CN115090124B - 一种界面聚合反应生成双电荷层复合膜的制备方法及应用 - Google Patents

一种界面聚合反应生成双电荷层复合膜的制备方法及应用 Download PDF

Info

Publication number
CN115090124B
CN115090124B CN202210774026.6A CN202210774026A CN115090124B CN 115090124 B CN115090124 B CN 115090124B CN 202210774026 A CN202210774026 A CN 202210774026A CN 115090124 B CN115090124 B CN 115090124B
Authority
CN
China
Prior art keywords
chloride
layer composite
composite membrane
separation layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210774026.6A
Other languages
English (en)
Other versions
CN115090124A (zh
Inventor
吴铭榜
马璐琳
龚秀金
朱志远
陈国涛
姚菊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210774026.6A priority Critical patent/CN115090124B/zh
Publication of CN115090124A publication Critical patent/CN115090124A/zh
Application granted granted Critical
Publication of CN115090124B publication Critical patent/CN115090124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种界面聚合反应生成双电荷层复合膜的制备方法及应用。加入缓冲液,将多酚类物质和多胺类物质依次加入缓冲液形成混合溶液,将疏水性底膜漂浮于混合溶液表面反应,得到选择分离层复合膜;将干燥后的选择分离层复合膜固定在两个反应容器中间,将胺类单体溶液沿容器壁加到选择分离层复合膜的表面上使得浸润,再将酰氯类单体溶液沿着容器壁加到选择分离层复合膜的表面上使得浸润,继续进行油/水界面聚合反应,真空烘干,得到选择分离层上面带负电荷、下面带正电荷的双电荷层复合膜。本发明的双电荷层复合膜,具有可观的水渗透通量,且对二价离子具有较高的截留性能,可应用于纳滤、反渗透等领域。制备简单,操作便捷。

Description

一种界面聚合反应生成双电荷层复合膜的制备方法及应用
技术领域
本发明涉及了一种复合膜的制备方法及其应用,尤其是涉及了一种新型界面聚合双电荷层复合膜的制备方法及其应用。
背景技术
目前制备薄膜复合膜的方法主要有层层组装、化学气相沉积、表面涂覆等原位生长方法和界面聚合方法。界面聚合指在两种互不相溶,分别溶解有两种单体的溶液的界面上(或界面有机相一侧)进行的缩聚反应。由于其反应可控、操作简单、耗时相对较少而受到研究者的广泛关注。界面聚合指两种单体在互不相容相的相界面处发生聚合反应。聚合成膜发生在液/液界面、气/液界面、固/液界面,目前研究较多的仍是液-液界面聚合,气-液界面研究较少。
商用纳滤膜表面大多为负电荷,对阴离子有较高截留效果,但对于阳离子的截留效果较差。通过界面聚合方法先后赋予复合膜表面正电荷与负电荷,以使其同时对阴阳离子具有较好的截留性能。界面聚合制备的双电荷层复合膜具有对二价离子的高截留性能和高渗透性,可广泛应用于纳滤、渗透等过程。
例如,公开号为CN113522035A的中国专利发明了一种液/液界面聚合制备中空纤维纳滤膜的方法,该方法以膜丝外径≤0.5mm的PVDF中空纤维膜为底膜,在纤维膜外部中含有胺类和磺酸类的水相,在纤维膜内部中含有均苯三甲酰氯的正己烷有机相,进行油/水界面聚合反应,干燥,获得PVDF中空纤维纳滤膜。
