CN112079638A - 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 - Google Patents
一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 Download PDFInfo
- Publication number
- CN112079638A CN112079638A CN202010999958.1A CN202010999958A CN112079638A CN 112079638 A CN112079638 A CN 112079638A CN 202010999958 A CN202010999958 A CN 202010999958A CN 112079638 A CN112079638 A CN 112079638A
- Authority
- CN
- China
- Prior art keywords
- thermoelectric material
- mechanical properties
- bismuth telluride
- type bismuth
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 114
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 41
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 39
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 14
- 238000005303 weighing Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000000227 grinding Methods 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 238000000498 ball milling Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000010453 quartz Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 13
- 229910020073 MgB2 Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007709 nanocrystallization Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/547—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3804—Borides
- C04B2235/3808—Magnesium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法,本发明涉及一种p型碲化铋基热电材料及其制备方法。本发明要解决现有p型碲化铋基热电材料力学性能差的问题。兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6‑xTe3;方法:一、称取;二、制备铸锭;三、研磨并烧结。本发明用于兼具高热电和力学性能的p型碲化铋基热电材料及其制备。
Description
技术领域
本发明涉及一种p型碲化铋基热电材料及其制备方法。
背景技术
热电材料可以实现热能与电能之间的相互转换,依据塞贝克与帕尔贴效应,可分别制备成温差发电与固态制冷器件,具有无污染、无噪声、体积小、稳定性高、寿命长等优点,可广泛应用于余热回收、制冷、深空探测等领域。p型碲化铋基材料是目前唯一商业化应用的p-型热电材料,通过载流子调控和纳米化等手段,获得了高的低温热电性能。但是,碲化铋基材料晶体结构为六面体层状结构,层与层之间Te1-Te1的弱范德华键极易导致材料发生解理断裂,致使其力学性能差。传统商用铸锭,压缩强度低于50MPa,增加了材料的加工难度,使得生产过程中成品率低,浪费严重。因此,获得兼具高热电和力学性能的p型碲化铋基材料意义重大。
发明内容
本发明要解决现有p型碲化铋基热电材料力学性能差的问题,而提供一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法。
一种兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
本发明的有益效果是:本发明公开了一种兼具高热电和力学性能的Bi0.4Sb1.6Te3基热电材料及其制备方法。采用极少量的MgB2掺杂,一方面,少量的Mg取代Bi0.4Sb1.6Te3中Bi或者Sb的位置,增加载流子浓度,延缓本征激发的出现,拓展材料的工作温度区间;另一方面,B的加入起到强化的作用,使得材料的压缩强度大幅度提高。MgB2掺杂在Bi0.4Sb1.6Te3中实现了受主掺杂优化载流子浓度和固溶强化的协同作用,同时获得了高的热电和力学性能。在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,能量转换效率和输出功率密度分别达到了9.8%和2.43Wcm-2,接近目前最高水平。同时,室温压缩强度从166MPa提高到了239MPa,改善了材料的力学性能,进一步提高了Bi0.4Sb1.6Te3材料商用前景。
本发明用于一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法。
附图说明
图1为电导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图2为塞贝克系数对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图3为功率因子对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图4为热导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图5为热电优值对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图6为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,输出功率密度对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图7为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,转换效率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图8为压缩强度对比图,a为对比实验一制备的Bi0.4Sb1.6Te3热电材料,b为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,c为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
本实施方式的有益效果是:本实施方式公开了一种兼具高热电和力学性能的Bi0.4Sb1.6Te3基热电材料及其制备方法。采用极少量的MgB2掺杂,一方面,少量的Mg取代Bi0.4Sb1.6Te3中Bi或者Sb的位置,增加载流子浓度,延缓本征激发的出现,拓展材料的工作温度区间;另一方面,B的加入起到强化的作用,使得材料的压缩强度大幅度提高。MgB2掺杂在Bi0.4Sb1.6Te3中实现了受主掺杂优化载流子浓度和固溶强化的协同作用,同时获得了高的热电和力学性能。在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,能量转换效率和输出功率密度分别达到了9.8%和2.43Wcm-2,接近目前最高水平。同时,室温压缩强度从166MPa提高到了239MPa,改善了材料的力学性能,进一步提高了Bi0.4Sb1.6Te3材料商用前景。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.01。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤三中将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h~4h,得到细粉。其它与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式四或五之一不同的是:步骤一中0.005≤x≤0.01。其它与具体实施方式四或五相同。
