WO2021112396A1 - 생분해성 수지 조성물 및 그 제조방법 - Google Patents

생분해성 수지 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2021112396A1
WO2021112396A1 PCT/KR2020/014257 KR2020014257W WO2021112396A1 WO 2021112396 A1 WO2021112396 A1 WO 2021112396A1 KR 2020014257 W KR2020014257 W KR 2020014257W WO 2021112396 A1 WO2021112396 A1 WO 2021112396A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable resin
resin composition
weight
starch
film
Prior art date
Application number
PCT/KR2020/014257
Other languages
English (en)
French (fr)
Inventor
임유정
정유정
박정현
장재규
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to US17/782,049 priority Critical patent/US20230340238A1/en
Priority to EP20897115.0A priority patent/EP4071212A4/en
Priority to CN202080081903.0A priority patent/CN114729165A/zh
Priority to JP2022533130A priority patent/JP7431326B2/ja
Publication of WO2021112396A1 publication Critical patent/WO2021112396A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a biodegradable resin composition and a method for producing the same, and more particularly, to a technology for improving biodegradability, including polyethylene, biodegradable resin, and polybutylene adipate terephthalate (PBAT).
  • PBAT polybutylene adipate terephthalate
  • plastics Due to its excellent physical properties and cheap and light characteristics, plastics have been developed with various polymers centered on plastics beyond the limits of natural materials and have built modern scientific civilization. Plastics are characterized by being strong, light, tough, and not easily decomposed, and due to these properties, they are used in a variety of ways, from industrial materials to disposable materials. Research has been conducted for a long time to further improve the toughness and durability of synthetic resins such as plastics, and these efforts are still ongoing.
  • environmental pollution by plastic waste is becoming a serious problem, for example, due to the detection of highly toxic dioxins and leakage of environmental hormones, not only the social demand for eco-friendly plastics, but also the legal regulations of each country on the use of non-degradable plastics. standards are also getting tighter. In order to solve this problem, the development of biodegradable polymers is being treated as a very important matter, and it is attracting attention as an important field in the plastics industry.
  • degradable plastic refers to a plastic whose chemical structure is significantly changed for a certain period of time under specific environmental conditions according to the American Society for Testing and Materials (ASTM) in the United States, and the change in properties can be measured by a standard test method. It can be divided into collapsible and biodegradable plastics.
  • the photodegradable plastic refers to a plastic that is decomposed by light in the form of photooxidation or ketone photolysis.
  • photodegradable plastic is decomposed by light, there is a disadvantage that it is not decomposed when buried in the ground where light is blocked.
  • Biodegradable plastics are partially degradable plastics manufactured by adding a certain amount of biodegradable substances such as starch to non-degradable general-purpose resins (polyethylene, polypropylene, etc.). In Korea, biodegradable plastics are used to avoid confusion with biodegradable plastics.
  • the term plastic is used to separate them.
  • the biodegradable plastic generally refers to a plastic in which the plastic itself is completely decomposed into water and carbon dioxide or water and methane gas by microorganisms present in nature such as bacteria, algae, and mold.
  • biodegradable plastics or biodegradable plastics were mainly used, but recently, the development of biodegradable plastics is being treated as an important issue. Since it can provide cleanliness that can be completely decomposed into water and carbon dioxide only by microorganisms in nature, the global trend is also being developed as biodegradable plastics dominate.
  • thermoplastic film composition comprising a polymer blend of an immiscible polymer component.
  • the composition comprises a plasticized natural polymer, a polyolefin, a biodegradable polymer and a compatibilizer in the same polymer molecule.
  • the plasticized natural component and the biodegradable polymer component form the majority phase and the petroleum-based olefin polymer forms the minor phase.
  • the composition can be made into a film comprising a renewable natural polymer component.
  • Korean Patent Application Laid-Open No. 10-2017-0075052 (i) biodegradable resin (ii) starch in which at least one of the hydroxyl groups (-OH groups) of the glucose unit is hydrophobized with silane (iii) biodegradable polymer
  • a resin composition for a mulching film comprising any one or two or more compatibilizers selected from the group consisting of a graft copolymer grafted with maleic anhydride (MA), an epoxidized oil, and a polyfunctional compound having an epoxy group and its films are disclosed. Accordingly, the processability and mulching functionality of the film can be improved, and the tensile strength and tensile elongation of the film are improved.
  • Patent Document 1 Korean Patent Publication No. 10-2018-0023037 (2018.03.06)
  • Patent Document 2 Korean Patent Publication No. 10-2017-0075052 (2017.07.03)
  • An object of the present invention is to solve all of the above-mentioned problems.
  • An object of the present invention is to improve the compatibility of a biodegradable resin composition and thereby improve the degradability of polyethylene.
  • the characteristic configuration of the present invention is as follows.
  • a biodegradable resin composition comprising 10 to 70% by weight of polyethylene, 10 to 60% by weight of a biodegradable resin, and 10 to 50% by weight of polybutylene adipate terephthalate (PBAT). .
  • PBAT polybutylene adipate terephthalate
  • a biodegradable film containing the resin composition containing the resin composition.
  • the film may be applied to at least one selected from an industrial film, a food film, an agricultural film, and a household film.
  • biodegradable prepared by a melt blending method
  • PBAT polybutylene adipate terephthalate
  • the melt blending is provided by using at least one selected from an extruder, a kneader, a Brabender plastic coder, a mixing roll, and a mixer.
  • the biodegradable resin composition according to the present invention improves compatibility by providing a combination of three components including polyethylene, biodegradable resin, and polybutylene adipate terephthalate (PBAT), thereby improving the degradability of polyethylene. do.
  • PBAT polybutylene adipate terephthalate
  • a film comprising the biodegradable resin composition according to the present invention
  • it can be applied to various fields such as industrial, food, agricultural, etc., and provides excellent biodegradability, thereby contributing to solving environmental problems.
  • Example 1 is a data value showing molecular weight reduction according to Example 1.
  • Example 2 is a data value showing molecular weight reduction according to Example 2.
  • Example 3 is a data value showing molecular weight reduction according to Example 3.
  • FIG. 6 is a photograph comparing the decomposition properties of a film including a resin composition according to a comparative example and an embodiment.
  • LLDPE 45% by weight of LLDPE (M2010EA from Hanwha Chemical), 15% by weight of PBAT (SOLPOL-1000 from GIOSOLTEC), and 40% by weight of TPS (Bionyl from Daesang) were mixed to prepare a mixture as shown in Table 1 below.
  • the prepared mixture was put in an extruder and heated at a mixing zone temperature of 190° C. to prepare a biodegradable resin composition, and then directly extruded to prepare a blown film.
  • the blown film processing conditions are a screw (screw) of 40mm ⁇ , a die (die) of 75mm ⁇ , and a die gap (die gap) of 2mm.
  • the screw speed is 180rpm.
  • Example 2 The same procedure as in Example 1 was performed, except that 25 wt% of PBAT (GIOSOLTEC's SOLPOL-1000) and 30 wt% of TPS were included.
  • Example 2 The same procedure as in Example 1 was carried out except that 40 wt% of PBAT (GIOSOLTEC’s SOLPOL-1000) and 15 wt% of TPS were included.
  • the biodegradable resin composition was prepared in the same manner as in Example 1, except that 45 wt% of LLDPE (M2010EA, Hanwha Chemical) and 55 wt% of TPS (Bionyl, Daesang) were included.
  • the biodegradable resin composition was prepared in the same manner as in Example 1, except that 45 wt% of LLDPE (M2010EA from Hanwha Chemical) and 55 wt% of PBAT (SOLPOL-1000 from GIOSOLTEC) were included.
  • Films according to Examples and Comparative Examples having a composition ratio according to Table 1 were buried in soil to observe changes in molecular weight, weight, and thickness ratio before and after embedding.
  • a constant temperature and moisture content to activate the growth of microorganisms are important, and a temperature of 58 °C and a moisture content of 50% are maintained by using a thermo-hygrostat under standard composting conditions.
  • FIGS. 1 to 3 which are the results according to the embodiment according to the present invention, it is confirmed that the molecular weight is significantly reduced after 60 days of embedding compared to FIGS. 4 and 5, which are the results of Comparative Examples 1 and 2 did.
  • the graph value shifts from 1.00E+05 to 1.004E+04.
  • the molecular weight of polyethylene is 1,000,000 g/mol, it is possible to confirm the excellent decomposition effect of polyethylene through reduction of large molecular weight.
  • excellent biodegradability can be provided despite the relatively high content of hardly degradable polyethylene as 45 wt%.
  • a resin composition including three components of polyethylene, a biodegradable resin and polybutylene adipate terephthalate (PBAT) is provided to improve compatibility, thereby providing the effect of improving the degradability of polyethylene.
  • PBAT polybutylene adipate terephthalate
  • the film comprising the biodegradable resin composition according to the present invention can be applied to various fields such as industrial, food, agricultural, etc., and can be expected to contribute to solving environmental problems by providing excellent biodegradability.
  • Biodegradable of the present invention means a plastic that is decomposed into water and CO 2 or CH 4 by microorganisms such as bacteria, algae, and mold. It means that the molecular weight is reduced by not only the physical breakdown of molded products such as plastics, but also the main chain cutting of the polymer.
  • a biodegradable resin composition through a combination of three components including polyethylene, biodegradable resin and polybutylene adipate terephthalate (PBAT).
  • PBAT polybutylene adipate terephthalate
  • Polyethylene is inexpensive and has excellent mechanical properties and processability, but it is a major cause of environmental pollution in the environment due to its recalcitrance. Accordingly, in the present invention, in order to improve biodegradability while maintaining excellent mechanical properties and processability of polyethylene, a biodegradable resin and polybutylene adipate terephthalate (PBAT) are provided.
  • PBAT polybutylene adipate terephthalate
  • a biodegradable resin composition comprising 10 to 70% by weight of polyethylene, 10 to 60% by weight of a biodegradable resin, and 10 to 50% by weight of polybutylene adipate terephthalate (PBAT).
  • PBAT polybutylene adipate terephthalate
  • 20 to 65% by weight of polyethylene, 15 to 40% by weight of a biodegradable resin and 15 to 40% by weight of polybutylene adipate terephthalate (PBAT) are provided, more preferably 40 to 60% by weight of polyethylene , 20 to 40% by weight of a biodegradable resin and 15 to 30% by weight of polybutylene adipate terephthalate (PBAT).
  • the polyethylene is high-density polyethylene (HDPE, High Density Polyethylene), very-low-density polyethylene (VLDPE, Very-low-density polyethylene), low-density polyethylene (LDPE, Low Density Polyethylene), medium-density polyethylene ( MDPE, Medium Density Polyethylene), Linear Low Density Polyethylene (LLDPE, Linear Low Density Polyethylene) and ethylene vinyl copolymer (EVA, Ethylene-Vinyl Acetate copolymer) It is provided including at least any one or more selected from.
  • linear low-density polyethylene (LLDPE) is provided to provide excellent impact resistance and durability.
  • the polyethylene has a weight average molecular weight of hundreds of thousands to millions, and a weight average molecular weight of 100,000 to 1,000,000, preferably 100,000 to 300,000.
  • the biodegradable resin is thermoplastic starch (TPS), polylactic acid (PLA), polycaprolactone (PCL), polybutylene succinate (PBS), polyglycolic acid (PGA), poly It is provided including at least one selected from hydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), cellulose and chitin, and may preferably provide thermoplastic starch (TPS).
  • polylactic acid, polycaprolactone, polybutylene succinate and polyglycolic acid correspond to aliphatic polyesters, and they provide excellent biodegradability by microorganisms and properties such as biocompatibility.
  • polyglycolic acid in the case of polyglycolic acid, it has excellent mechanical properties such as high strength and high heat resistance, and is particularly widely used in medical applications.
  • polyhydroxyalkanoate corresponds to polyester and is characterized by excellent biodegradability and excellent degradability under any conditions such as aerobic, anaerobic, and composting conditions.
  • polyhydroxybutyrate is a natural polyester belonging to polyhydroxyalkanoate
  • D-3-hydroxy-butyric acid is a homopolymer in which D-3-hydroxy-butyric acid is linearly linked. They provide biological functions such as starch or glycogen as energy stores synthesized in cells.
  • the cellulose, chitin and natural polymer-based polymers can be provided as eco-friendly materials due to their excellent biodegradability, easy supply, and non-toxic properties.
  • the thermoplastic starch is obtained from a plant and refers to a granular material composed of two components, amylose and amylopectin, for example, rice starch, wheat starch, corn starch, sweet potato starch, potato starch, tapioca starch, cassava starch, and modified thereof. It is provided including at least any one or more selected from starch.
  • the modified starch may be provided such as ⁇ -starch, acid-treated starch, oxidized starch, cationic starch, ester starch, ether starch, etc. obtained by physically or chemically treating starch.
  • the starch it has excellent biodegradability and is composed of amylose and amylopectin, and the glucose of amylose contains a hydroxy (-OH) group, so it has hydrophilicity and hydrogen bonding.
  • the polybutylene adipate terephthalate provides a biodegradable resin and a compatibilizer at the same time.
  • the compatibility of polyolefins is problematic because of their low kneading properties with thermoplastic starches having polar and non-polar chemical properties.
  • compatibility can be improved and excellent biodegradability of polyethylene, which is a base resin, can be provided at the same time.
  • the polybutylene adipate terephthalate has a weight average molecular weight of 10,000 to 100,000, preferably 20,000 to 50,000.
  • the melting temperature of the biodegradable resin composition is 100 °C to 130 °C, and the melt index of the resin composition is 0.01 to 10 g/10min at 2.16Kg of 190 °C based on ASTM D1238 It is provided .
  • the melt temperature may be measured by differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA), which are conventionally measured methods, and the melt index (MI) is measured by ASTM D1238.
  • a biodegradable film comprising a biodegradable resin composition.
  • the film it can be applied to at least any one or more selected from industrial films, food films, agricultural films, and daily life films, and the mechanical properties provided by plastics are provided as they are, while biodegradability is improved. Accordingly, referring to FIG. 6 to be described later, excellent decomposition properties of the film can be confirmed. Therefore, after use of the film, it can be composted in a facility with certain conditions (Compost). In addition, even if inevitably combusted, the amount of heat generated is low, so that the emission of harmful substances such as dioxins can be minimized.
  • Compost certain conditions
  • the thickness of the film may be provided in a range of 20 to 40 ⁇ m, preferably 30 ⁇ m.
  • the manufacturing method for the biodegradable resin composition is as follows.
  • the same content as the above-described biodegradable resin composition may be applied, and the description within the overlapping range will be omitted.
  • PBAT polybutylene adipate terephthalate
  • a method for preparing a biodegradable resin composition is provided.
  • 20 to 65% by weight of polyethylene, 15 to 40% by weight of biodegradable resin and 15 to 40% by weight of polybutylene adipate terephthalate (PBAT) are provided, more preferably 40 to 60% by weight of polyethylene , 20 to 40% by weight of a biodegradable resin and 15 to 30% by weight of polybutylene adipate terephthalate (PBAT).
  • the melt blending is provided using at least one selected from an extruder, a kneader, a Brabender Plasticorder, a mixing roll, and a mixer. .
  • the extruder is provided using any one or more selected from a single screw extruder, a twin screw extruder, a single screw and a twin screw extruder.
  • a twin-screw extruder may be provided to provide excellent kneading properties and easy processability.
  • the process may be performed by optimizing process conditions according to various raw materials to be input in the melt blending.
  • the melting temperature may be provided at 100°C to 300°C, preferably 160°C to 210°C, and the rotational speed of the extruder screw is provided at 40rpm to 700rpm, preferably 100rpm to 200rpm. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 생분해성 수지 조성물 및 그 제조방법에 관한 것으로, 보다 자세하게는 폴리에틸렌, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 포함하여, 생분해성을 향상시킨 기술에 관한 것이다.

Description

생분해성 수지 조성물 및 그 제조방법
본 발명은 생분해성 수지 조성물 및 그 제조방법에 관한 것으로, 보다 자세하게는 폴리에틸렌, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 포함하여, 생분해성을 향상시킨 기술에 관한 것이다.
플라스틱(plastic)은 뛰어난 물성과 함께 값싸고 가벼운 특성으로 인하여 천연소재가 가지는 한계를 벗어나 플라스틱을 중심으로 다양한 고분자물질이 개발되어 현대과학 문명을 구축해왔다. 플라스틱은 강하고 가볍고 질기며, 쉽게 분해되지 않는다는 점이 특성이 있으며 이러한 성질로 인해 산업용 소재에서부터 일회용 소재에 이르기까지 다양하게 사용되고 있다. 플라스틱과 같은 합성수지의 강인성 및 내구성을 더욱 향상시키기 위해 오랜 기간 연구가 되어오고 있으며, 이러한 노력은 지금도 계속되고 있다. 그러나, 날로 심각해지는 플라스틱 폐기물에 의한 환경오염이 문제되고 있고, 예를 들어, 맹독성 다이옥신의 검출 환경호르몬의 누출 등으로 인해 친환경 플라스틱에 대한 사회적인 요구뿐만 아니라 비분해성 플라스틱 사용에 대한 각국의 법률적인 규제의 기준도 점점 더 강화되고 있다. 이를 해결하기 위해 생분해성 고분자 개발이 매우 중요한 사항으로 다루어지고 있으며, 플라스틱 공업에서도 중요한 분야로 주목받고 있다.
일반적으로 분해성 플라스틱은 미국 ASTM(American Society for Testing and Materials)에 따르면 특정 환경 조건에서 일정기간 동안 화학적 구조가 상당히 변화되어 그 성질 변화를 표준 시험방법으로 측정할 수 있는 플라스틱을 말하며, 광분해성, 생붕괴성, 생분해성 플라스틱으로 나눌 수 있다.
보다 자세하게는 광분해성 플라스틱이란, 광산화 또는 케톤 광분해 등의 형태로 빛에 의해 분해되는 플라스틱을 말한다. 그러나, 광분해성 플라스틱은 빛에 의해 분해되므로 빛이 차단된 땅속에 매립 시 분해가 되지 않는 단점이 있다. 생붕괴성 플라스틱이란, 비분해성의 일반적인 범용수지(폴리에틸렌, 폴리프로필렌 등)에 전분 같은 생분해성 물질을 일정량 첨가하여 제조한 부분 분해성 플라스틱으로 국내의 경우 생분해성 플라스틱과의 혼동을 피하기 위해 생붕괴성 플라스틱이란 용어를 사용하여 별도로 구분하고 있다. 생분해성 플라스틱이란, 일반적으로 플라스틱 자체가 박테리아 조류 곰팡이와 같은 자연계에 존재하는 미생물에 의해 물과 이산화탄소 또는 물과 메탄가스로 완전히 분해되는 플라스틱을 말한다.
예전에는 광분해성 플라스틱 또는 생붕괴성 플라스틱이 주로 사용되었지만 최근에는 생분해성 플라스틱에 대한 개발이 중요한 사항으로 다루어지고 있다이는 원료면에서부터 천연의 식물자원을 사용하여 기존의 석유계 플라스틱과 구별될 뿐만 아니라, 자연계 내에서 미생물에 의해 물과 이산화탄소만으로 완전 분해되는 청정성을 제공할 수 있으므로 세계적인 추세도 생분해성 플라스틱이 주류를 이루면서 개발되고 있다.
예를 들어, 한국 공개특허공보 제10-2018-0023037호는 비혼화성인 폴리머 성분의 폴리머 블렌드를 포함하는 열가소성 필름 조성물을 개시한다. 상기 조성물은 가소화된 천연 폴리머, 폴리올레핀, 생분해성 폴리머 및 동일한 폴리머 분자에 상용화제를 포함한다. 가소화된 천연 성분 및 생분해성 폴리머 성분이 다수상을 페트롤륨-베이스 올레핀 폴리머가 소수상을 형성한다. 또한, 상기 조성물은 재생 가능한 천연 폴리머 성분을 포함하는 필름으로 제조가능함을 언급하고 있다.
다른 예를 들어, 한국 공개특허공보 제10-2017-0075052호 (i) 생분해성 수지 (ii) 글루코오스 단위의 수산기(-OH기) 중 적어도 하나가 실란으로 소수화 처리된 전분 (iii) 생분해성 고분자에 무수말레산(Maleic anhydride, MA)을 그라프트시킨 그라프트 공중합체, 에폭시화된 오일 및 에폭시기를 갖는 다관능성 화합물로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 상용화제를 포함하는 멀칭 필름용 수지 조성물과 그 필름에 관하여 개시하고 있다. 이에 필름의 가공성 및 멀칭 기능성을 개선시킬 수 있으며, 필름의 인장강도 및 인장신율이 향상된 것을 특징으로 한다.
상기 특허들의 경우, 대부분 2 성분의 수지를 포함하여 완전한 생분해성을 보여주기는 어려운 점에서 다소 한계가 있다. 이에, 보다 나은 물성과 동시에 우수한 생분해성을 제공하기 위해 개발 연구는 여전히 필요하다. 본 발명 역시 이러한 요구를 만족하기 위하여 오랜 연구 끝에 완성하였다.
(특허문헌 1) 한국 공개특허공보 제10-2018-0023037호 (2018.03.06)
(특허문헌 2) 한국 공개특허공보 제10-2017-0075052호 (2017.07.03)
본 발명은 상술한 문제점을 모두 해결하는 것을 목적으로 한다.
본 발명의 목적은 생분해성 수지 조성물의 상용성을 향상시키고 이에 폴리에틸렌의 분해성을 향상시키는 것이다.
본 발명의 목적은 상기 생분해성 수지 조성물을 포함한 필름을 제공하여, 공업용, 식품용, 농업용 등 다양한 분야에 적용하게 하는 것이다.
상술한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명의 일 실시예에 따르면, 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하는 생분해성 수지 조성물이 제공된다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물이 포함된 생분해성 필름이 제공된다. 상기 필름은 공업용 필름, 식품용 필름, 농업용 필름, 생활용 필름에서 선택되는 적어도 어느 하나 이상에 적용될 수 있다.
본 발명의 일 실시예에 따르면 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하여, 용융블렌딩방법으로 제조되는 생분해성 수지 조성물 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 상기 용융블렌딩은 압출기, 니더, 브라벤더 플라스티코더, 믹싱롤 및 혼합기에서 에서 선택되는 적어도 어느 하나 이상을 사용하여 제공된다.
본 발명에 따른 생분해성 수지 조성물은 폴리에틸렌, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 포함한 3 성분의 조합으로 제공하여 상용성을 향상시키고, 이에 폴리에틸렌의 분해성을 향상시키는 효과를 제공한다.
본 발명에 따른 생분해성 수지 조성물을 포함하는 필름의 경우, 공업용, 식품용, 농업용 등 다양한 분야에 적용이 가능하며, 우수한 생분해성을 제공하여 환경문제 해결에 기여하는 효과를 제공한다.
도 1은 실시예 1에 따른 분자량 감소를 보여주는 데이터 값이다.
도 2는 실시예 2에 따른 분자량 감소를 보여주는 데이터 값이다.
도 3은 실시예 3에 따른 분자량 감소를 보여주는 데이터 값이다.
도 4는 비교예 1에 따른 분자량 감소를 보여주는 데이터 값이다.
도 5는 비교예 2에 따른 분자량 감소를 보여주는 데이터 값이다.
도 6은 비교예와 실시예에 따른 수지 조성물을 포함한 필름의 분해성 비교한 사진이다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
LLDPE(한화케미칼社 M2010EA) 45 중량%, PBAT(GIOSOLTEC社 SOLPOL-1000) 15 중량% 및 TPS(대상社 바이오닐) 40 중량%를 혼합하여 하기의 표 1과 같이 혼합물을 제조하였다.
제조된 상기 혼합물을 압출기에 넣고 190℃의 믹싱존 온도에서 가열하여 생분해성 수지 조성물이 제조되었고, 곧바로 압출하여 블로운 필름(blown film)을 제조하였다. 이 때, 상기 블로운 필름 가공 조건은 스크류(screw)가 40mmΦ, 다이(die)가 75mmΦ, 다이 갭(die gap)이 2mm이다. Screw의 속도는 180rpm이다.
실시예 2
PBAT(GIOSOLTEC社 SOLPOL-1000) 25 중량% 및 TPS 30 중량%를 포함하는 점을 제외하고는 실시예 1과 동일하게 진행하였다.
실시예 3
PBAT(GIOSOLTEC社 SOLPOL-1000) 40 중량% 및 TPS 15 중량%를 포함하는 점을 제외하고는 실시예 1과 동일하게 진행하였다.
비교예 1
생분해성 수지조성물은 LLDPE(한화케미칼社 M2010EA) 45 중량% 및 TPS(대상社 바이오닐) 55 중량%를 포함하는 점을 제외하고는 실시예 1과 동일하게 진행하였다.
비교예 2
생분해성 수지조성물은 LLDPE(한화케미칼社 M2010EA) 45 중량% 및 PBAT(GIOSOLTEC社 SOLPOL-1000) 55 중량%를 포함하는 점을 제외하고는 실시예 1과 동일하게 진행하였다.
구분 비교예1 비교예2 실시예1 실시예2 실시예3
LLDPE 45 45 45 45 45
PBAT - 55 15 25 40
TPS 55 - 40 30 15
실험예
상기 표 1에 따른 조성비를 갖는 실시예와 비교예에 따른 필름을 토양에 매립하여 매립 전후 분자량, 무게 및 두께율 변화를 관찰하였다. 매립된 조건은 미생물이 증식이 활성화 될 수 있는 일정한 온도와 함수량이 중요하며, 표준 퇴비 조건 하에 항온항습기를 활용하여 온도 58 ℃ 및 함수율 50% 로 유지한다.
또한, 매립한 날로부터 60일 후에 실험을 진행하였다. 이후, 분자량의 감소에 대해서는 도 1 내지 도 5에 나타내었고, 필름의 무게 변화 및 두께율 변화에 대해서는 도 6에 나타내었다.
본 발명에 따른 실시예에 따른 결과인 도 1 내지 도 3의 결과를 참고하면, 매립 60일 후 분자량이 비교예 1 및 비교예 2의 결과인 도 4 및 도 5에 비하여 현저하게 감소함을 확인하였다. 특히, 실시예 2와 3의 경우는 1.00E+05에서 1.004E+04로 그래프 값의 이동을 확인할 수 있다. 이는 폴리에틸렌의 분자량이 1,000,000g/mol인 점에 비추어 큰 분자량의 감소를 통하여 우수한 폴리에틸렌의 분해 효과를 확인할 수 있다. 또한, 난분해성인 폴리에틸렌의 함량이 45 중량%로 비교적 높음에도 불구하고 우수한 생분해성을 제공할 수 있음을 확인할 수 있다.
더불어, 도 6의 결과를 보면, 본 발명에 따른 실시예 1 내지 3의 경우, 비교예 1과 2에 비하여 필름의 두께 변화율이 2배 이상 높은 점을 확인할 수 있었다. 또한, 무게 변화량 20% 이상으로 우수한 생분해 효과를 확인할 수 있다.
따라서, 본 발명의 경우 폴리에틸렌, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)의 3 성분을 포함한 수지 조성물을 제공하여 상용성을 향상시키고, 이에 폴리에틸렌의 분해성을 향상시키는 효과를 제공할 수 있다.
또한, 본 발명에 따른 생분해성 수지 조성물을 포함하는 필름의 경우, 공업용, 식품용, 농업용 등 다양한 분야에 적용이 가능하며, 우수한 생분해성을 제공하여 환경문제 해결에 기여함을 기대할 수 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 참조하여 상세히 설명하기로 한다.
본 발명의 생분해성(Biodegradable)이란, 박테리아, 조류, 곰팡이와 같은 미생물에 의해 물과 CO2 또는 CH4로 분해되는 플라스틱을 의미한다. 플라스틱 등의 성형 제품의 물리적 와해뿐만 아니라 고분자의 주쇄 절단에 의한 분자량 감소가 일어나는 것을 의미한다.
본 발명의 일 실시예에 따르면, 폴리에틸렌, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 포함하여 3 성분의 컴파운도 조합을 통한 생분해성 수지 조성물이 제공된다.
폴리에틸렌은 비용이 저렴하고 기계적 물성과 가공성이 우수하지만 난분해성으로 인해 환경에 있어서 환경오염의 주원인이 문제가 된다. 따라서, 본 발명에서는 폴리에틸렌의 우수한 기계적 물성과 가공성을 유지하면서 생분해성을 향상하기 위하여, 생분해성 수지 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 포함하여 제공된다.
본 발명의 일 실시예에 따르면, 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하는 생분해성 수지 조성물이 제공된다. 바람직하게는 폴리에틸렌 20 내지 65 중량%, 생분해성 수지 15 내지 40 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 15 내지 40 중량%를 포함하여 제공되며, 더욱 바람직하게는 폴리에틸렌 40 내지 60 중량%, 생분해성 수지 20 내지 40 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 15 내지 30 중량%를 포함하여 제공된다.
상기 폴리에틸렌의 함량이 65 중량%를 초과하면 생분해성 분해 효과에 문제가 있고, 20 중량% 미만인 경우 통상의 플라스틱이 제공할 수 있는 우수한 기계적 물성 및 가공성 제공에 한계가 있다. 상기 생분해성 수지의 함량이 40%를 초과하면 인장 강도(Tensile Strength)와 연신율(Elongation) 및 낙하충격 강도 등이 감소하는 문제가 있고, 15% 미만인 경우 경제적인 부분에서 불리하다. 그리고 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)가 40%를 초과하면 폴리에틸렌과 상용성 및 가공성에서 한계가 있고, 15 중량% 미만인 경우 그에 의한 생분해 효과가 미미하다. 따라서, 3 성분의 조합이 상기 범위로 제공하는 경우, 상기 범위에서 생분해성이 우수하게 제공되는 것을 확인할 수 있다. 이는 후술하는 도면의 결과를 참고로 확인이 가능하다.
본 발명의 일 실시예에 따르면, 상기 폴리에틸렌은 고밀도폴리에틸렌(HDPE, High Density Polyethylene), 초저밀도폴리에틸렌(VLDPE, Very-low-density polyethylene), 저밀도폴리에틸렌(LDPE, Low Density Polyethylene), 중간밀도폴리에틸렌(MDPE, Medium Density Polyethylene), 선형저밀도폴리에틸렌(LLDPE, Linear Low Density Polyethylene) 및 에틸렌비닐공중합체(EVA, Ethylene-Vinyl Acetate copolymer)에서 선택된 적어도 어느 하나 이상을 포함하여 제공된다. 바람직하게는 선형저밀도폴리에틸렌(LLDPE)이 제공되어 우수한 내충격성과 내구성 등을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 폴리에틸렌의 중량평균분자량은 수십만 내지 수백만으로 제공되며, 중량평균분자량은 100,000 내지 1,000,000으로 제공되며, 바람직하게는 100,000 내지 300,000으로 제공된다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지는 열가소성 전분(TPS), 폴리락트산(PLA), 폴리카프로락톤(PCL), 폴리부틸렌석시네이트(PBS), 폴리글리콜산(PGA), 폴리하이드록시알카노에이트(PHA), 폴리하이드록시부틸레이트(PHB), 셀룰로오스 및 키틴에서 선택되는 적어도 어느 하나 이상을 포함하여 제공되며, 바람직하게는 열가소성 전분(TPS)를 제공할 수 있다.
상기 폴리락트산, 폴리카프로락톤, 폴리부틸렌석시네이트 및 폴리글리콜산은 지방족 폴리에스터에 해당하며 이들은 미생물에 의한 생분해성이 우수하고 생체적합성 등의 특성을 제공한다. 특히, 폴리글리콜산의 경우, 고강도 및 고내열성 등의 기계적 물성이 우수하여 의료용에서 특히 많이 활용되고 있다.
상기 폴리하이드록시알카노에이트는 폴리에스테르에 해당하고 우수한 생분해성과 호기, 혐기, 퇴비 조건 등의 어떤 조건이라도 분해성이 우수한 것이 특징이다. 또한, 폴리하이드록시부틸레이트는 천연 폴리에스터로 폴리하이드록시알카노에이트에 속하며 D-3-하이드록시-부틸릭산(D-3-hydroxy-butyric acid)이 직선상으로 연결된 단일 중합체이며 매우 다양한 세균들이 세포 내에 합성하는 에너지 저장물로서 녹말(starch) 또는 글리코겐(glycogen)과 같은 생물학적 기능을 제공한다.
상기 셀룰로오스, 키틴과 천연고분자계 고분자의 경우, 생분해도가 우수하고 공급이 용이하며 무독성 같은 특성으로 인해 친환경 소재로 제공될 수 있다.
상기 열가소성 전분은 식물로부터 얻어지며, 아밀로스와 아밀로펙틴 두 성분으로 이루어지는 과립상의 물질을 말하는 것으로 예를 들어서, 쌀전분, 밀전분, 옥수수전분, 고구마전분, 감자전분, 타피오카전분, 카사바전분 및 이들의 변성 전분에서 선택되는 적어도 어느 하나 이상을 포함하여 제공된다. 변성 전분이라 함은 전분에 물리적 또는 화학적 처리를 한 α-전분, 산처리전분, 산화전분, 양성전분, 에스테르전분, 에테르전분 등과 같이 제공될 수 있다. 상기 전분의 경우 생분해성이 우수하고 아밀로스와 아밀로펙틴을 구성되고 아밀로스의 글루코스에는 하이드록시(-OH)기를 포함하고 있어 친수성과 수소결합을 포함하고 있다.
본 발명의 일 실시예에 따르면, 상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)의 경우, 생분해성 수지이면서 동시에 상용화제 역할을 제공한다. 통상적으로 폴리올레핀은 화학적 성질이 비극성으로 극성을 갖는 열가소성 전분과의 혼련성이 적어 상용성이 문제되었다. 상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)를 도입함으로써 상용성을 향상시키면서 Base 수지인 폴리에틸렌의 우수한 생분해성을 동시에 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)의 중량평균분자량은 10,000 내지 100,000으로 제공되며, 바람직하게는 20,000 내지 50,000으로 제공된다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물의 용융온도는 100℃ 내지 130℃이며 상기 수지 조성물의 용융지수는 ASTM D1238기준으로 190℃의 2.16Kg에서 0.01 내지 10 g/10min으로 제공된다. 상기 용융 온도는 통상적으로 측정되는 방법인 시차 열량계(DSC, Differential Scanning Calorimetry) 또는 동적 점탄성(DMA, dynamic mechanical analysis)로 측정될 수 있고, 상기 용융지수(MI)는 ASTM D1238에 의해 측정된다.
본 발명의 일 실시예에 따르면, 생분해성 수지 조성물을 포함하는 생분해성 필름이 제공된다.
상기 필름의 경우, 공업용 필름, 식품용 필름, 농업용 필름, 생활용 필름에서 선택되는 적어도 어느 하나 이상에 적용이 가능하며, 기존에 플라스틱이 제공하는 기계적 물성은 그대로 제공하면서 생분해성은 향상되어 제공된다. 이에 후술할 도 6을 참고하면, 필름의 우수한 분해성을 확인할 수 있다. 따라서, 필름의 사용 후, 일정 조건을 갖춘 시설(Compost)에서 퇴비화될 수 있다. 또한, 부득이 연소시키더라도 발생 열량이 낮아서 다이옥신 등 유해물질의 방출을 최소화할 수 있다.
본 발명의 일 실시예에 따르면, 상기 필름의 두께는 20 내지 40㎛으로 제공될 수 있고, 바람직하게는 30㎛로 제공될 수 있다.
한편, 상기 조성물을 포함하여, 생분해성 수지 조성물에 대한 제조방법은 다음과 같다. 또한, 전술한 생분해성 수지 조성물과 동일한 내용이 적용될 수 있고, 중복되는 범위 내에서 설명은 생략하도록 한다.
본 발명의 일 실시예에 따르면, 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하여, 용융블렌딩방법으로 제조되는 생분해성 수지 조성물 제조방법이 제공된다. 바람직하게는 폴리에틸렌 20 내지 65 중량%, 생분해성 수지 15 내지 40 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 15 내지 40 중량%를 포함하여 제공되며, 더욱 바람직하게는 폴리에틸렌 40 내지 60 중량%, 생분해성 수지 20 내지 40 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 15 내지 30 중량%를 포함하여 제공된다.
본 발명의 일 실시예에 따르면, 상기 용융블렌딩은 압출기, 니더(Kneader), 브라벤더 플라스티코더(Brabender Plasticorder), 믹싱롤(Mixing Roll) 및 혼합기에서 선택되는 적어도 어느 하나 이상을 사용하여 제공된다.
본 발명의 일 실시예에 따르면, 상기 압출기는 일축 압출기, 이축 압출기, 일축 스크류 및 이축 스크류 압출기에서 선택된 어느 하나 이상을 사용하여 제공된다. 바람직하게는 이축 압출기을 제공하여 우수한 혼련성과 용이한 가공성을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 용융 블렌딩에서 투입하게 되는 각종 원료 물질에 따라서 공정 조건을 최적화시켜 공정을 진행할 수 있다. 용융 온도는 100℃ 내지 300℃가 제공될 수 있으며, 바람직하게는 160℃ 내지 210℃가 제공되며, 압출기 스크류의 회전 속도는 40rpm 내지 700rpm으로 제공되며, 바람직하게는 100rpm 내지 200rpm으로 제공될 수 있다.