公开号为CN113522045A的中国专利发明了一种液/液界面聚合制备二硫化钼纳米点杂化纳滤膜的方法,该方法在哌嗪的水溶液中分散含有氨基的MoS-(2)纳米点制成水相,将均苯三甲酰氯溶于正己烷中制得有机相,将水解聚丙烯腈超滤膜浸泡于水相,用无尘吸水纸去除膜表面水珠,再在有机相中浸泡,进行油/水界面聚合反应,热固化,获得性能优异的纳滤膜。
公开号为CN113385049A的中国专利发明了一种液/液界面聚合制备一种有超滤底膜和聚酰胺分离层的纳滤复合膜,该方法以混合胺溶液为水相,以酰氯溶液为有机相,在超滤底膜表面进行油/水界面聚合生成纳滤复合模。
公开号为CN113441016A的中国专利发明一种基于分步旋涂法的液/液界面聚合反应制备纳滤复合膜的方法,该方法以聚偏氟乙烯为底膜,使用含多胺类单体的水相与含多酰氯单体的有机相在分步旋涂的条件下进行油/水界面聚合生成纳滤复合模。
已经报道的纳滤复合膜的制备方法中,以液/液界面聚合制备纳滤复合膜的方法较为普遍,而利用气/液界面聚合制备纳滤复合膜的相对较少。此外,表面荷负电的纳滤膜制备方法较为常见,而对双电荷层复合膜制备方法和应用较少。
发明内容
为了完善纳滤膜的界面聚合方法,本发明开发了一种新型气/液、固/液界面聚合,而后进行油/水界面聚合制备双电荷层复合膜的方法,方法制备简单,操作便捷。本发明的双电荷层复合膜,具有对二价离子的高截留率和高渗透通量,可应用于纳滤过程。
本发明的技术方案如下:
(1)在反应容器内加入缓冲液,将多酚类物质和多胺类物质按照一定浓度比依次在缓冲液中充分溶解形成混合溶液,将疏水性底膜漂浮于混合溶液表面进行反应,得到形成带正电荷的选择分离层复合膜,最后将选择分离层复合膜洗涤数次、真空干燥;
疏水性底膜漂浮于混合溶液表面后会进行气/液、固/液界面聚合反应,疏水性底膜内具有孔隙,孔隙和混合溶液之间形成气/液界面聚合反应,疏水性底膜自身固体和混合溶液之间形成固/液界面聚合反应。
(2)将干燥后的选择分离层复合膜固定在两个反应容器中间,将胺类单体溶液沿容器壁滑下加到选择分离层复合膜的表面上,使得胺类单体溶液浸润选择分离层复合膜,即胺类单体溶液在选择分离层复合膜表面上覆盖形成一层,浸润1min~3min后,去除多余的胺类单体溶液;
再将酰氯类单体溶液沿着容器壁滑下加到选择分离层复合膜的表面上,使得酰氯类单体溶液浸润选择分离层复合膜,即酰氯类单体溶液在选择分离层复合膜表面上覆盖形成一层,浸润1min~3min后,去掉多余的酰氯类单体溶液,后继续在10℃~80℃的温度下进行油/水界面聚合反应,反应1min~3min后,反应后取出膜在50℃~80℃的温度下真空烘干,得到选择分离层上面带负电荷、下面带正电荷的双电荷层复合膜。
所述的反应容器包括一个反应皿、两个玻璃容器:
反应皿用于步骤(1)中,在反应皿内发生多酚/多胺的气/液、固/液界面聚合反应,生成选择分离层带正电荷的复合膜;
两个玻璃容器用于步骤(2)中,将选择分离层复合膜固定在两玻璃容器之间,将胺类单体溶液沿容器壁加到选择分离层复合膜的表面上。
所述步骤(2)中的容器为两个两端开口的筒形的玻璃容器,两个玻璃容器两端同轴对接,将选择分离层复合膜固定在两个玻璃容器同轴对接的端面之间。
所述步骤(1)中的缓冲液为三(羟甲基)氨基甲烷、磷酸盐缓冲液中的至少一种,缓冲液浓度为150mM~300mM,pH范围为7.5~9.0。
所述步骤(1)中的多酚类物质是多巴胺、儿茶酚、邻苯三酚、儿茶素的至少一种;且多酚类物质以浓度为0.5g/L~2.5g/L配置成多酚类物质溶液加入缓冲液中。
所述步骤(1)中的多胺类物质是乙二胺、己二胺、丙二胺、丁二胺、戊二胺、二乙烯三胺、三乙烯四胺、三乙胺、哌嗪、间苯二胺、对苯二胺、聚乙烯亚胺中的至少一种。且多胺类物质以浓度为0.5g/L~2.5g/L配置成多胺类物质溶液加入缓冲液中。
所述步骤(1)中的多酚类物质和多胺类物质均各自预先配置成溶液,溶液浓度为0.5g/L~2.5g/L。
所述的多酚类物质/多胺类物质的浓度之比为1:1g/L、1:2g/L、1:3g/L的其中一种。
所述步骤(1)中的疏水性底膜为聚乙烯、聚丙烯、聚偏氟乙烯、聚四氟乙烯、聚苯乙烯中的至少一种膜。
所述步骤(1)中,是在20℃~80℃下进行反应5min~20min。
所述步骤(2)中,胺类单体是单体胺、乙二胺、丙二胺、丁二胺、戊二胺、己二胺、乙二胺四乙酸、二乙烯三胺、三乙烯四胺、三乙胺、哌嗪、间苯二胺、对苯二胺中的至少一种;所述的胺类单体溶液的浓度为1.0g/L~3.0g/L。