具体实施方式七:本实施方式与具体实施方式四至六之一不同的是:步骤一中x=0.01。其它与具体实施方式四至六之一相同。
具体实施方式八:本实施方式与具体实施方式四至七之一不同的是:步骤二中以升温速度为200℃/h~220℃/h,将马弗炉升温至800℃~850℃。其它与具体实施方式四至七相同。
具体实施方式九:本实施方式与具体实施方式四至八之一不同的是:步骤二中在温度为800℃~850℃的条件下,保温9h~10h。其它与具体实施方式四至八相同。
具体实施方式十:本实施方式与具体实施方式四至九之一不同的是:步骤三中在温度为400℃~420℃及压力为80MPa~90MPa的条件下,烧结4min~5min。其它与具体实施方式四至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一种兼具高热电和力学性能的p型碲化铋基热电材料,兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01;
上述兼具高热电和力学性能的p型碲化铋基热电材料,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;x=0.01;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为200℃/h,将马弗炉升温至800℃,并在温度为800℃的条件下,保温10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为400℃及压力为80MPa的条件下,烧结5min,得到MgB2掺杂Bi0.4Sb1.6Te3热电材料,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米。
实施例二:本实施例与实施例一不同的是:步骤一中所述的x=0.005。其它与实施例一相同。
对比实验一:本实施例与实施例一不同的是:步骤一中所述的x=0;步骤三中得到Bi0.4Sb1.6Te3热电材料,其它与实施例一相同。
图1为电导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图2为塞贝克系数对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图3为功率因子对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图1至3可知,MgB2掺杂后Bi0.4Sb1.6Te3的电导率大幅的增加,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温电导率增加至125.9×103Sm-1。相应地,塞贝克系数降低,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温塞贝克系数降低至184.0μVK-1。最终,材料的功率因子明显增加。尤其是在573K,功率因子从5.18μWcm-1K-2提高到了实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的13.1μWcm-1K-2。
图4为热导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图4可知,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温热导率增加至1.17Wm-1K-1;但在573K时,MgB2掺杂使实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料热导率降低至1.53Wm-1K-1,说明MgB2掺杂可以降低Bi0.4Sb1.6Te3材料较高温度区间的热导率。
图5为热电优值对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图5可知,MgB2掺杂虽然没有提高材料的ZT值峰值,但使得材料的ZT值峰值对应温度从室温(300K)提高到了400K,拓展了材料的最佳使用温度区间。
图6为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,输出功率密度对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图7为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,转换效率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图6及7可知,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的输出功率密度在573K时达到2.43Wcm-2,较未掺杂Bi0.4Sb1.6Te3提高了47.5%;实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的转换效率达到9.88%,较未掺杂Bi0.4Sb1.6Te3提高了21%。
在室温条件下进行压缩试验,压缩样品尺寸均按照国标GB/T 10623执行,尺寸为2mm×2mm×5.5mm。图8为压缩强度对比图,a为对比实验一制备的Bi0.4Sb1.6Te3热电材料,b为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,c为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。由图8可知,MgB2掺杂后,压缩强度从166MPa提到到了239MPa,提到了约44%。
Claims (10)
1.一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
2.根据权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.01。
3.根据权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01。
4.如权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
5.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤三中将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h~4h,得到细粉。
6.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤一中0.005≤x≤0.01。
7.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤一中x=0.01。
8.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤二中以升温速度为200℃/h~220℃/h,将马弗炉升温至800℃~850℃。
9.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤二中在温度为800℃~850℃的条件下,保温9h~10h。
10.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤三中在温度为400℃~420℃及压力为80MPa~90MPa的条件下,烧结4min~5min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010999958.1A CN112079638A (zh) | 2020-09-22 | 2020-09-22 | 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010999958.1A CN112079638A (zh) | 2020-09-22 | 2020-09-22 | 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112079638A true CN112079638A (zh) | 2020-12-15 |
Family
ID=73739436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010999958.1A Pending CN112079638A (zh) | 2020-09-22 | 2020-09-22 | 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112079638A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471355A (zh) * | 2021-06-28 | 2021-10-01 | 深圳大学 | p型碲化铋制备方法、装置、系统与计算机可读存储介质 |
CN113773083B (zh) * | 2021-09-13 | 2022-10-04 | 哈尔滨工业大学 | 一种兼具高强度和高热电性能的碲化铋基材料及其制备方法 |
CN115322004A (zh) * | 2022-08-22 | 2022-11-11 | 哈尔滨工业大学(深圳) | 一种兼具高热电和力学性能的碲化铋基热电材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150243820A1 (en) * | 2014-02-21 | 2015-08-27 | Tsinghua University | Photoelectric conversion apparatus and device |
CN106986315A (zh) * | 2016-01-21 | 2017-07-28 | 中国科学院上海硅酸盐研究所 | 一种适用于低温发电的p型碲化铋热电材料及制备方法 |
CN107316935A (zh) * | 2017-05-03 | 2017-11-03 | 广东先导稀材股份有限公司 | 碲铋基热电材料的制备方法 |
CN110098313A (zh) * | 2019-04-22 | 2019-08-06 | 武汉科技大学 | 一种择优取向p型碲化铋基多晶块体热电材料的制备方法 |
CN110818415A (zh) * | 2019-09-29 | 2020-02-21 | 中机第一设计研究院有限公司 | 一种调控P型Bi2Te3基材料组织和取向性的方法 |
-
2020
- 2020-09-22 CN CN202010999958.1A patent/CN112079638A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150243820A1 (en) * | 2014-02-21 | 2015-08-27 | Tsinghua University | Photoelectric conversion apparatus and device |
CN106986315A (zh) * | 2016-01-21 | 2017-07-28 | 中国科学院上海硅酸盐研究所 | 一种适用于低温发电的p型碲化铋热电材料及制备方法 |
CN107316935A (zh) * | 2017-05-03 | 2017-11-03 | 广东先导稀材股份有限公司 | 碲铋基热电材料的制备方法 |
CN110098313A (zh) * | 2019-04-22 | 2019-08-06 | 武汉科技大学 | 一种择优取向p型碲化铋基多晶块体热电材料的制备方法 |
CN110818415A (zh) * | 2019-09-29 | 2020-02-21 | 中机第一设计研究院有限公司 | 一种调控P型Bi2Te3基材料组织和取向性的方法 |
Non-Patent Citations (3)
Title |
---|
BIN CHEN ET AL.: "Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi2Te3-Based Alloys via a Facile MgB2 Doping Strategy", 《ACS APPL. MATER. INTERFACES》 * |
谢亮军: "Sb2Te3基半导体的组织结构与热电性能", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
高娜等: "熔体处理对Bi0.4Sb1.6Te3+5%的Te合金热电性能的作用", 《特种铸造及有色合金》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471355A (zh) * | 2021-06-28 | 2021-10-01 | 深圳大学 | p型碲化铋制备方法、装置、系统与计算机可读存储介质 |
CN113471355B (zh) * | 2021-06-28 | 2024-05-31 | 深圳大学 | p型碲化铋制备方法、装置、系统与计算机可读存储介质 |
CN113773083B (zh) * | 2021-09-13 | 2022-10-04 | 哈尔滨工业大学 | 一种兼具高强度和高热电性能的碲化铋基材料及其制备方法 |
CN115322004A (zh) * | 2022-08-22 | 2022-11-11 | 哈尔滨工业大学(深圳) | 一种兼具高热电和力学性能的碲化铋基热电材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112079638A (zh) | 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 | |
JP6266099B2 (ja) | 可逆的相転移を有する高性能p型熱電材料及びその製造方法 | |
CN103910339B (zh) | 一种具有纳米层状结构高性能BiCuSeO基块体热电材料的超快速制备方法 | |
CN103219456B (zh) | 一种与Mg-Si-Sn基热电元件相匹配的电极及其连接工艺 | |
CN106904972B (zh) | 一种环境友好型碲化锡基热电材料及其制备方法 | |
CN104555950A (zh) | 一种中温区具有优异热电性能的碲化铋材料及其制备方法 | |
CN107946450B (zh) | 一种掺杂变价元素协同优化BiCuSeO基热电材料 | |
CN103436723A (zh) | 一种快速制备高性能Mg2Si基热电材料的方法 | |
CN102931335A (zh) | 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法 | |
CN107565011B (zh) | 基于Ga元素掺杂有效提高PbTe热电性能的方法 | |
CN111640853B (zh) | 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法 | |
CN114538927A (zh) | 一种非化学计量的n型碲化铋烧结材料及其制备方法 | |
CN113421959B (zh) | 一种n型碲化铋基室温热电材料及其制备方法 | |
CN106129241B (zh) | 固相反应法制备层错结构硫族化合物热电材料的方法 | |
CN112645710B (zh) | 一种用Er和Ag共掺提高碲化铋基赝三元热电材料热电性能的方法 | |
CN107176589A (zh) | 一种制备纳米化Mg3Sb2热电材料的新方法 | |
Ioannidou et al. | Microwave Synthesis and Characterization of the Series Co 1− x Fe x Sb 3 High Temperature Thermoelectric Materials | |
CN109585639B (zh) | 一种高输出功率密度和能量转换效率的SnTe热电材料的制备方法 | |
CN104362249A (zh) | 一种与Mg-Si-Sn基热电元件相匹配的分层电极及其连接工艺 | |
CN114890794A (zh) | 一种高性能N型PbSe热电材料及其制备方法 | |
CN1614054B (zh) | 锑化钴基热电复合材料及制备方法 | |
CN111653662B (zh) | 伪立方相结构GeTe基热电材料及其制备方法 | |
CN101345284A (zh) | 一种p型铕镉锑基热电材料及其制备方法 | |
CN111628071B (zh) | 一种中温段热电材料及其制备方法 | |
CN104218143B (zh) | 一种BiAgSeTe基热电材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201215 |