Claims (13)

  1. 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하는 생분해성 수지 조성물.
  2. 제1항에 있어서,
    상기 폴리에틸렌은 고밀도폴리에틸렌(HDPE), 저밀도폴리에틸렌(LDPE), 중간밀도폴리에틸렌(MDPE), 선형저밀도폴리에틸렌(LLDPE) 및 에틸렌비닐공중합체(EVA)에서 선택된 적어도 어느 하나 이상을 포함하는 생분해성 수지 조성물.
  3. 제1항에 있어서,
    상기 생분해성 수지는 열가소성 전분(TPS), 폴리락트산(PLA), 폴리카프로락톤(PCL), 폴리부틸렌석시네이트(PBS), 폴리글리콜산(PGA), 폴리하이드록시알카노에이트(PHA), 폴리하이드록시부틸레이트(PHB), 셀룰로오스 및 키틴에서 선택되는 적어도 어느 하나 이상을 포함하는 생분해성 수지 조성물.
  4. 제3항에 있어서,
    상기 열가소성 전분은 쌀전분, 밀전분, 옥수수전분, 고구마전분, 감자전분, 타피오카전분, 카사바전분 및 이들의 변성 전분에서 선택되는 적어도 어느 하나 이상을 포함하는 생분해성 수지 조성물.
  5. 제1항에 있어서,
    상기 폴리에틸렌의 중량평균분자량은 100,000 내지 1,000,000인 생분해성 수지 조성물.
  6. 제1항에 있어서,
    상기 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)의 중량평균분자량은 10,000 내지 100,000인 생분해성 수지 조성물.
  7. 제1항에 있어서,
    상기 생분해성 수지 조성물의 용융온도는 100℃ 내지 130℃이며, 용융지수는 ASTM D1238기준으로 190℃의 2.16Kg에서 0.01 내지 10g/10min 인 생분해성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 생분해성 수지 조성물을 포함하는 생분해성 필름.
  9. 제8항에 있어서,
    상기 필름은 공업용 필름, 식품용 필름, 농업용 필름, 생활용 필름에서 선택되는 적어도 어느 하나 이상에 적용이 가능한 생분해성 필름.
  10. 폴리에틸렌 10 내지 70 중량%, 생분해성 수지 10 내지 60 중량% 및 폴리부틸렌 아디페이트 테레프탈레이트(PBAT) 10 내지 50 중량%를 포함하여, 용융블렌딩방법으로 제조되는 생분해성 수지 조성물 제조방법.
  11. 제10항에 있어서,
    상기 용융블렌딩은 160℃ 내지 210℃에서 진행되는 생분해성 수지 조성물 제조방법.
  12. 제10항에 있어서,
    상기 용융블렌딩은 압출기, 니더, 브라벤더 플라스티코더, 믹싱롤 및 혼합기에서 선택되는 적어도 어느 하나 이상을 사용하는 생분해성 수지 조성물 제조방법.
  13. 제10항에 있어서
    상기 압출기는 일축 압출기, 이축 압출기, 일축 스크류 및 이축 스크류 압출기에서 선택된 어느 하나 이상을 사용하는 생분해성 수지 조성물 제조방법.
PCT/KR2020/014257 2019-12-04 2020-10-19 생분해성 수지 조성물 및 그 제조방법 WO2021112396A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/782,049 US20230340238A1 (en) 2019-12-04 2020-10-19 Biodegradable resin composition and production method therefor
EP20897115.0A EP4071212A4 (en) 2019-12-04 2020-10-19 BIODEGRADABLE RESIN COMPOSITION AND PRODUCTION METHOD THEREFOR
CN202080081903.0A CN114729165A (zh) 2019-12-04 2020-10-19 生物降解性树脂组合物及其制备方法
JP2022533130A JP7431326B2 (ja) 2019-12-04 2020-10-19 生分解性樹脂組成物及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190159946A KR20210070002A (ko) 2019-12-04 2019-12-04 생분해성 수지 조성물 및 그 제조방법
KR10-2019-0159946 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021112396A1 true WO2021112396A1 (ko) 2021-06-10

Family

ID=76222057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014257 WO2021112396A1 (ko) 2019-12-04 2020-10-19 생분해성 수지 조성물 및 그 제조방법

Country Status (6)

Country Link
US (1) US20230340238A1 (ko)
EP (1) EP4071212A4 (ko)
JP (1) JP7431326B2 (ko)
KR (1) KR20210070002A (ko)
CN (1) CN114729165A (ko)
WO (1) WO2021112396A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754948A (zh) * 2021-09-28 2021-12-07 周中华 一种低熔点可降解消防用灭火液包装袋及其制备工艺
CN114773723A (zh) * 2022-03-21 2022-07-22 盘锦海兴科技股份有限公司 一种可降解的聚丙烯塑料及其制备方法和应用
CN114891251A (zh) * 2022-06-09 2022-08-12 王新华 一种高阻隔、可降解农用保水地膜及制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210070641A (ko) * 2019-12-05 2021-06-15 한화솔루션 주식회사 생분해성 수지 조성물 및 그 제조방법
TWI775537B (zh) * 2021-07-21 2022-08-21 南亞塑膠工業股份有限公司 生物可分解保鮮膜
WO2024049271A1 (ko) * 2022-09-01 2024-03-07 주식회사 엘지화학 폴리머 조성물
KR102523278B1 (ko) * 2022-09-02 2023-04-25 주식회사 바른생활 내구성, 항균성 및 생분해성이 우수한 수세미의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067128A (ja) * 2011-09-26 2013-04-18 Krh Kk ストレッチフィルム製品
KR20170073819A (ko) * 2015-12-18 2017-06-29 주식회사 현진피오피 고분자 수지 분해조절을 위한 복합분해 제어용 수지조성물, 이를 이용한 필름 및 발포시트
KR20170075052A (ko) 2015-12-22 2017-07-03 롯데정밀화학 주식회사 멀칭 필름용 수지 조성물 및 이를 이용하여 제조된 생분해성 멀칭 필름
KR20180023037A (ko) 2009-12-31 2018-03-06 킴벌리-클라크 월드와이드, 인크. 천연 바이오폴리머 열가소성 필름
KR20190067320A (ko) * 2017-12-07 2019-06-17 전상민 친환경 분해성 고분자 수지 조성물 및 이를 이용하여 제조된 필름