所述步骤(2)中,酰氯类单体是均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、联苯二甲酰氯、苯三磺酰氯、丙三酰氯、丁三酰氯、戊三酰氯、戊二酰氯、己二酰氯、马来二酰氯、环丙烷三酰氯、环丁烷三酰氯、环丁烷四酰氯、环戊烷二酰氯、环戊烷三酰氯、环戊烷四酰氯、环己烷二酰氯、环己烷三酰氯或环己烷四酰氯中的至少一种。所述的酰氯类单体溶液的浓度1.0g/L~3.0g/L。
所述步骤(2)中的胺类单体溶液和酰氯类单体溶液的浓度均为1.0g/L~3.0g/L。
所述酰氯类单体溶液是由酰氯类单体加入有机相的溶剂中混合形成,有机相的溶剂是正己烷、环己烷、环戊烷其中的一种。
所述步骤(2)中,油/水界面聚合反应的反应温度是10℃~80℃,反应时间为1min~3min,烘干温度为50℃~80℃。
本发明在一定质量比的多酚/多胺混合溶液中漂浮疏水性底膜,进行气/液、固/液界面聚合反应,生成选择分离层带正电荷的复合膜。随后,在复合膜表面发生以胺类单体为水相、酰氯类单体为有机相的油/水界面聚合,使其选择分离层上表面带负电,最终形成选择分离层上表面带负电荷、下表面带正电荷的复合膜。
本发明的双电荷层复合膜,具有可观的水渗透通量,且对二价离子具有较高的截留性能,可应用于纳滤、反渗透等领域。
与现有技术相比,本发明的有益效果为:
本发明方法包含了气/液、固/液界面聚合反应,可选用疏水、大孔的超滤膜作为支撑底膜,扩大了底膜的使用范围。
本发明方法操作简单,容易控制。
本发明方法下的多酚/多胺溶液可制造多张复合膜,显示出高原子能经济。
本发明方法制备的双电荷层复合膜能同时截留二价阴阳离子,具有可观的水通量。
附图说明
图1为本发明的多酚/多胺反应示意图。
图2为本发明的油/水界面聚合反应示意图。
具体实施方式
通过以下实施例对本发明做更详细的描述,但所述实施例不构成对本发明的限制。
其反应机理如图1、图2所示。图1显示,疏水性底膜漂浮在充分混合后的多酚/多胺溶液表面,进行气/液、液/固界面聚合。反应一段时间,用纯水漂洗几次,真空干燥,得到选择分离层带正电荷的复合膜。图2显示,用两个玻璃容器夹住复合膜,沿着容器壁加入胺类单体溶液至完全覆盖复合膜表面,反应几分钟后,去除多余水相,再沿着容器壁加入酰氯类单体至完全覆盖复合膜表面,进行油/水界面聚合。反应一段时间后,去除多余油相,烘干处理,得到选择分离层上层带负电、下层带正电的纳滤复合膜。
本发明制备的双电荷层复合膜用于纳滤过程,截留溶液中的二价离子。其水通量和脱盐率是复合膜分离性能的重要指标。
水通量F的定义:在一定的操作压力下,单位时间内通过有效膜面积的水的体积,其单位为Lm-2h-1bar-1,计算公式为:
其中,V表示透过的溶液体积,单位L;A表示有效膜面积,单位m2;t表示过滤时间,单位h;p表示过滤时操作压力,单位bar。
脱盐率R是指膜对水中离子的截留能力,尤其是二价离子。其单位为%。计算公式为:
其中,Cf表示过滤前的盐溶液浓度,Cp表示过滤后的盐溶液浓度。
实施例1
(1)在反应容器内加入浓度为200mM,pH为8.5的三羟甲基氨基甲烷(Tris)缓冲液,将邻苯三酚和聚乙烯亚胺按照1g/L:2g/L的浓度比依次在缓冲液中充分溶解形成混合溶液,将聚丙烯微滤膜漂浮于混合溶液表面在20℃下反应10min,得到形成带正电荷的选择分离层复合膜,最后将选择分离层复合膜洗涤数次、真空干燥;
聚丙烯微滤膜漂浮于混合溶液表面后会进行气/液、固/液界面聚合反应,疏水性底膜内具有孔隙,孔隙和混合溶液之间形成气/液界面聚合反应,聚丙烯微滤膜自身固体和混合溶液之间形成固/液界面聚合反应。
(2)将干燥后的选择分离层复合膜固定在两个反应容器中间,将浓度为2g/L的哌嗪溶液沿容器壁滑下加到选择分离层复合膜的表面上,使得哌嗪溶液浸润选择分离层复合膜,即哌嗪溶液在选择分离层复合膜表面上覆盖形成一层,浸润2min后,去除多余的哌嗪溶液;
再将浓度为2g/L的均苯三甲酰氯溶液沿着容器壁滑下加到选择分离层复合膜的表面上,使得均苯三甲酰氯溶液浸润选择分离层复合膜,即均苯三甲酰氯溶液在选择分离层复合膜表面上覆盖形成一层,浸润2min后,去掉多余的均苯三甲酰氯溶液,后继续在20℃的温度下进行油/水界面聚合反应,反应2min后,反应后取出膜在60℃的温度下真空烘干,得到选择分离层上面带负电荷、下面带正电荷的双电荷层复合膜。
