CN114891251A - 一种高阻隔、可降解农用保水地膜及制备方法 - Google Patents

一种高阻隔、可降解农用保水地膜及制备方法 Download PDF

Info

Publication number
CN114891251A
CN114891251A CN202210644480.XA CN202210644480A CN114891251A CN 114891251 A CN114891251 A CN 114891251A CN 202210644480 A CN202210644480 A CN 202210644480A CN 114891251 A CN114891251 A CN 114891251A
Authority
CN
China
Prior art keywords
mulching film
amino clay
preparation
retaining
composite filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210644480.XA
Other languages
English (en)
Other versions
CN114891251B (zh
Inventor
王新华
邹勇
寇海强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Future Super Bio Environmental Protection Technology Beijing Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210644480.XA priority Critical patent/CN114891251B/zh
Publication of CN114891251A publication Critical patent/CN114891251A/zh
Application granted granted Critical
Publication of CN114891251B publication Critical patent/CN114891251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/28Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture specially adapted for farming

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及农用地膜的技术领域,提供了一种高阻隔、可降解农用保水地膜及制备方法。该方法以微米级粒径的层状氨基黏土负载纳米级粒径的层状六方氮化硼,然后以1H,1H,2H,2H‑全氟癸基硫醇进行表面修饰,得到具有疏水性的片层状的表面修饰复合填料,再将该复合填料分散于PBAT的二氯甲烷溶液中,并进行流延成膜,制得高阻隔、可降解的PBAT农用地膜。一方面,片层状填料可有效延长水蒸汽在薄膜中的扩散路径,另一方面,复合填料的疏水性可进一步阻碍水蒸汽透过薄膜,因此,本发明制得的PBAT农用地膜具有良好的保水性。