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241838B2 (en) * 2003-12-19 2007-07-10 Eastman Chemical Company Blends of aliphatic-aromatic copolyesters with ethylene-vinyl acetate copolymers
JP2008213870A (ja) * 2007-03-01 2008-09-18 Okamoto Kasei Kk ひねり結束用変形形状保持体
KR20160147804A (ko) * 2014-04-09 2016-12-23 사우디 베이식 인더스트리즈 코포레이션 사일리지 필름
CN110511544B (zh) * 2019-09-06 2021-06-11 三明百事达淀粉有限公司 一种生物可降解透气复合膜及其制备方法
KR20210070641A (ko) * 2019-12-05 2021-06-15 한화솔루션 주식회사 생분해성 수지 조성물 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180023037A (ko) 2009-12-31 2018-03-06 킴벌리-클라크 월드와이드, 인크. 천연 바이오폴리머 열가소성 필름
JP2013067128A (ja) * 2011-09-26 2013-04-18 Krh Kk ストレッチフィルム製品
KR20170073819A (ko) * 2015-12-18 2017-06-29 주식회사 현진피오피 고분자 수지 분해조절을 위한 복합분해 제어용 수지조성물, 이를 이용한 필름 및 발포시트
KR20170075052A (ko) 2015-12-22 2017-07-03 롯데정밀화학 주식회사 멀칭 필름용 수지 조성물 및 이를 이용하여 제조된 생분해성 멀칭 필름
KR20190067320A (ko) * 2017-12-07 2019-06-17 전상민 친환경 분해성 고분자 수지 조성물 및 이를 이용하여 제조된 필름

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071212A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754948A (zh) * 2021-09-28 2021-12-07 周中华 一种低熔点可降解消防用灭火液包装袋及其制备工艺
CN114773723A (zh) * 2022-03-21 2022-07-22 盘锦海兴科技股份有限公司 一种可降解的聚丙烯塑料及其制备方法和应用
CN114773723B (zh) * 2022-03-21 2023-11-14 盘锦海兴科技股份有限公司 一种可降解的聚丙烯塑料及其制备方法和应用
CN114891251A (zh) * 2022-06-09 2022-08-12 王新华 一种高阻隔、可降解农用保水地膜及制备方法
CN114891251B (zh) * 2022-06-09 2023-12-22 未来超级生物环保科技(北京)有限公司 一种高阻隔、可降解农用保水地膜及制备方法

Also Published As

Publication number Publication date
EP4071212A4 (en) 2023-12-06
EP4071212A1 (en) 2022-10-12
JP7431326B2 (ja) 2024-02-14
US20230340238A1 (en) 2023-10-26
JP2023504656A (ja) 2023-02-06
CN114729165A (zh) 2022-07-08
KR20210070002A (ko) 2021-06-14

Similar Documents

Publication Publication Date Title
WO2021112396A1 (ko) 생분해성 수지 조성물 및 그 제조방법
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
US10995201B2 (en) Articles formed with biodegradable materials and strength characteristics of the same
US10919203B2 (en) Articles formed with biodegradable materials and biodegradability characteristics thereof
US20190194426A1 (en) Process for producing articles formed with biodegradable materials and strength characteristics of the same
CN110358264B (zh) 一种生物基环保包装袋及其制备方法
WO2019155398A1 (en) Biodegradable plastic
KR101175570B1 (ko) 단일-부위 촉매로 제조된 폴리프로필렌 및 폴리(히드록시 카르복실산) 혼화물
CN113845621B (zh) 一种增容剂及采用该增容剂的高淀粉含量全生物降解膜
WO2021112397A1 (ko) 생분해성 수지 조성물 및 그 제조방법
CN106479132B (zh) 一种塑料薄膜降解母粒及其制备方法与应用
CN101717537A (zh) 一种聚烯烃薄膜及其制造方法
CN109988400B (zh) 一种环保型可降解包装复合膜及其制备方法
WO2022092717A1 (ko) 폴리비닐알코올을 포함하는 생분해성 수지 조성물 및 그 제조방법
KR102187340B1 (ko) 투명도와 유연성이 우수한 필름제조용 생분해성 수지 조성물
Wang Poly (Lactic Acid)(PLA), Poly (ε-Caprolactone)(PCL) and Thermoplastic Starch (TPS) Blends for Compostable Packaging Applications
KR20230165729A (ko) 생분해성 수지 조성물, 생분해성 수지 성형품 및 그 제조방법
KR20230157150A (ko) 쌀을 이용한 생분해성 시트용 수지 조성물
Amin et al. Biodegradation Characteristics of Tacca leontopetaloides Thermoplastic Films under Controlled Composting Conditions
CN114685950A (zh) 一种光/生物双降解pbat膜及其制备方法
AU2015249059B2 (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
Yampry Study of Thermal and Mechanical Properties of Tertiary Blend of Poly (lactic acid), Poly (hydroxybutyrate-co-hydroxyvalerate) and Thermoplastic starch
KR20230041125A (ko) 생분해성 필름 조성물 및 상기 조성물을 이용한 응용제품
TW202409192A (zh) 生物可降解樹脂組合物、生物可降解樹脂成型品及其製造方法
KR0150694B1 (ko) 분해성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897115

Country of ref document: EP

Effective date: 20220704