CN112079638A - 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 - Google Patents

一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 Download PDF

Info

Publication number
CN112079638A
CN112079638A CN202010999958.1A CN202010999958A CN112079638A CN 112079638 A CN112079638 A CN 112079638A CN 202010999958 A CN202010999958 A CN 202010999958A CN 112079638 A CN112079638 A CN 112079638A
Authority
CN
China
Prior art keywords
thermoelectric material
mechanical properties
bismuth telluride
type bismuth
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010999958.1A
Other languages
English (en)
Inventor
隋解和
秦海旭
王伟
蔡伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010999958.1A priority Critical patent/CN112079638A/zh
Publication of CN112079638A publication Critical patent/CN112079638A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3808Magnesium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法,本发明涉及一种p型碲化铋基热电材料及其制备方法。本发明要解决现有p型碲化铋基热电材料力学性能差的问题。兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6‑xTe3;方法:一、称取;二、制备铸锭;三、研磨并烧结。本发明用于兼具高热电和力学性能的p型碲化铋基热电材料及其制备。

Description

一种兼具高热电和力学性能的p型碲化铋基热电材料及其制 备方法
技术领域
本发明涉及一种p型碲化铋基热电材料及其制备方法。
背景技术
热电材料可以实现热能与电能之间的相互转换,依据塞贝克与帕尔贴效应,可分别制备成温差发电与固态制冷器件,具有无污染、无噪声、体积小、稳定性高、寿命长等优点,可广泛应用于余热回收、制冷、深空探测等领域。p型碲化铋基材料是目前唯一商业化应用的p-型热电材料,通过载流子调控和纳米化等手段,获得了高的低温热电性能。但是,碲化铋基材料晶体结构为六面体层状结构,层与层之间Te1-Te1的弱范德华键极易导致材料发生解理断裂,致使其力学性能差。传统商用铸锭,压缩强度低于50MPa,增加了材料的加工难度,使得生产过程中成品率低,浪费严重。因此,获得兼具高热电和力学性能的p型碲化铋基材料意义重大。
发明内容
本发明要解决现有p型碲化铋基热电材料力学性能差的问题,而提供一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法。
一种兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
本发明的有益效果是:本发明公开了一种兼具高热电和力学性能的Bi0.4Sb1.6Te3基热电材料及其制备方法。采用极少量的MgB2掺杂,一方面,少量的Mg取代Bi0.4Sb1.6Te3中Bi或者Sb的位置,增加载流子浓度,延缓本征激发的出现,拓展材料的工作温度区间;另一方面,B的加入起到强化的作用,使得材料的压缩强度大幅度提高。MgB2掺杂在Bi0.4Sb1.6Te3中实现了受主掺杂优化载流子浓度和固溶强化的协同作用,同时获得了高的热电和力学性能。在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,能量转换效率和输出功率密度分别达到了9.8%和2.43Wcm-2,接近目前最高水平。同时,室温压缩强度从166MPa提高到了239MPa,改善了材料的力学性能,进一步提高了Bi0.4Sb1.6Te3材料商用前景。
本发明用于一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法。
附图说明
图1为电导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图2为塞贝克系数对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图3为功率因子对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图4为热导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图5为热电优值对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图6为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,输出功率密度对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图7为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,转换效率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图8为压缩强度对比图,a为对比实验一制备的Bi0.4Sb1.6Te3热电材料,b为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,c为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
本实施方式的有益效果是:本实施方式公开了一种兼具高热电和力学性能的Bi0.4Sb1.6Te3基热电材料及其制备方法。采用极少量的MgB2掺杂,一方面,少量的Mg取代Bi0.4Sb1.6Te3中Bi或者Sb的位置,增加载流子浓度,延缓本征激发的出现,拓展材料的工作温度区间;另一方面,B的加入起到强化的作用,使得材料的压缩强度大幅度提高。MgB2掺杂在Bi0.4Sb1.6Te3中实现了受主掺杂优化载流子浓度和固溶强化的协同作用,同时获得了高的热电和力学性能。在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,能量转换效率和输出功率密度分别达到了9.8%和2.43Wcm-2,接近目前最高水平。同时,室温压缩强度从166MPa提高到了239MPa,改善了材料的力学性能,进一步提高了Bi0.4Sb1.6Te3材料商用前景。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.01。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤三中将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h~4h,得到细粉。其它与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式四或五之一不同的是:步骤一中0.005≤x≤0.01。其它与具体实施方式四或五相同。
具体实施方式七:本实施方式与具体实施方式四至六之一不同的是:步骤一中x=0.01。其它与具体实施方式四至六之一相同。
具体实施方式八:本实施方式与具体实施方式四至七之一不同的是:步骤二中以升温速度为200℃/h~220℃/h,将马弗炉升温至800℃~850℃。其它与具体实施方式四至七相同。
具体实施方式九:本实施方式与具体实施方式四至八之一不同的是:步骤二中在温度为800℃~850℃的条件下,保温9h~10h。其它与具体实施方式四至八相同。
具体实施方式十:本实施方式与具体实施方式四至九之一不同的是:步骤三中在温度为400℃~420℃及压力为80MPa~90MPa的条件下,烧结4min~5min。其它与具体实施方式四至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一种兼具高热电和力学性能的p型碲化铋基热电材料,兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01;
上述兼具高热电和力学性能的p型碲化铋基热电材料,它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;x=0.01;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为200℃/h,将马弗炉升温至800℃,并在温度为800℃的条件下,保温10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为400℃及压力为80MPa的条件下,烧结5min,得到MgB2掺杂Bi0.4Sb1.6Te3热电材料,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米。
实施例二:本实施例与实施例一不同的是:步骤一中所述的x=0.005。其它与实施例一相同。
对比实验一:本实施例与实施例一不同的是:步骤一中所述的x=0;步骤三中得到Bi0.4Sb1.6Te3热电材料,其它与实施例一相同。
图1为电导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图2为塞贝克系数对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图3为功率因子对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图1至3可知,MgB2掺杂后Bi0.4Sb1.6Te3的电导率大幅的增加,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温电导率增加至125.9×103Sm-1。相应地,塞贝克系数降低,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温塞贝克系数降低至184.0μVK-1。最终,材料的功率因子明显增加。尤其是在573K,功率因子从5.18μWcm-1K-2提高到了实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的13.1μWcm-1K-2
图4为热导率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图4可知,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料室温热导率增加至1.17Wm-1K-1;但在573K时,MgB2掺杂使实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料热导率降低至1.53Wm-1K-1,说明MgB2掺杂可以降低Bi0.4Sb1.6Te3材料较高温度区间的热导率。
图5为热电优值对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图5可知,MgB2掺杂虽然没有提高材料的ZT值峰值,但使得材料的ZT值峰值对应温度从室温(300K)提高到了400K,拓展了材料的最佳使用温度区间。
图6为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,输出功率密度对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料;
图7为在冷端温度为305K、热端温度为575K及腿长为2mm的条件下,转换效率对比图,1为对比实验一制备的Bi0.4Sb1.6Te3热电材料,2为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,3为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。
由图6及7可知,实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的输出功率密度在573K时达到2.43Wcm-2,较未掺杂Bi0.4Sb1.6Te3提高了47.5%;实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料的转换效率达到9.88%,较未掺杂Bi0.4Sb1.6Te3提高了21%。
在室温条件下进行压缩试验,压缩样品尺寸均按照国标GB/T 10623执行,尺寸为2mm×2mm×5.5mm。图8为压缩强度对比图,a为对比实验一制备的Bi0.4Sb1.6Te3热电材料,b为实施例一制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料,c为实施例二制备的MgB2掺杂Bi0.4Sb1.6Te3热电材料。由图8可知,MgB2掺杂后,压缩强度从166MPa提到到了239MPa,提到了约44%。

Claims (10)

1.一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.015。
2.根据权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,0.005≤x≤0.01。
3.根据权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料,其特征在于所述的兼具高热电和力学性能的p型碲化铋基热电材料的化学通式为(MgB2)xBi0.4Sb1.6-xTe3,x=0.01。
4.如权利要求1所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于它是按照以下步骤进行的:
一、称取:
按照化学通式为(MgB2)xBi0.4Sb1.6-xTe3的化学计量比称取MgB2粉、Bi粉、Sb粉和Te粉,然后混合均匀,得到混合物;0.005≤x≤0.015;
二、制备铸锭:
将混合物置于涂碳石英管内,抽真空后封管,将封好的涂碳石英管置于高温马弗炉中,以升温速度为180℃/h~220℃/h,将马弗炉升温至750℃~850℃,并在温度为750℃~850℃的条件下,保温8h~10h,然后随炉冷却至室温,得到铸锭;
三、研磨并烧结:
将铸锭置于不锈钢球磨罐中,球磨2h~4h,得到细粉,将细粉置于石墨模具中,利用放电等离子烧结炉,在温度为380℃~420℃及压力为70MPa~90MPa的条件下,烧结3min~5min,即完成兼具高热电和力学性能的p型碲化铋基热电材料的制备方法;
所述的细粉粒径为50纳米~100纳米。
5.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤三中将铸锭置于不锈钢球磨罐中,利用SPEX-8000M型高能球磨机球磨2h~4h,得到细粉。
6.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤一中0.005≤x≤0.01。
7.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤一中x=0.01。
8.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤二中以升温速度为200℃/h~220℃/h,将马弗炉升温至800℃~850℃。
9.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤二中在温度为800℃~850℃的条件下,保温9h~10h。
10.根据权利要求4所述的一种兼具高热电和力学性能的p型碲化铋基热电材料的制备方法,其特征在于步骤三中在温度为400℃~420℃及压力为80MPa~90MPa的条件下,烧结4min~5min。
CN202010999958.1A 2020-09-22 2020-09-22 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法 Pending CN112079638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010999958.1A CN112079638A (zh) 2020-09-22 2020-09-22 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010999958.1A CN112079638A (zh) 2020-09-22 2020-09-22 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112079638A true CN112079638A (zh) 2020-12-15