Description

一种高阻隔、可降解农用保水地膜及制备方法
技术领域
本发明属于农用地膜的技术领域,提供了一种高阻隔、可降解农用保水地膜及制备方法。
背景技术
农用地膜不仅可以提高地温、保水、保土、保肥,而且可以灭草、防病虫、抑盐保苗、改进近地面光热条件,能够有效增加农业生产效益,在现代化农业中具有重要地位。聚乙烯地膜较为常用,其存在难以降解的问题,使用后的残膜留在土壤中,导致土壤质量下降。为解决这一问题,可降解地膜应运而生。
可降解地膜按照降解类型主要分为光降解、生物降解、光-生物降解等。其中,生物降解地膜主要是利用自然界中的微生物实现降解,这类材料又分为天然生物降解地膜(如淀粉、蛋白质、纤维素等)和合成生物降解地膜(如聚乳酸、聚乙醇酸、聚己内酯、聚羟基脂肪酸酯、聚己二酸对苯二甲酸丁二醇酯等)。
聚己二酸对苯二甲酸丁二醇酯(PBAT)是一种热塑性生物降解塑料,兼具聚己二酸丁二醇酯(PBA)和聚对苯二甲酸丁二醇酯(PBT)的特性,在具有优良生物可降解性的同时,还有着较好的延展性、断裂伸长率、耐热性和抗冲击性。因此,PBAT成为目前生物降解塑料中具有发展前景的材料之一。
然而,PBAT薄膜自身的水汽阻隔性能较差,用于地膜时水蒸汽透过率高,保水性差,限制了其作为农用地膜的应用。
发明内容
可见,PBAT地膜具有水蒸汽透过率高、保水性差的缺陷。针对这种情况,本发明提出一种高阻隔、可降解农用保水地膜及制备方法,通过添加低表面能修饰的负载六方氮化硼的氨基黏土,可降低PBAT地膜的水蒸汽透过率,提高保水性能。
为实现上述目的,本发明涉及的具体技术方案如下:
一种高阻隔、可降解农用保水地膜的制备方法,所述农用保水地膜制备的具体步骤如下:
(1)将微米级粒径的层状氨基黏土、纳米级粒径的层状六方氮化硼加入甲苯中,调节pH值为9-10,超声分散一定时间,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;
(2)将微纳米复合填料加入1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌一定时间,然后静置一定时间,再过滤,真空干燥,得到表面修饰复合填料;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到所述农用保水地膜。
公知的,氨基黏土和六方氮化硼均为片层状结构。其中,六方氮化硼由B原子和N原子共价连接而成,在边缘或缺陷部位的B原子具有空轨道,具有与有机配体发生络合的能力,而氨基黏土的表面含有大量-NH2,可提供孤对电子。因此,本发明采用氨基黏土与六方氮化硼进行络合,并且,氨基黏土为微米级,六方氮化硼为纳米级,二者络合后,六方氮化硼负载于氨基黏土的表面,形成具有微纳米结构的片层状复合填料。另外,试验表明,氨基黏土与六方氮化硼的络合与pH值有关,增大pH值有利于二者的络合,优选的pH值为9-10。
优选的,步骤(1)中,所述氨基黏土包括但不限于镁氨基黏土、钙氨基黏土、铝氨基黏土、铁氨基黏土、铜氨基黏土、锌氨基黏土、锰氨基黏土中的一种或几种。
优选的,步骤(1)中,所述氨基黏土的粒径为100-150μm,所述六方氮化硼的粒径为100-300nm。
进一步优选的,步骤(1)中,氨基黏土、六方氮化硼、甲苯的质量比为30-40:4-8:100。
优选的,步骤(1)中,所述超声分散的超声频率为25-30kHz,分散时间为2-4h。
步骤(2)采用1H,1H,2H,2H-全氟癸基硫醇对微纳米复合填料进行表面修饰,1H,1H,2H,2H-全氟癸基硫醇与微纳米复合填料之间可形成氢键结合,降低复合填料的表面能。步骤(2)得到的表面修饰复合填料既具有微纳米粗糙结构,又具有低表面能,因而具有良好的疏水性能。
优选的,步骤(2)所述1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的质量浓度为3-5%,该溶液的用量为微纳米复合填料质量的至少10倍。
优选的,步骤(2)中,所述搅拌的时间为5-10min,所述静置的时间为20-30min。
步骤(3)是配制成膜液及流延成膜的过程,PBAT在二氯甲烷中搅拌至充分溶解,所需时间为3h左右。优选的,步骤(3)中,聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为3-5:0.1-0.2:100。
本发明还提供了上述制备方法制备得到的高阻隔、可降解农用保水地膜。与现有技术相比,有益效果在于:首先,本发明在PBAT地膜中添加了层状氨基黏土,层状氨基黏土可阻碍水蒸汽透过,水蒸汽在PBAT薄膜中扩散时需绕过层状氨基黏土,因而可有效延长水蒸汽在薄膜中的扩散路径,从而降低水蒸汽透过率;进一步的,本发明在微米级层状氨基黏土表面负载了纳米级六方氮化硼,构建了微纳米粗糙结构,再以含氟物质进行表面修饰,赋予复合填料低表面能,使复合填料具有良好的疏水性,从而可进一步阻碍水蒸汽透过薄膜。因此,本发明制得的PBAT可降解地膜具有良好的保水性能。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
(1)将微米级粒径的氨基黏土、纳米级粒径的六方氮化硼加入甲苯中,调节pH值为10,超声分散2h,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;氨基黏土、六方氮化硼、甲苯的质量比为30:4:100;
(2)将微纳米复合填料加入质量浓度为4%的1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌10min,然后静置20min,再过滤,真空干燥,得到表面修饰复合填料;1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的用量为微纳米复合填料质量的15倍;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到厚度为0.01mm的农用保水地膜;聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为5:0.1:100。
实施例2
(1)将微米级粒径的氨基黏土、纳米级粒径的六方氮化硼加入甲苯中,调节pH值为9,超声分散3h,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;氨基黏土、六方氮化硼、甲苯的质量比为34:5:100;
(2)将微纳米复合填料加入质量浓度为4%的1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌5min,然后静置30min,再过滤,真空干燥,得到表面修饰复合填料;1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的用量为微纳米复合填料质量的15倍;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到厚度为0.01mm的农用保水地膜;聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为5:0.13:100。
实施例3
(1)将微米级粒径的氨基黏土、纳米级粒径的六方氮化硼加入甲苯中,调节pH值为10,超声分散3h,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;氨基黏土、六方氮化硼、甲苯的质量比为37:7:100;
(2)将微纳米复合填料加入质量浓度为4%的1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌7min,然后静置25min,再过滤,真空干燥,得到表面修饰复合填料;1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的用量为微纳米复合填料质量的12倍;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到厚度为0.01mm的农用保水地膜;聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为5:0.17:100。
实施例4
(1)将微米级粒径的氨基黏土、纳米级粒径的六方氮化硼加入甲苯中,调节pH值为9,超声分散4h,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;氨基黏土、六方氮化硼、甲苯的质量比为40:8:100;
(2)将微纳米复合填料加入质量浓度为4%的1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌8min,然后静置25min,再过滤,真空干燥,得到表面修饰复合填料;1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的用量为微纳米复合填料质量的12倍;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到厚度为0.01mm的农用保水地膜;聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为5:0.2:100。
对比例1
制备过程中,未使用纳米级粒径的六方氮化硼,直接将微米级粒径的氨基黏土加入1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中并进行后续制备过程,其他制备条件与实施例4一致。
对比例2
制备过程中,未使用1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液进行表面修饰,直接以未表面修饰的微纳米复合填料进行后续制备过程,其他制备条件与实施例4一致。
上述实施例和对比例中,使用的氨基黏土为铁氨基黏土,粒径范围为100-120μm;使用的六方氮化硼的平均粒径为250nm;使用的PBAT中,己二酸丁二醇酯、对苯二甲酸丁二醇酯的摩尔比例为1:1,PBAT的数均分子量为7.2×104
水蒸汽透过率测试:参照GB/T 1037-2021,使用水蒸气透过率测试仪进行测试。将上述实施例和对比例的地膜分别切割成面积为33.2cm2的圆形样品,将样品与适量的超纯水一起放入样品架,置于测试仪的样品室内,测试每个样品的水蒸气透过率,每个样品测试2次计算平均值。测试参数为:输出气压为4-5MPa,自动干燥过滤器的压力为0.3-0.35MPa,温度为38℃,相对湿度为90%。所得数据如表1所示。
表1:
Figure DEST_PATH_IMAGE002