制备的双电荷层复合膜水通量为17.5Lm-2h-1bar-1,对MgCl2的截留率为94.1%,对Na2SO4的截留率为90.2%。
实施例2
将三(羟甲基)氨基甲烷替换为磷酸缓冲盐溶液,其余条件同实施例1。
实施例3~5
选用的三羟甲基氨基甲烷的浓度为150mM、250mM、300mM,其余条件同实施例1。
实施例6~8
选用的三羟甲基氨基甲烷的pH为7.5、8.0、9.0,其余条件同实施例1。
实施例9~13
将聚乙烯亚胺分别替换为二乙基三胺、三乙基四胺、哌嗪、间苯二胺、对苯二胺,其余条件同实施例1。
实施例14~17
选用的聚乙烯亚胺的浓度为0.5g/L、1.0g/L、1.5g/L、2.5g/L,其余条件同实施例1。
实施例18~20
将聚丙烯微滤膜分别替换成聚偏氟乙烯、聚四氟乙烯、聚乙烯,其余条件同实施例1。
实施例21~23
将邻苯三酚分别替换成多巴胺、儿茶酚、儿茶素,其余条件同实施例1。
实施例24~27
将邻苯三酚的浓度分别替换为为0.5g/L、1.5g/L、2.0g/L、2.5g/L,其余条件同实施例1。
实施例28~29
将多酚/多胺浓度之比分别替换为1:1、1:3,其余条件同实施例1。
实施例30~32
多酚/多胺反应时间分别替换为5min、15min、20min,其余条件同实施例1。
实施例33~38
多酚/多胺反应温度分别替换为10℃、30℃、40℃、50℃、60℃、70℃、80℃,其余条件同实施例1。
实施例39~44
油/水界面聚合反应时,将胺类单体哌嗪分别替换为单体胺、乙二胺、丙二胺、三乙烯四胺、间苯二胺、对苯二胺,其余条件同实施例1。
实施例45~48
油/水界面聚合时,哌嗪单体的浓度分别替换为1.0g/L、1.5g/L、2.5g/L、3.0g/L,其余条件同实施例1。
实施例49~52
油/水界面聚合时,哌嗪单体浸泡复合膜的时间分别替换为1min、1.5min、2.5min、3min,其余条件同实施例1。
实施例53~58
油/水界面聚合时,均苯三甲酰氯分别替换为丙三酰氯、丁三酰氯、戊三酰氯、环己烷三酰氯、对苯二甲酰氯、间苯二甲酰氯,其余条件同实施例1。
实施例59~62
油/水界面聚合时,均苯三甲酰氯单体浓度分别替换为1.0g/L、1.5g/L、2.5g/L、3.0g/L,其余条件同实施例1。
实施例63~64
油/水界面聚合时,有机相溶剂分别替换为环己烷、环戊烷,其余条件同实施例1。
实施例65~71
油/水界面聚合时,反应温度分别替换为10℃、30℃、40℃、50℃、60℃、70℃、80℃,其余条件同实施例1。
实施例72~75
油/水界面聚合时,反应时间分别替换为1.0min、1.5min、2.5min、3.0min,其余条件同实施例1。
实施例76~78
油水界面聚合时,烘干温度分别替换为50℃、70℃、80℃,其余条件同实施例1。
由此实施可见,本发明的双电荷层复合膜,具有优异的二价离子截留性能和可观的渗透通量,可应用于纳滤、反渗透;制备简单,容易控制。

Claims (9)

1.一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:方法包括以下步骤:
(1)在反应容器内加入缓冲液,将多酚类物质和多胺类物质按照一定浓度比依次在缓冲液中充分溶解形成混合溶液,将疏水性底膜漂浮于混合溶液表面进行反应,得到形成带正电荷的选择分离层复合膜,最后将选择分离层复合膜洗涤数次、真空干燥;
(2)将干燥后的选择分离层复合膜固定在两个反应容器中间,将胺类单体溶液沿容器壁加到选择分离层复合膜的表面上,使得胺类单体溶液浸润选择分离层复合膜,浸润1min~3min后,去除多余的胺类单体溶液;
再将酰氯类单体溶液沿着容器壁加到选择分离层复合膜的表面上,使得酰氯类单体溶液浸润选择分离层复合膜,浸润1min~3min后,去掉多余的酰氯类单体溶液,后继续进行油/水界面聚合反应,反应后取出膜在50℃~80℃的温度下真空烘干,得到选择分离层上面带负电荷、下面带正电荷的双电荷层复合膜;
所述步骤(2)中的容器为两个两端开口的筒形的玻璃容器,两个玻璃容器两端同轴对接,将选择分离层复合膜固定在两个玻璃容器同轴对接的端面之间。
2.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(1)中的缓冲液为三(羟甲基)氨基甲烷、磷酸盐缓冲液中的至少一种,缓冲液浓度为150mM~300mM,pH范围为7.5~9.0。
