所示,一种高温超导材料中均匀地掺杂纳米颗粒的方法,高温超导体是铋系Bi 2-xPb xSr 2Ca 2Cu 3O 10+y(Bi-2223)单相高温超导体,工艺流程如下:
(1)按摩尔比为1:2称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在90℃的水浴中预热后,往水浴中的乙二醇倒入柠檬酸并用磁力搅拌器搅拌15min达到完全互溶,此时再往水浴中的乙二醇和柠檬酸混合物倒入适量的CoFe 2O 4磁性纳米颗粒,持续搅拌30min的时间达到均匀混合,磁力搅拌的转速为900r/min;
(2)将混合均匀的乙二醇、柠檬酸和CoFe 2O 4磁性纳米颗粒混合物倒进硅胶软模中,再放入鼓风干燥箱在130℃固化12h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的Bi-2223单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430℃下保温3h后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在867℃下保温40h后冷却到室温,经过这样的混合处理后达到Bi-2223单相高温超导体与CoFe 2O 4磁性纳米颗粒的均匀混合。
本实施例巧妙地利用柠檬酸和乙二醇混合有机凝胶将CoFe 2O 4磁性纳米颗粒分散开,使CoFe 2O 4磁性纳米颗粒不团聚后与Bi-2223单相高温超导体混合均匀,再让柠檬酸和乙二醇混合有机凝胶在430℃下保温3h使其完全分解,最后剩下的是Bi-2223单相高温超导体和掺杂均匀的CoFe 2O 4磁性纳米颗粒。此方法具有操作简单方便,效率高,可控性好及能保证最后获得的是Bi-2223单相高温超导体和CoFe 2O 4磁性纳米颗粒且已达到均匀混合等优点。
实施例2
如图1所示,一种高温超导材料中均匀地掺杂纳米颗粒的方法,高温超导 体是钇系YBa 2Cu 3O 7-y(Y-123)单相高温超导体,工艺流程如下:
(1)按摩尔比为1:2称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在90℃的水浴中预热后,往水浴中的乙二醇倒入柠檬酸并用磁力搅拌器搅拌15min达到完全互溶,此时再往水浴中的乙二醇和柠檬酸混合物倒入适量的NiFe 2O 4磁性纳米颗粒持续搅拌30min的时间达到均匀混合,磁力搅拌的转速为900r/min;
(2)将混合均匀的乙二醇、柠檬酸和NiFe 2O 4磁性纳米颗粒混合物倒进硅胶软模中,再放入鼓风干燥箱在130℃固化12h;
(3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的Y-123单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
(4)将压好的块体放进热处理炉在430℃下保温3h后冷却到室温;
(5)取出热处理后的块体再将其压实,后放回热处理炉在920℃下保温20h后冷却到室温,经过这样的混合处理后达到Y-123单相高温超导体与NiFe 2O 4磁性纳米颗粒的均匀混合。
本实施例巧妙地利用柠檬酸和乙二醇混合有机凝胶将NiFe 2O 4磁性纳米颗粒分散开,使NiFe 2O 4磁性纳米颗粒不团聚后与Y-123单相高温超导体混合均匀,再让柠檬酸和乙二醇混合有机凝胶在430℃下保温3h使其完全分解,最后剩下的是Y-123单相高温超导体和掺杂均匀的NiFe 2O 4磁性纳米颗粒。此方法具有操作简单方便,效率高,可控性好及能保证最后获得的依旧是Y-123单相高温超导体和NiFe 2O 4磁性纳米颗粒且已达到均匀混合等优点。
在高温超导材料中掺杂纳米颗粒一般都是直接将纳米颗粒与高温超导粉末直接混合,没有考虑纳米颗粒会团聚且纳米颗粒的尺寸远小于超导粉末的尺寸,从而导致两者混合不均匀的问题。纳米颗粒与高温超导前驱粉末混合时会发生 团聚且由于两者的尺寸相差甚远,两者的混合不可能均匀,进而会影响到高温超导复合材料的临界电流密度。为了获得高临界电流密度的高温超导复合材料,必须避免纳米颗粒的团聚和混合的不均匀性。本发明专利巧妙地利用柠檬酸和乙二醇混合有机凝胶将纳米颗粒分散开,保证纳米颗粒不团聚,且有机凝胶固化物粉末的尺寸与超导粉末的尺寸相近,从而能使两者均匀地混合,再让柠檬酸和乙二醇混合有机凝胶在430-500℃下保温数个小时使其完全分解,最后剩下的是单相高温超导体和掺杂均匀的纳米颗粒。
背景技术部分引用的参考文献如下:
[1]E.Hannachi,Y.Slimani,F.Ben Azzouz,A.Ekicibil.Higher intra-granular and inter-granular performances of YBCO superconductor with TiO 2nano-sized particles addition,Ceramics International 44(2018)18836-18843.
[2]M.K.Ben Salem,E.Hannachi,Y.Slimani,A.Hamrita,M.Zouaoui,L.Bessais,M.Ben Salem,F.Ben Azzouz.SiO2nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy,Ceramics International 40(2014)4953-4962.
[3]M.Hafiz,R.Abd-Shukor.Transport critical current density of(Bi1.6Pb0.4)Sr2Ca2Cu3O10/Ag superconductor tapes with addition of nanosized CoFe2O4,Applied Physics A 120(2015)1573-1578.
[4]N.A.A.Yahya,A.Al-Sharabi,N.R.M.Suib,W.S.Chiu,R.Abd-Shukor.Enhanced transport critical current density of(Bi,Pb)-2223/Ag superconductor tapes added with nano-sized Bi 2O 3,Ceramics International 42(2016)18347-18351.
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