Claims (10)

1.一种高阻隔、可降解农用保水地膜的制备方法,其特征在于,所述农用保水地膜制备的具体步骤如下:
(1)将微米级粒径的层状氨基黏土、纳米级粒径的层状六方氮化硼加入甲苯中,调节pH值为9-10,超声分散一定时间,再过滤,真空干燥,得到负载六方氮化硼的氨基黏土,即微纳米复合填料;
(2)将微纳米复合填料加入1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液中,先搅拌一定时间,然后静置一定时间,再过滤,真空干燥,得到表面修饰复合填料;
(3)将聚己二酸对苯二甲酸丁二醇酯加入二氯甲烷中,搅拌至充分溶解,加入表面修饰复合填料,搅拌均匀,然后进行流延成膜,二氯甲烷完全挥发后喷洒去离子水,揭膜,真空干燥,得到所述农用保水地膜。
2.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(1)中,所述氨基黏土包括但不限于镁氨基黏土、钙氨基黏土、铝氨基黏土、铁氨基黏土、铜氨基黏土、锌氨基黏土、锰氨基黏土中的一种或几种。
3.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(1)中,所述氨基黏土的粒径为100-150μm,所述六方氮化硼的粒径为100-300nm。
4.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(1)中,氨基黏土、六方氮化硼、甲苯的质量比为30-40:4-8:100。
5.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(1)中,所述超声分散的超声频率为25-30kHz,分散时间为2-4h。
6.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(2)所述1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的质量浓度为3-5%。
7.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(2)中,所述1H,1H,2H,2H-全氟癸基硫醇的乙醚溶液的用量为微纳米复合填料质量的至少10倍。
8.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(2)中,所述搅拌的时间为5-10min,所述静置的时间为20-30min。
9.根据权利要求1所述一种高阻隔、可降解农用保水地膜的制备方法,其特征在于:步骤(3)中,聚己二酸对苯二甲酸丁二醇酯、表面修饰复合填料、二氯甲烷的质量比为3-5:0.1-0.2:100。
10.权利要求1-9任一项所述制备方法制备得到的高阻隔、可降解农用保水地膜。
CN202210644480.XA 2022-06-09 2022-06-09 一种高阻隔、可降解农用保水地膜及制备方法 Active CN114891251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210644480.XA CN114891251B (zh) 2022-06-09 2022-06-09 一种高阻隔、可降解农用保水地膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210644480.XA CN114891251B (zh) 2022-06-09 2022-06-09 一种高阻隔、可降解农用保水地膜及制备方法