3.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(1)中的多酚类物质是多巴胺、儿茶酚、邻苯三酚、儿茶素的至少一种;所述步骤(1)中的多胺类物质是乙二胺、己二胺、丙二胺、丁二胺、戊二胺、二乙烯三胺、三乙烯四胺、三乙胺、哌嗪、间苯二胺、对苯二胺、聚乙烯亚胺中的至少一种。
4.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述的多酚类物质/多胺类物质的浓度之比为1:1g/L、1:2g/L、1:3g/L的其中一种。
5.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(1)中的疏水性底膜为聚乙烯、聚丙烯、聚偏氟乙烯、聚四氟乙烯、聚苯乙烯中的至少一种膜。
6.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(1)中,是在20℃~80℃下进行反应5min~20min。
7.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(2)中,胺类单体是单体胺、乙二胺、丙二胺、丁二胺、戊二胺、己二胺、乙二胺四乙酸、二乙烯三胺、三乙烯四胺、三乙胺、哌嗪、间苯二胺、对苯二胺中的至少一种;
所述步骤(2)中,酰氯类单体是均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、联苯二甲酰氯、苯三磺酰氯、丙三酰氯、丁三酰氯、戊三酰氯、戊二酰氯、己二酰氯、马来二酰氯、环丙烷三酰氯、环丁烷三酰氯、环丁烷四酰氯、环戊烷二酰氯、环戊烷三酰氯、环戊烷四酰氯、环己烷二酰氯、环己烷三酰氯或环己烷四酰氯中的至少一种。
8.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述酰氯类单体溶液是由酰氯类单体加入有机相的溶剂中混合形成,有机相的溶剂是正己烷、环己烷、环戊烷其中的一种。
9.根据权利要求1所述的一种界面聚合反应生成双电荷层复合膜的制备方法,其特征在于:所述步骤(2)中,油/水界面聚合反应的反应温度是10℃~80℃,反应时间为1min~3min,烘干温度为50℃~80℃。
CN202210774026.6A 2022-07-01 2022-07-01 一种界面聚合反应生成双电荷层复合膜的制备方法及应用 Active CN115090124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210774026.6A CN115090124B (zh) 2022-07-01 2022-07-01 一种界面聚合反应生成双电荷层复合膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210774026.6A CN115090124B (zh) 2022-07-01 2022-07-01 一种界面聚合反应生成双电荷层复合膜的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115090124A CN115090124A (zh) 2022-09-23
CN115090124B true CN115090124B (zh) 2023-09-05

Family

ID=83295670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210774026.6A Active CN115090124B (zh) 2022-07-01 2022-07-01 一种界面聚合反应生成双电荷层复合膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115090124B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533020A1 (en) * 2003-11-24 2005-05-25 Millipore Corporation Purification and concentration synthetic biological molecules
CN107138061A (zh) * 2017-05-10 2017-09-08 浙江工业大学 原位聚合两性多元胺纳米粒子改性聚酰胺纳滤膜的制备方法
CN107158980A (zh) * 2017-06-07 2017-09-15 浙江大学 基于气/液界面反应的薄层复合膜及其制备方法和应用
CN108465381A (zh) * 2018-03-12 2018-08-31 长兴科创科技咨询有限公司 一种带两性电荷聚丙烯腈中空纤维复合纳滤膜及其制备方法
CN108905624A (zh) * 2018-06-28 2018-11-30 杭州电子科技大学 一种聚酯聚酰胺两性电荷复合纳滤膜及其制备方法
CN110743383A (zh) * 2019-10-21 2020-02-04 浙江理工大学 一种提高聚酰胺复合膜渗透通量的改性方法
CN110871040A (zh) * 2018-08-31 2020-03-10 湖州欧美新材料有限公司 一种复合纳滤膜及其制备方法
CN112870982A (zh) * 2021-01-12 2021-06-01 浙江理工大学 一种新型界面聚合反应的薄层复合膜制备方法及其应用
CN113750798A (zh) * 2020-06-01 2021-12-07 天津工业大学 双电层复合纳滤膜的制备方法
CN113856501A (zh) * 2021-09-29 2021-12-31 中国科学院过程工程研究所 一种复合纳滤膜及其制备方法和应用
CN114100374A (zh) * 2021-11-26 2022-03-01 山东浩然特塑股份有限公司 一种单价离子选择性阳离子交换膜及其制备方法和应用
CN114210214A (zh) * 2021-12-20 2022-03-22 天津大学浙江研究院 含氟疏松聚酰胺纳滤膜的制备方法
CN114307678A (zh) * 2022-02-17 2022-04-12 天津工业大学 一种基于两性离子调控的复合纳滤膜的制备方法
CN114478967A (zh) * 2021-12-21 2022-05-13 哈尔滨工业大学 一种单面微球结构的共价有机框架薄膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO335286B1 (no) * 2010-06-04 2014-11-03 Tom-Nils Nilsen Tynnfilmkompositter
KR101692784B1 (ko) * 2015-04-29 2017-01-17 고려대학교 산학협력단 지지체 없는 자유계면에서의 계면중합으로 제조된 활성층을 이용한 분리막의 제조방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533020A1 (en) * 2003-11-24 2005-05-25 Millipore Corporation Purification and concentration synthetic biological molecules
CN107138061A (zh) * 2017-05-10 2017-09-08 浙江工业大学 原位聚合两性多元胺纳米粒子改性聚酰胺纳滤膜的制备方法
CN107158980A (zh) * 2017-06-07 2017-09-15 浙江大学 基于气/液界面反应的薄层复合膜及其制备方法和应用
CN108465381A (zh) * 2018-03-12 2018-08-31 长兴科创科技咨询有限公司 一种带两性电荷聚丙烯腈中空纤维复合纳滤膜及其制备方法
CN108905624A (zh) * 2018-06-28 2018-11-30 杭州电子科技大学 一种聚酯聚酰胺两性电荷复合纳滤膜及其制备方法
CN110871040A (zh) * 2018-08-31 2020-03-10 湖州欧美新材料有限公司 一种复合纳滤膜及其制备方法
CN110743383A (zh) * 2019-10-21 2020-02-04 浙江理工大学 一种提高聚酰胺复合膜渗透通量的改性方法
CN113750798A (zh) * 2020-06-01 2021-12-07 天津工业大学 双电层复合纳滤膜的制备方法
CN112870982A (zh) * 2021-01-12 2021-06-01 浙江理工大学 一种新型界面聚合反应的薄层复合膜制备方法及其应用
CN113856501A (zh) * 2021-09-29 2021-12-31 中国科学院过程工程研究所 一种复合纳滤膜及其制备方法和应用
CN114100374A (zh) * 2021-11-26 2022-03-01 山东浩然特塑股份有限公司 一种单价离子选择性阳离子交换膜及其制备方法和应用
CN114210214A (zh) * 2021-12-20 2022-03-22 天津大学浙江研究院 含氟疏松聚酰胺纳滤膜的制备方法
CN114478967A (zh) * 2021-12-21 2022-05-13 哈尔滨工业大学 一种单面微球结构的共价有机框架薄膜的制备方法
CN114307678A (zh) * 2022-02-17 2022-04-12 天津工业大学 一种基于两性离子调控的复合纳滤膜的制备方法

Also Published As

Publication number Publication date
CN115090124A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN111282447B (zh) 具有纳米级超薄分离层的脱盐复合膜的制备方法
JP4472028B2 (ja) 複合逆浸透膜およびその製造方法
US10786786B2 (en) Method for manufacturing membrane using selective layer prepared through support-free interfacial polymerization
KR101733264B1 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
WO2013122334A1 (ko) 금속-유기 구조체를 포함하는 수처리용 분리막 및 이의 제조방법
CN114534491B (zh) 一种高水通量的反渗透膜及其制备方法和应用
CN110605035A (zh) 一种高通量聚酰胺纳滤或反渗透复合膜及其制备
KR101240736B1 (ko) 고분자 조성물, 상기를 포함하는 수처리 분리막 및 수처리 모듈
CN103785297A (zh) 一种含有机改性的凹凸棒土的复合纳滤膜及制备方法
CN102258949A (zh) 一种调节聚酰胺反渗透复合膜界面结构的方法
JP6642860B2 (ja) 水処理分離膜およびその製造方法
CN114870641B (zh) 一种哌嗪基原生荷正电纳滤膜及其制备方法
CN115845639A (zh) 含分子筛有机复合材料中间层的纳滤膜及其制备方法
KR20070018529A (ko) 보론 제거 기능이 있는 역삼투 분리막의 제조방법
CN115090124B (zh) 一种界面聚合反应生成双电荷层复合膜的制备方法及应用
JP5877855B2 (ja) 有機単量体間の架橋を利用した多層薄膜基盤の逆浸透分離膜及びその製造方法
CN112870982A (zh) 一种新型界面聚合反应的薄层复合膜制备方法及其应用
JP5177056B2 (ja) 複合半透膜
JPH10165789A (ja) 乾燥複合逆浸透膜の製造方法
CN112108019A (zh) 一种单价选择性阳离子交换膜及其制备方法
CN115055061A (zh) 一种具有高渗透选择性的聚酰胺复合纳滤膜的制备方法
JP2009262089A (ja) 複合半透膜の製造方法
KR102041657B1 (ko) 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 및 수처리 분리막을 포함하는 수처리 모듈
KR102067861B1 (ko) 역삼투막 제조용 조성물, 이를 이용한 역삼투막 제조방법, 역삼투막 및 수처리 모듈
Akamatsu et al. Development of novel positively charged nanofiltration membranes using interfacial polymerization, followed by plasma graft polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant