CN114890794A - 一种高性能N型PbSe热电材料及其制备方法 - Google Patents

一种高性能N型PbSe热电材料及其制备方法 Download PDF

Info

Publication number
CN114890794A
CN114890794A CN202210569656.XA CN202210569656A CN114890794A CN 114890794 A CN114890794 A CN 114890794A CN 202210569656 A CN202210569656 A CN 202210569656A CN 114890794 A CN114890794 A CN 114890794A
Authority
CN
China
Prior art keywords
temperature
pbse
thermoelectric material
thermoelectric
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210569656.XA
Other languages
English (en)
Inventor
肖钰
徐莉青
丁向东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210569656.XA priority Critical patent/CN114890794A/zh
Publication of CN114890794A publication Critical patent/CN114890794A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种高性能N型PbSe热电材料及其制备方法,属于能源材料技术领域。所述材料是由Pb、Se、Te、S、和Cu元素组成,其原子比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02);所述的PbSe热电材料采用熔融法、热压法和退火结合的方法制备。该方法制备得到的N型PbSe热电材料的优点在于,与现有的N型PbSe热电材料相比,晶格热导率极低,室温可低至0.42W m‑1K‑1,在中低温区(300‑573K)的平均ZT(ZTave)可高达0.9。与现有N型PbSe热电材料相比,本发明使得N型PbSe的热电性能在近室温区有大幅度提升,能够在热电发电和热电制冷领域实现大规模应用。

Description

一种高性能N型PbSe热电材料及其制备方法
技术领域
本发明属于能源材料技术领域,主要涉及一种高性能N型PbSe热电材料及其制备方法,实现其中低温区平均ZT的提高。
背景技术
长久以来,化石燃料是全球主要的能源供给,其大量使用造成了能源储量的急剧降低和地球生态环境的日益恶化。热电转换技术是一种绿色、无污染的能源转换技术,可实现废热与电能的直接转换,并已经成功应用于深空探测器供电和小空间制冷等众多具有特殊限制的专业领域,以及应用于利用回收工业以及汽车尾气等余废热进行发电,展现出其巨大的潜在商用价值。Bi2Te3基、PbTe基、SiGe基化合物是20世纪50~60年代,热电材料第1个快速发展高峰期的高性能热电材料的典型代表。随着世界各国大力倡导绿色环保、节能减排的生产和生活方式,热电能量转换技术将作为高新技术之一广泛应用于航天、军事、能源、环境、电子、通讯等各个领域。因此,研发高性能、低成本的环境友好型热电材料是热电技术广泛应用的终极目标。
PbSe与传统中温区热电材料PbTe有着相同的晶体结构和相似的物化性质。且相较于PbTe,PbSe成本低、化学稳定性强、机械强度高。在此之前,许多具有优异热电性能的N型PbSe热电材料被研制出。例如,将Te合金化到PbSe晶格中,并在其间隙中引入过量的Cu。在773K,得到最大ZT值~1.71,在300-773K的温区内,平均ZT高至1.04;通过合金化Sn来增加构型熵,使n型高熵(Pb/Sn)(Se/Te/S)材料的立方相突破了溶解度极限,在900K时ZT值达到1.8;通过在PbSe晶格的间隙中掺杂Cu2Se,在基体中形成独立原子层,并额外加Br,实现低频区声学声子软化。在723K处,ZT峰值~1.8,且773K处晶格热导率为~0.4W m-1K-1,接近理论非晶极限。
上述方法制备的N型PbSe热电材料,虽然在高温区ZT值较高,但是在室温处,晶格热导率较高,普遍高于0.85W m-1K-1,甚至高于1.4W m-1K-1,导致室温的ZT值普遍低于0.4,这就使得在近室温区(300-573K)内的平均ZT普遍较低。因此,合理地降低晶格热导率同时保持高的电传输性能是提升PbSe基热电材料中低温热电性能的关键。本发明提供了一种高性能N型PbSe基热电材料的制备方法。在降低晶格热导率的同时保持较高的功率因子,实现了PbSe热电材料在近室温区平均ZT的大幅提升。所制备的PbSe工艺简单,周期较短,原料成本低,能够实现大规模的生产和应用。
发明内容
本发明的目的在于克服上述现有技术不足,提供一种高性能N型PbSe热电材料及其制备方法,本发明所制备的PbSe热电材料,有效地降低了中低温区的晶格热导率、提高了中低温区的ZTave
本发明提供了一种高性能N型PbSe热电材料,所述的材料是由Pb、Se、Te、S和Cu元素组成,其原子比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02);所述的PbSe热电材料晶格热导率极低,室温可低至0.42W m-1K-1,在中低温区的ZTave高。在300-537K之间,ZTave可高达0.9。
本发明还提供了一种高性能N型PbSe热电材料的制备方法,具体包括以下几个步骤:
(1)采用元素质量纯度大于99.999%的Pb块、Se粒和Te块以及纯度为99.99%的S粉和Cu丝按照原子化学计量比配比,Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02);将称量好的混合原料置于石英管中。
(2)将步骤(1)中装有混合原料的石英管进行抽真空处理,真空度小于10-3Pa,然后将其放置于高温熔炉内。高温熔炉的控温程序为:10-24h内升温至1050±50℃,保温6h以上,随炉冷却至室温。
(3)将步骤(2)中得到的材料研磨至细密的粉末,装入石墨模具中进行真空热压处理。石墨模具直径为15或12.7mm,真空热压炉的压力和控温程序为:压力40-50MPa,保压至少30min,先升压至目标压力,可选择常温保压5-15min或直接启动温度程序;10min内升温至500±50℃,保温时间的设置需大于启动温度程序时剩余保压时间至少1min。
(4)将所述步骤(3)中得到的盘状样品进行切割打磨成柱状和片状后置于石英管中进行真空封管处理,然后置于高温熔炉内进行退火处理;高温熔炉的控温程序为:5-12h升温至550±50℃,保温至少6h,随炉冷却至室温。
有益的技术效果:本发明所提供的N型PbSe热电材料采用熔融、热压和退火相结合的制备方法,成功制备了中低温区晶格热导率低、平均ZT值高的热电材料。具体实例表明,本发明提供的N型PbSe热电材料的室温仅为0.42W m-1K-1,在300-537K之间,ZTave高达0.9。
附图说明
图1:本发明所使用的高温熔炉和真空快速热压炉的结构示意图;
图2:N型PbSe样品的热电性能。
具体实施方式
本发明提供了一种高性能N型PbSe热电材料,所述的材料是由Pb、Se、Te、S和Cu元素组成,其原子比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02);所述的PbSe热电材料晶格热导率极低,室温可低至0.42W m-1K-1,在中低温区的ZTave高。在300-537K之间,ZTave可高达0.9。
本发明还提供了一种高性能N型PbSe基热电材料的制备方法,具体包括步骤:
将高纯Pb块、Se粒、Te块、S粉、和Cu丝按原子化学计量比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02)进行配料,将得到的混合物料置于石英管内。
本发明中,所述的Pb块、Se粒、Te块的质量纯度独立地大于99.999%,所述S粉、和Cu丝的质量纯度独立地大于99.99%。
在本发明中,所述的混合物料中Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02)。
在采用本发明的制备过程中,所述Cu作为掺杂元素,能够制备出高性能的N型PbSe热电材料。
将所述装有混合物料的石英管置于高温熔炉内,通过熔融法结合热压和退火的方法合成N型PbSe热电材料。
在本发明中,所述的熔融法结合热压和退火的方法优选包括以下步骤:
(1)将所述的混合物料放入石英管中,进行抽真空处理;
(2)将所述步骤(1)中所得装有混合物料的石英管置于高温熔炉内,进行合成反应,得到N型PbSe热电材料。
本发明将所述混合物料放入石英管中,进行抽真空处理后,使用火焰密封石英管。随后将所得装有混合物料的石英管置于高温熔炉内,进行熔融反应。
图1(a)为本发明所述熔融反应高温炉的结构示意图,由图可知,原料放入圆底石英管内,石英管近垂直立于打孔的防火砖内,进行熔融反应。
在本发明中,所述高温熔炉的控温程序优选为:先用6h从室温升温至1050℃,然后在1050℃保温6h,保温结束后,样品随炉冷却至室温,得到铸锭样品。
图1(b)为本发明所述真空快速热压炉的结构示意图,由图可知,粉末样品放入石墨模具中,在真空环境下进行热压处理。
在本发明中,所述真空热压炉的压力和控温程序优选为:压力50MPa,保压35min。先升压至50MPa,10min后启动温度程序,500s升温至500℃,保温20min,保温结束后,样品随炉冷却至室温,得到致密的盘状样品。
图1(c)为本发明所述退火过程使用的高温熔炉的结构示意图,与熔融反应过程相同。
在本发明中,所述的高温熔炉的控温程序优选为:先用6h从室温升温至500℃,然后在500℃保温6h,保温结束后,样品随炉冷却至室温。
实施例1-4
将纯度均大于99.999%的Pb块、Se粒和Te块以及纯度均大于99.99%的S粉、和Cu丝按原子化学计量比Pb:Se:Te:S:Cu=1.02:0.72:0.2:0.08:x(x=0.000,0.002,0.003,0.004)的配比混合得到混合物料;
将所述混合物料按照熔融法结合热压和退火的方法合成N型PbSe热电材料。
高温熔融法具体包括以下步骤:
(1)将上述混合物料置于圆底石英管(内直径为17mm,外直径为20mm)中,对装有混合物料的石英管抽真空至真空度小于10-3Pa,用火焰将石英管密封。
(2)将步骤(1)中所得密封石英管插入打有空洞的防火砖中,然后放入高温熔炉内;设置所述高温熔炉的控温程序:先用12h从室温升温至1050℃,然后在1050℃保温6h,保温结束后,样品随炉冷却至室温,得到铸锭样品。
热压具体包括以下步骤:
(1)将高温熔融法得到的铸锭样品使用玛瑙研钵研磨至细密的粉末,并在石墨模具中垫入一层碳纸。
(2)将步骤(1)中所得的粉末样品装入石墨模具中进行真空热压处理,石墨模具直径为15mm,真空热压炉的压力和控温程序为:压力50MPa(883Kg),保压35min。先升压至50MPa,10min后启动温度程序,500s升温至500℃,保温20min,保温结束后,样品随炉冷却至室温,得到致密的盘状样品,直径~15mm,高度和所加粉末质量有关。
退火具体包括以下步骤:
(1)将热压得到的盘状样品磨去碳纸后,使用低转速切割机将样品切割,随后使用砂纸打磨成测试电性能和热性能所需的柱状和片状样品,柱状样品长宽不超过5mm,高度在10-15mm之间;片状样品厚度在1-2mm之间,可为方形或圆形,视样品撑大小而定,我们通常选用8mm*8mm或者φ6mm的样品撑。
(2)将步骤(1)中所得的柱状和片状样品置于圆底石英管(内直径为11mm,外直径为13mm)中,对装有样品的石英管抽真空至真空度小于10-3Pa,用火焰将石英管密封。
(3)将步骤(1)中所得密封石英管插入打有空洞的防火砖中,然后放入高温熔炉内;设置所述高温熔炉的控温程序:先用6h从室温升温至500℃,然后在500℃保温6h,保温结束后,样品随炉冷却至室温,然后进行热电性能的测试。
表1为实例1~4中的样品制备参数(石英管内外直径、退火时间)和性能测试参数(室温晶格热导率、室温ZT值、平均ZT值)。
表1本发明的几个优选实施例
Figure BDA0003659724370000051
上述实施例2~4为采用本发明提供的制备方法制备得到的Cu掺杂高性能N型PbSe热电材料,例1为掺杂Cu元素的N型PbSe热电材料。由表1可知,所得到的N型PbSe样品的室温晶格热导率低;通过Cu掺杂获得高性能的N型PbSe热电材料,其室温ZT值和中低温区的平均ZT值明显优于为掺杂Cu元素的N型PbSe。
使用塞贝克及电阻率测试系统和激光热导仪对实施例1~4退火后的样品进行热电性能测试,包括:电导率σ、塞贝克系数S和热扩散系数D(由公式κtot=ρCpD计算得到总热导率),其结果如图2所示。材料的使用温度区间为:室温至500℃(773K),其平均ZT值是通过计算整个温区内的热电参数得到的。
图2中σ是电导率,S是塞贝克系数,PF是功率因子,κtot是总热导率,κlat是晶格热导率,ZT是无量纲热电优值,ZTave是平均ZT值。平均ZT值与ZT值息息相关,由ZT=S2σT/κtot,κtot=κlatele可知,在一定的温度T下,为了获得较高的热电性能,需要材料具有较大的S,从而在一定温差条件下获得更大的电动势;较高的电导率(σ)可以有效地减小电源内部功耗,提高输出功率;而较低的热导率(κtot)有利于维持材料两端的温差。S2σ被成为功率因子(PF),反应了材料的电传输性能。然而S,σ,κtot均依赖于载流子浓度(n)等参数,且随着n的增加,S和σ呈相反的趋势,组成κtot中的κele与σ成正比。可见S,σ,κtot这些热电参数之间相互耦合,单独追求其中一个参数的增大或减小往往导致其他参数的非协同性变化,因此,材料热电优值ZT的提高是多个参数协同调控,相互妥协的过程。
本申请与目前报道的N型PbSe热电材料相比,所制备的PbSe材料具有低的晶格热导率,且通过Cu掺杂获得高性能N型PbSe热电材料,其晶格热导率极低,室温下可低至0.42Wm-1K-1,在中低温区的ZTave高。在300-537K之间,ZTave可高达0.9,高于目前此温度区间内已报道的最高平均ZT值0.86。
以上所述仅是本发明的优选实施方式,应当指出,遂于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些也应视为本发明的保护范围。

Claims (9)

1.一种高性能N型PbSe热电材料,由高纯Pb、Se、Te、S和Cu元素组成,其原子比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02);所述的PbSe热电材料晶格热导率极低,室温可低至0.42W m-1K-1,在中低温区(300-537K)的平均ZT(ZTave)高达0.9。
2.根据权利要求1所述的N型PbSe热电材料,其特征在于,所述Pb块、Se粒、Te块的质量纯度独立地大于99.999%,所述S粉、和Cu丝的质量纯度独立地大于99.99%。
3.根据权利要求1所述的N型PbSe热电材料,其特征在于,所述N型PbSe的原子比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02),Cu的使用量不超过2%。
4.一种高性能N型PbSe热电材料的制备方法,所述制备过程由熔融,热压和退火三部分顺序构成,将高纯Pb块、Se粒、Te块、S粉、和Cu丝按原子化学计量比Pb:Se:Te:S:Cu=1.02±0.01:0.72±0.1:0.2±0.05:0.08±0.05:x(0≤x≤0.02)进行配料,将得到的混合物料按照熔融法结合热压和退火的方法合成N型PbSe热电材料,所述制备方法实现大规模生产,且制备周期短,制备得到的N型PbSe热电性能优异。
5.根据权利要求4所述的制备方法,其特征在于,所述的制备方法具体包括以下步骤:
(1)将装有混合物料的石英管进行抽真空封管处理;
(2)将步骤(1)中的石英管置于高温熔炉内,进行熔融反应,得到N型PbSe多晶材料;
(3)将步骤(2)中得到的多晶材料研磨至细密的粉末,装入石墨模具中进行真空热压处理;
(4)将步骤(3)中得到的盘状样品进行切割打磨成柱状和片状后置于石英管中进行真空封管处理;
(5)将步骤(4)中的石英管置于高温熔炉内进行退火处理,得到高性能N型PbSe热电材料。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤(1)中抽真空处理后的真空度小于10-3Pa。
7.根据权利要求5所述的制备方法,其特征在于,所述步骤(2)中高温熔炉的控温程序为:10-24h内升温至1050±50℃,保温6h以上,随炉冷却至室温。
8.根据权利要求5所述的制备方法,其特征在于,所述步骤(3)中石墨模具直径为15或12.7mm,真空热压炉的压力和控温程序为:压力40-50MPa,保压至少30min,先升压至目标压力,可选择常温保压5-15min或直接启动温度程序,10min内升温至500±50℃,保温时间的设置需大于启动温度程序时剩余保压时间至少1min,以保证保压先结束,恢复常压后,温度程序结束,降至室温。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤(5)中高温熔炉的控温程序为:5-12h升温至550±50℃,保温至少6h,随炉冷却至室温。
CN202210569656.XA 2022-05-24 2022-05-24 一种高性能N型PbSe热电材料及其制备方法 Pending CN114890794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210569656.XA CN114890794A (zh) 2022-05-24 2022-05-24 一种高性能N型PbSe热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210569656.XA CN114890794A (zh) 2022-05-24 2022-05-24 一种高性能N型PbSe热电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114890794A true CN114890794A (zh) 2022-08-12

Family

ID=82724626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210569656.XA Pending CN114890794A (zh) 2022-05-24 2022-05-24 一种高性能N型PbSe热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114890794A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991603A (zh) * 2022-11-24 2023-04-21 安徽大学绿色产业创新研究院 一种Cr/Te共掺PbSe基热电材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799646A (zh) * 2017-09-14 2018-03-13 同济大学 一种合金热电半导体材料及其制备方法
CN111200055A (zh) * 2020-01-13 2020-05-26 同济大学 一种高性能PbTe基N型热电材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799646A (zh) * 2017-09-14 2018-03-13 同济大学 一种合金热电半导体材料及其制备方法
CN111200055A (zh) * 2020-01-13 2020-05-26 同济大学 一种高性能PbTe基N型热电材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马瑞等: "Se位掺杂对燃烧合成Cu2SnSe3热电性能的影响", 《陶瓷学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991603A (zh) * 2022-11-24 2023-04-21 安徽大学绿色产业创新研究院 一种Cr/Te共掺PbSe基热电材料的制备方法

Similar Documents

Publication Publication Date Title
JP6976012B2 (ja) n−型Mg−Sb基室温熱電材料及びその製造方法
KR100910173B1 (ko) CoSb3 스커테루다이트계 열전재료 및 그 제조방법
CN102194989B (zh) 一种三元类金刚石结构的热电材料的制备方法
JP2021515411A5 (zh)
CN101220513B (zh) 一种提高N型多晶Bi2Te3热电性能的热处理方法
CN104555950B (zh) 一种中温区具有优异热电性能的碲化铋材料及其制备方法
CN107799646B (zh) 一种合金热电半导体材料及其制备方法
CN108231991A (zh) 一种用于室温附近固态制冷和废热余热发电的p型碲化铋基热电材料
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN103910339A (zh) 一种具有纳米层状结构高性能BiCuSeO基块体热电材料的超快速制备方法
CN107887495B (zh) 一种一步制备Cu2Se/BiCuSeO复合热电材料的方法
CN111640853B (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN114890794A (zh) 一种高性能N型PbSe热电材料及其制备方法
CN112079638A (zh) 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法
CN109627002A (zh) 一种快速制备锑化镁基热电材料的新方法
CN110408989B (zh) 一种氧化物热电材料BiCuSeO单晶体及其制备方法
CN101217178B (zh) 一类锑化钼基热电材料的制备方法
CN111446357A (zh) 一种制备Cu2Se热电材料的方法
CN112645710B (zh) 一种用Er和Ag共掺提高碲化铋基赝三元热电材料热电性能的方法
CN113421958B (zh) 热电化合物BaCu2Se2材料及其制备方法
CN111653662B (zh) 伪立方相结构GeTe基热电材料及其制备方法
CN111162160A (zh) 一种p型立方相Ge-Se基热电材料及制备方法
CN101345284A (zh) 一种p型铕镉锑基热电材料及其制备方法
CN101359713A (zh) 一种p型铕锌锑基热电材料及其制备方法
CN114804037A (zh) 一种Pb/In共掺BiCuSeO热电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220812

RJ01 Rejection of invention patent application after publication