Publications (2)

Publication Number Publication Date
CN114891251A true CN114891251A (zh) 2022-08-12
CN114891251B CN114891251B (zh) 2023-12-22

Family

ID=82728492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210644480.XA Active CN114891251B (zh) 2022-06-09 2022-06-09 一种高阻隔、可降解农用保水地膜及制备方法

Country Status (1)

Country Link
CN (1) CN114891251B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253974A (zh) * 2023-03-31 2023-06-13 广东省科学院生物与医学工程研究所 一种生物可降解除草地膜产品及其制备方法
CN116285066A (zh) * 2023-03-31 2023-06-23 广东省科学院生物与医学工程研究所 一种不含化学除草剂的除草地膜产品及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018649A (ja) * 2002-06-14 2004-01-22 Unitika Ltd ガスバリア性組成物、コート剤およびフィルム
JP2006077089A (ja) * 2004-09-08 2006-03-23 Unitika Ltd ガスバリア性組成物前駆体、組成物、およびガスバリア性フィルム
WO2007027027A1 (en) * 2005-08-30 2007-03-08 Lg Chem, Ltd. Biodegradable polyester composition having barrier property
US20120308761A1 (en) * 2009-12-24 2012-12-06 Hajime Tsuda Clay film composite
KR101476157B1 (ko) * 2013-06-24 2014-12-26 인하대학교 산학협력단 철-아미노점토로 자가조립된 그래핀 산화물 및 이의 제조 방법
WO2016095370A1 (zh) * 2014-12-17 2016-06-23 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN107033557A (zh) * 2017-03-16 2017-08-11 华南理工大学 一种阻隔性pbat复合薄膜及其制备方法与应用
US20170245494A1 (en) * 2014-10-15 2017-08-31 Terraverdae Bioworks Inc. Bioactive biopolymer films and coatings
CN109126205A (zh) * 2018-09-28 2019-01-04 赵宏伟 一种油水分离用ps/pmma仿生超疏水膜的制备方法
CN109880267A (zh) * 2019-01-30 2019-06-14 华南理工大学 一种高阻氧性聚合物纳米复合膜及其制备方法
CN112250899A (zh) * 2020-09-30 2021-01-22 浙江大学衢州研究院 一种高气体阻隔性生物可降解的取向复合薄膜
WO2021112396A1 (ko) * 2019-12-04 2021-06-10 한화솔루션 주식회사 생분해성 수지 조성물 및 그 제조방법
WO2022104949A1 (zh) * 2020-11-23 2022-05-27 中国科学院深圳先进技术研究院 导热复合材料及其制备方法
CN114574071A (zh) * 2022-03-10 2022-06-03 中国科学院兰州化学物理研究所 一种具有多尺度结构稳定超双疏防结冰涂层的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018649A (ja) * 2002-06-14 2004-01-22 Unitika Ltd ガスバリア性組成物、コート剤およびフィルム
JP2006077089A (ja) * 2004-09-08 2006-03-23 Unitika Ltd ガスバリア性組成物前駆体、組成物、およびガスバリア性フィルム
WO2007027027A1 (en) * 2005-08-30 2007-03-08 Lg Chem, Ltd. Biodegradable polyester composition having barrier property
US20120308761A1 (en) * 2009-12-24 2012-12-06 Hajime Tsuda Clay film composite
KR101476157B1 (ko) * 2013-06-24 2014-12-26 인하대학교 산학협력단 철-아미노점토로 자가조립된 그래핀 산화물 및 이의 제조 방법
US20170245494A1 (en) * 2014-10-15 2017-08-31 Terraverdae Bioworks Inc. Bioactive biopolymer films and coatings
WO2016095370A1 (zh) * 2014-12-17 2016-06-23 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN107033557A (zh) * 2017-03-16 2017-08-11 华南理工大学 一种阻隔性pbat复合薄膜及其制备方法与应用
CN109126205A (zh) * 2018-09-28 2019-01-04 赵宏伟 一种油水分离用ps/pmma仿生超疏水膜的制备方法
CN109880267A (zh) * 2019-01-30 2019-06-14 华南理工大学 一种高阻氧性聚合物纳米复合膜及其制备方法
WO2021112396A1 (ko) * 2019-12-04 2021-06-10 한화솔루션 주식회사 생분해성 수지 조성물 및 그 제조방법
CN112250899A (zh) * 2020-09-30 2021-01-22 浙江大学衢州研究院 一种高气体阻隔性生物可降解的取向复合薄膜
WO2022104949A1 (zh) * 2020-11-23 2022-05-27 中国科学院深圳先进技术研究院 导热复合材料及其制备方法
CN114574071A (zh) * 2022-03-10 2022-06-03 中国科学院兰州化学物理研究所 一种具有多尺度结构稳定超双疏防结冰涂层的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
明思逸;陈港;严俊芳;何嘉皓;朱家添;刘映尧;方志强;: "透明阻燃纳米纤维素/黏土复合薄膜的制备和性能", 材料研究学报, no. 11, pages 76 - 82 *
范小雨;王可;孙仕勇;马彪彪;吕瑞;: "铁氨基黏土纳米结构脂肪酶的构筑及催化特性", 高等学校化学学报, no. 12, pages 94 - 102 *
谢东;张玉欣;崔跃飞;贾志欣;陈骏佳;: "PBAT/纳米蒙脱土复合薄膜的制备及水蒸气阻隔性能研究", 塑料科技, no. 10, pages 30 - 34 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253974A (zh) * 2023-03-31 2023-06-13 广东省科学院生物与医学工程研究所 一种生物可降解除草地膜产品及其制备方法
CN116285066A (zh) * 2023-03-31 2023-06-23 广东省科学院生物与医学工程研究所 一种不含化学除草剂的除草地膜产品及其制备方法