  1. 在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,包括如下步骤:(1)按一定的比例称取柠檬酸和乙二醇,将乙二醇放入玻璃容器中在70-100℃的恒温水浴或油浴中预热后,往水浴或油浴中的乙二醇倒入柠檬酸并搅拌一定的时间达到完全互溶,此时再往水浴或油浴中的乙二醇和柠檬酸混合物倒入适量的纳米颗粒持续搅拌一定的时间达到均匀混合;
    (2)将混合均匀的乙二醇、柠檬酸和纳米颗粒混合物倒进固化模中,再放入鼓风干燥箱在130-150℃固化,固化时间大于8h;
    (3)等混合物完全固化后取出,用粉碎机将其粉碎,粉碎的粉末与一定比例的单相高温超导体粉末均匀混合,再用压片机将其混合物压成块体;
    (4)将压好的块体放进热处理炉在430-500℃下保温数个小时后冷却到室温;
    (5)取出热处理后的块体再将其压实,后放回热处理炉在高温超导体烧结温度下热处理一定的时间,经过这样的混合处理后达到高温超导体与纳米颗粒均匀混合。
  2. 如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(1)中柠檬酸和乙二醇的摩尔比在1:2与1:4的范围之间。
  3. 如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(1)中采用磁力搅拌器将混合物搅拌均匀。
  4. 如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其特征在于,所述步骤(2)中固化模用的是固化后容易将固化物脱模取出且耐130-150℃固化温度的硅胶软模。
  5. 如权利要求1所述的在高温超导材料中均匀地掺杂纳米颗粒的方法,其 特征在于,所述步骤(5)中混合处理后的高温超导体仍是单相高温超导体。
PCT/CN2021/137694 2021-01-09 2021-12-14 在高温超导材料中均匀地掺杂纳米颗粒的方法 WO2022148214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110028075.0A CN112811893A (zh) 2021-01-09 2021-01-09 在高温超导材料中均匀地掺杂纳米颗粒的方法
CN202110028075.0 2021-01-09

Publications (1)

Publication Number Publication Date
WO2022148214A1 true WO2022148214A1 (zh) 2022-07-14

Family

ID=75868607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137694 WO2022148214A1 (zh) 2021-01-09 2021-12-14 在高温超导材料中均匀地掺杂纳米颗粒的方法

Country Status (2)

Country Link
CN (2) CN115504780A (zh)
WO (1) WO2022148214A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504780A (zh) * 2021-01-09 2022-12-23 浙江大学台州研究院 一种在高温超导材料中均匀地掺杂纳米颗粒的方法
CN115072793A (zh) * 2022-07-12 2022-09-20 浙江大学台州研究院 一种高结晶性抗氧化磁性纳米颗粒的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523077A (zh) * 2003-09-05 2004-08-25 �й���ѧԺ�����о��� 稀土氧化物基纳米发光粉体的制备方法
CN101429019A (zh) * 2008-12-08 2009-05-13 北京科技大学 一种提高单畴ybco超导块临界电流的方法
CN101450859A (zh) * 2007-11-30 2009-06-10 北京有色金属研究总院 用BaCeO3掺杂提高YBaCuO超导体性能的方法
CN103420675A (zh) * 2013-08-12 2013-12-04 昆明理工大学 一种Nd2-xCexCuO4-δ超导纳米瓷粉的低温制备方法
CN108899146A (zh) * 2018-05-06 2018-11-27 桂林理工大学 一种室温磁制冷材料及其制备方法
CN112811893A (zh) * 2021-01-09 2021-05-18 浙江大学台州研究院 在高温超导材料中均匀地掺杂纳米颗粒的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471162B (zh) * 2007-12-28 2011-01-19 北京有色金属研究总院 用掺杂低温燃烧合成法制备的Gd211相提高GdBaCuO高温超导体性能的方法
CN101872655B (zh) * 2010-05-21 2011-08-31 武汉大学 一种通过一次烧结制备纳米晶多孔厚薄膜的方法
CN102676860B (zh) * 2012-05-23 2013-12-04 天津大学 碳纳米管增强铝基复合材料的制备方法
CN104030676B (zh) * 2014-06-26 2015-09-09 天津大学 钛酸锶钡纳米粉体的制备方法
CN109326401B (zh) * 2018-11-08 2020-06-16 国网湖南省电力有限公司 一种纳米氧化锌复合粉体压敏电阻片的制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523077A (zh) * 2003-09-05 2004-08-25 �й���ѧԺ�����о��� 稀土氧化物基纳米发光粉体的制备方法
CN101450859A (zh) * 2007-11-30 2009-06-10 北京有色金属研究总院 用BaCeO3掺杂提高YBaCuO超导体性能的方法
CN101429019A (zh) * 2008-12-08 2009-05-13 北京科技大学 一种提高单畴ybco超导块临界电流的方法
CN103420675A (zh) * 2013-08-12 2013-12-04 昆明理工大学 一种Nd2-xCexCuO4-δ超导纳米瓷粉的低温制备方法
CN108899146A (zh) * 2018-05-06 2018-11-27 桂林理工大学 一种室温磁制冷材料及其制备方法
CN112811893A (zh) * 2021-01-09 2021-05-18 浙江大学台州研究院 在高温超导材料中均匀地掺杂纳米颗粒的方法

Also Published As

Publication number Publication date
CN112811893A (zh) 2021-05-18
CN115504780A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2022148214A1 (zh) 在高温超导材料中均匀地掺杂纳米颗粒的方法
Annabi et al. Addition of nanometer Al2O3 during the final processing of (Bi, Pb)-2223 superconductors
CN102925954B (zh) 用顶部籽晶熔渗法制备单畴钇钡铜氧超导块材的方法
CN101665980B (zh) 用熔渗法制备单畴钆钡铜氧超导块材的方法
CN106205861B (zh) 一种石墨烯负载多元掺杂二硼化镁超导块材的制备方法
CN109727720A (zh) 一种Bi2212高温超导粉末的制备方法
WO2013056526A1 (zh) 一种提高铁基超导体上临界场和临界电流密度的方法
CN104725035B (zh) 一种纳米复合钇钡铜氧超导块材的制备方法
Ren et al. Processing and characterization of YBCO superconductors by top-seeded melt growth method in batch process
CN107602112A (zh) Tl‑1223超导薄膜的制备方法
Naik et al. The effect of resolidification on preform optimized infiltration growth processed (Y, Nd, Sm, Gd) BCO, multi-grain bulk superconductor
Ren et al. Enhanced critical current density in melt-textured (Y1− xPrx) Ba2Cu3Oy
CN110373717A (zh) 一种利用组分分层控制法生长rebco高温超导块材的方法
CN105845269A (zh) 一种高温超导材料及用于制备高温超导材料的方法
CN104310972A (zh) 一种超导材料及其制备方法
Saghafi et al. Paraconductivity in Bi1. 6Pb0. 4Sr2Ca2Cu3O10+ δ superconductors doped with Sm2O3 nanoparticles
JPS63225531A (ja) 酸化物超伝導材料
CN106087034A (zh) 一种利用腐蚀籽晶诱导生长rebco高温超导块材的方法
CN105236952A (zh) 纳米铁酸镍掺杂的钇钡铜氧超导块材的制备方法
CN109626987A (zh) 一种铋系超导体的制备方法
CN106431403B (zh) 一种纳米铁酸铋掺杂的钇钡铜氧超导块材的制备方法
JP3155333B2 (ja) 臨界電流密度の高い酸化物超電導体の製造方法
CN105845270A (zh) 一种利用铋系超导材料制备超导薄膜的方法
CN104790036A (zh) 用镱基液相源熔渗生长纳米复合钇钡铜氧超导块材的方法
CN108053943A (zh) 一种高温超导材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917255

Country of ref document: EP

Kind code of ref document: A1