Family

ID=73739436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010999958.1A Pending CN112079638A (zh) 2020-09-22 2020-09-22 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112079638A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471355A (zh) * 2021-06-28 2021-10-01 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质
CN113773083B (zh) * 2021-09-13 2022-10-04 哈尔滨工业大学 一种兼具高强度和高热电性能的碲化铋基材料及其制备方法
CN115322004A (zh) * 2022-08-22 2022-11-11 哈尔滨工业大学(深圳) 一种兼具高热电和力学性能的碲化铋基热电材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243820A1 (en) * 2014-02-21 2015-08-27 Tsinghua University Photoelectric conversion apparatus and device
CN106986315A (zh) * 2016-01-21 2017-07-28 中国科学院上海硅酸盐研究所 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN107316935A (zh) * 2017-05-03 2017-11-03 广东先导稀材股份有限公司 碲铋基热电材料的制备方法
CN110098313A (zh) * 2019-04-22 2019-08-06 武汉科技大学 一种择优取向p型碲化铋基多晶块体热电材料的制备方法
CN110818415A (zh) * 2019-09-29 2020-02-21 中机第一设计研究院有限公司 一种调控P型Bi2Te3基材料组织和取向性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243820A1 (en) * 2014-02-21 2015-08-27 Tsinghua University Photoelectric conversion apparatus and device
CN106986315A (zh) * 2016-01-21 2017-07-28 中国科学院上海硅酸盐研究所 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN107316935A (zh) * 2017-05-03 2017-11-03 广东先导稀材股份有限公司 碲铋基热电材料的制备方法
CN110098313A (zh) * 2019-04-22 2019-08-06 武汉科技大学 一种择优取向p型碲化铋基多晶块体热电材料的制备方法
CN110818415A (zh) * 2019-09-29 2020-02-21 中机第一设计研究院有限公司 一种调控P型Bi2Te3基材料组织和取向性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN CHEN ET AL.: "Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi2Te3-Based Alloys via a Facile MgB2 Doping Strategy", 《ACS APPL. MATER. INTERFACES》 *
谢亮军: "Sb2Te3基半导体的组织结构与热电性能", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *
高娜等: "熔体处理对Bi0.4Sb1.6Te3+5%的Te合金热电性能的作用", 《特种铸造及有色合金》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471355A (zh) * 2021-06-28 2021-10-01 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质
CN113471355B (zh) * 2021-06-28 2024-05-31 深圳大学 p型碲化铋制备方法、装置、系统与计算机可读存储介质
CN113773083B (zh) * 2021-09-13 2022-10-04 哈尔滨工业大学 一种兼具高强度和高热电性能的碲化铋基材料及其制备方法
CN115322004A (zh) * 2022-08-22 2022-11-11 哈尔滨工业大学(深圳) 一种兼具高热电和力学性能的碲化铋基热电材料及其制备方法

Similar Documents

Publication Publication Date Title
CN112079638A (zh) 一种兼具高热电和力学性能的p型碲化铋基热电材料及其制备方法
JP6266099B2 (ja) 可逆的相転移を有する高性能p型熱電材料及びその製造方法
CN103910339B (zh) 一种具有纳米层状结构高性能BiCuSeO基块体热电材料的超快速制备方法
CN103219456B (zh) 一种与Mg-Si-Sn基热电元件相匹配的电极及其连接工艺
CN106904972B (zh) 一种环境友好型碲化锡基热电材料及其制备方法
CN104555950A (zh) 一种中温区具有优异热电性能的碲化铋材料及其制备方法
CN107946450B (zh) 一种掺杂变价元素协同优化BiCuSeO基热电材料
CN103436723A (zh) 一种快速制备高性能Mg2Si基热电材料的方法
CN102931335A (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN107565011B (zh) 基于Ga元素掺杂有效提高PbTe热电性能的方法
CN111640853B (zh) 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法
CN114538927A (zh) 一种非化学计量的n型碲化铋烧结材料及其制备方法
CN113421959B (zh) 一种n型碲化铋基室温热电材料及其制备方法
CN106129241B (zh) 固相反应法制备层错结构硫族化合物热电材料的方法
CN112645710B (zh) 一种用Er和Ag共掺提高碲化铋基赝三元热电材料热电性能的方法
CN107176589A (zh) 一种制备纳米化Mg3Sb2热电材料的新方法
Ioannidou et al. Microwave Synthesis and Characterization of the Series Co 1− x Fe x Sb 3 High Temperature Thermoelectric Materials
CN109585639B (zh) 一种高输出功率密度和能量转换效率的SnTe热电材料的制备方法
CN104362249A (zh) 一种与Mg-Si-Sn基热电元件相匹配的分层电极及其连接工艺
CN114890794A (zh) 一种高性能N型PbSe热电材料及其制备方法
CN1614054B (zh) 锑化钴基热电复合材料及制备方法
CN111653662B (zh) 伪立方相结构GeTe基热电材料及其制备方法
CN101345284A (zh) 一种p型铕镉锑基热电材料及其制备方法
CN111628071B (zh) 一种中温段热电材料及其制备方法
CN104218143B (zh) 一种BiAgSeTe基热电材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201215