Also Published As

Publication number Publication date
CN114891251B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN114891251A (zh) 一种高阻隔、可降解农用保水地膜及制备方法
FR3098443A1 (fr) Un film composite biodégradable entièrement à haute résistance mécanique, sa technologie de traitement et son application
Nassar et al. Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging
CA2962846C (en) Bio-polymer mulch film and process for manufacturing same
JP3064611B2 (ja) 農業用被覆フィルム
CN102942770A (zh) 一种可完全生物降解的农用地膜
JP3612136B2 (ja) ポリオレフィン系樹脂組成物および積層フィルム
CN115678072B (zh) 一种可生物降解地膜及其制备方法
CN109180971A (zh) 一种保水环保木质素-淀粉-红麻复合地膜及制备方法
CN110117413B (zh) 高原蔬菜种植用可降解地膜及其制备方法和应用
CN109251488A (zh) 一种可生物降解的转光膜及其制备方法
CN110483961A (zh) 一种全降解地膜及其制备方法
Wang et al. State-of-the-art luminescent materials based on wood veneer with superior strength, transparency, and water resistance
KR20200113894A (ko) 생분해성 고분자 조성물, 그를 포함하는 멀칭 필름 및 그의 제조방법
CN109438943A (zh) 一种环保农用地膜的制备方法
CN113841551A (zh) 一种花生种植用全生物降解地膜
Wadgaonkar et al. Enhancement of mechanical and barrier properties of LLDPE composite film via PET fiber incorporation for agricultural application.
CN112280073B (zh) 一种多功能薄膜的制备方法
Wang et al. Fabrication, property, and application of Lignin-Based nanocomposites
KR101923865B1 (ko) 농업용 반사필름 및 이의 제조방법
CN106009710A (zh) 一种农用地膜及其生产工艺
Yu et al. Improving photostability and antifungal performance of bamboo with nanostructured zinc oxide
CN113999509B (zh) 一种改性纳米纤维素与聚乳酸复合膜及其制备方法和应用
CN117126517B (zh) 一种环境可控降解地膜及其在除草中的应用
CN112852172B (zh) 一种全生物降解多重交联明胶基农用地膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231121

Address after: 1104, 1st Floor, Building 11, Tangjiafen Village, Wangsiying Guanzhuang Brigade, Chaoyang District, Beijing (Warehouse of Beijing Wangfujing Department Store (Group) Co., Ltd.), 100020

Applicant after: Future Super Bio Environmental Protection Technology (Beijing) Co.,Ltd.

Address before: 710000 No.8 Dongyi Road, Yanta District, Xi'an City, Shaanxi Province

Applicant before: Wang Xinhua

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant