CN114883116B - 一种多孔MnO2纳米管阵列微型储能器件的制备方法 - Google Patents

一种多孔MnO2纳米管阵列微型储能器件的制备方法 Download PDF

Info

Publication number
CN114883116B
CN114883116B CN202210561414.6A CN202210561414A CN114883116B CN 114883116 B CN114883116 B CN 114883116B CN 202210561414 A CN202210561414 A CN 202210561414A CN 114883116 B CN114883116 B CN 114883116B
Authority
CN
China
Prior art keywords
mno
polycarbonate
preparation
nanotube array
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210561414.6A
Other languages
English (en)
Other versions
CN114883116A (zh
Inventor
熊杰
李飞
雷天宇
陈伟
胡音
胡安俊
王显福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210561414.6A priority Critical patent/CN114883116B/zh
Publication of CN114883116A publication Critical patent/CN114883116A/zh
Application granted granted Critical
Publication of CN114883116B publication Critical patent/CN114883116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供的一种多孔MnO2纳米管阵列微型储能器件的制备方法,属于纳米管阵列电极的微纳加工技术领域,具体为:制备聚碳酸酯/MnO2纳米管复合薄膜并转移至衬底上,在复合薄膜表面制备叉指电极,浸泡在二氯甲烷中去除聚碳酸酯,通过酸洗刻蚀和氧等离子体刻蚀去除叉指电极间的聚碳酸酯和MnO2纳米管,获得MnO2纳米管阵列薄膜微电极,在微电极表面旋涂PVA基凝胶电解质,封装得到微型超级电容器。本发明采用的基底‑电极材料‑集流体结构的制备工艺,最大化保留叉指电极所覆盖区域的完整规则的MnO2纳米管阵列,提升电极材料的电解液润湿性和电荷传输能力,可实现规模化制备,并与片上微型电子器件集成。

Description

一种多孔MnO2纳米管阵列微型储能器件的制备方法
技术领域
本发明属于纳米管阵列电极的微纳加工技术领域,具体涉及一种多孔MnO2纳米管阵列微型储能器件的制备方法。
背景技术
包括可穿戴和便携式电子产品、微/纳米机器人等最新技术趋势的小型化和多功能化的微电子器件正在加速可集成微型储能系统的发展。微型超级电容器、微型锂离子电池等微型储能器件具有环境友好、循环寿命长、高功率密度和能量密度等优点,可以轻松满足实际应用中集成微系统的能量需求。其中,叉指型微型储能器件因无挡板设计以及微米级间隙,允许电解质离子的快速和多向扩散,并具有可集成化以及易于串并联的优势。但是由于电极面积小、活性物质少等原因,叉指型微型储能器件的面积比电容并不突出。
三维阵列电极的使用可有效增加电极材料厚度,提高活性物质质量,从而提高面积比容量。目前,在叉指型微型储能器件中常用的三维阵列电极是碳纳米管阵列。碳纳米管阵列的制备方法多为CVD生长法,但CVD法生长条件苛刻,容易破坏原有基底和集流体,且具有双电层特性的碳材料理论比电容较低。因此,迫切需求基于赝电容材料的三维阵列电极的开发。
二氧化锰(MnO2)因其环保、廉价、理论比电容高等特性是目前最具潜力的赝电容材料。MnO2的纳米结构包括纳米花、空心球、纳米线、纳米管等。其中,MnO2纳米管阵列由于比表面积大、电解液润湿性好、结构稳定性好、锰离子利用率高等优点,获得广泛关注。例如,YuXin Zhang等(Scientific Reports,2014, 4,3878)利用模板辅助的水热法制备了一种MnO2纳米片自组装纳米管,其管壁为介孔片层MnO2交织结构,可提供更多的活性点用于充放电过程中的氧化还原反应以及电解液离子的传输和扩散,从而表现出良好的电化学性能。然而,这种方法制备的MnO2纳米管样品呈粉末状,粉末样品通常难以集成到微型储能器件中。因此,目前还没有人报道基于MnO2纳米管阵列的微型储能器件的制备方法。
发明内容
针对上述现有技术中存在的问题,本发明提供了一种多孔MnO2纳米管阵列微型储能器件的制备方法,通过膜转移辅助光刻法制备片上高度有序的多孔MnO2纳米管阵列微型储能器件,具有很高的生产应用价值。
一种多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,包括以下步骤:
步骤1:制备聚碳酸酯(PC)/MnO2纳米管复合薄膜;
步骤2:将聚碳酸酯/MnO2纳米管复合薄膜转移至衬底上;
步骤3:在聚碳酸酯/MnO2纳米管复合薄膜表面制备叉指电极(即集流体),获得初步器件;
步骤4:将步骤3所得初步器件浸泡在二氯甲烷中,以移除聚碳酸酯/MnO2纳米管复合薄膜中的聚碳酸酯,再通过酸洗刻蚀叉指电极间的MnO2纳米管,之后利用氧等离子体刻蚀叉指电极间的聚碳酸酯和MnO2纳米管的残留物,保留叉指电极所覆盖区域的完整MnO2纳米管阵列(即电极材料),获得MnO2纳米管阵列薄膜微电极;
步骤5:在步骤4所得MnO2纳米管阵列薄膜微电极表面旋涂聚乙烯醇(PVA) 基凝胶电解质,封装后得到多孔MnO2纳米管阵列微型储能器件。
进一步地,步骤1的具体过程为:
步骤1.1:配置浓度为0.01~0.1mol/L的高锰酸钾(KMnO4)溶液,并搅拌;
步骤1.2:将孔径为50~200nm的聚碳酸酯模板进行酸洗预处理,以移除聚碳酸酯模板表面的杂质和残留物;
步骤1.3:将步骤1.2预处理后的聚碳酸酯模板浸入步骤1.1所得高锰酸钾溶液中,静置30~120min后,转入水热反应釜中进行80~160℃的水热反应12~36h,水热反应结束后,经清洗、干燥得到聚碳酸酯/MnO2纳米管复合薄膜。
进一步地,所述聚碳酸酯/MnO2纳米管复合薄膜的MnO2纳米管为多孔结构,孔径分布在小孔到介孔区间,为2~50nm。
进一步地,步骤2的具体过程为:将聚二甲基硅氧烷(PDMS)的预聚物和固化剂按10:1的质量比混合得到PDMS前驱液,旋涂于衬底上,得到PDMS胶体,之后将步骤1所得聚碳酸酯/MnO2纳米管复合薄膜贴在PDMS胶体表面,加热固化后,转移完成。
进一步地,步骤2中衬底为硅片或对苯二甲酸乙二酯(PET)膜。
进一步地,步骤3的具体过程为:
步骤3.1:在步骤2的聚碳酸酯/MnO2纳米管复合薄膜表面获得叉指电极光刻图案;
步骤3.2:在步骤3.1所得带有叉指电极光刻图案的聚碳酸酯/MnO2纳米管复合薄膜表面沉积Cr/Au薄膜,剥离后得到叉指电极,获得初步器件。
进一步地,步骤4中初步器件在二氯甲烷中浸泡时间为12~48h。
进一步地,步骤4中酸洗刻蚀的条件为:在0.1mol/L盐酸溶液中超声清洗 60~300s。
进一步地,步骤4中氧等离子体刻蚀的条件为:在150torr的压强、500W 的功率条件下刻蚀1~5h。
进一步地,步骤5中所述电解质为浓度为1mol/L的PVA/Na2SO4凝胶状固态电解质。
与现有技术相比,本发明的有益效果如下:
1、本发明提出了一种多孔MnO2纳米管阵列微型储能器件的制备方法,可最大化保留叉指电极所覆盖区域的完整规则的MnO2纳米管阵列,MnO2纳米管阵列和叉指电极的结合有助于提升电极材料的电解液润湿性和电荷传输能力,进而表现出良好的电化学性能;
2、本发明采用的基底-电极材料-集流体结构的制备工艺,与传统基底-集流体-电极材料结构的加工工艺相比,减少了在集流体上微加工的步骤,有效避免微工艺对集流体的损坏;
3、本发明利用半导体加工工艺,可以实现规模化制备,且可与片上微型电子器件集成,实现自供电微系统一体化。
附图说明
图1为本发明实施例1提出的多孔MnO2纳米管阵列微型储能器件的制备方法的工艺流程图;
图2为本发明实施例1提出的多孔MnO2纳米管阵列微型储能器件的制备方法的具体工艺流程示意图;
图3为本发明实施例1所得MnO2纳米管阵列的SEM图;
图4为本发明实施例1所得多孔MnO2纳米管阵列微型储能器件的光学图;
图5为本发明实施例1所得多孔MnO2纳米管阵列微型储能器件的电化学性能图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
本实施例制备了一种多孔MnO2纳米管阵列微型储能器件,工艺流程如图1 和图2所示,具体包括以下步骤:
步骤1:制备聚碳酸酯/MnO2纳米管复合薄膜(简称PC/MnO2复合薄膜),具体为:
步骤1.1:配置浓度为0.02mol/L的KMnO4溶液,含有MnO4 -离子,磁力搅拌30min;
步骤1.2:采用1mol/L的盐酸溶液,对孔径为200nm的聚碳酸酯模板进行酸洗预处理,以移除聚碳酸酯模板表面的杂质和残留物;
步骤1.3:将步骤1.2预处理后的聚碳酸酯模板浸入步骤1.1所得高锰酸钾溶液中,静置1h后,转入水热反应釜中进行100℃的水热反应,以自助装得到 MnO2纳米片,水热反应24h后,经去离子水清洗,60℃干燥6h,得到聚碳酸酯/MnO2纳米管复合薄膜;其中,MnO2纳米管为多孔结构,孔径分布在小孔到介孔区间,为2~50nm。
步骤2:将聚碳酸酯/MnO2纳米管复合薄膜转移至硅片上,具体为:
将PDMS的预聚物和固化剂按10:1的质量比混合得到PDMS前驱液,在5℃冰箱中冷藏24h,以去除PDMS前驱液中的气泡;之后将PDMS前驱液旋涂于硅片上,旋涂条件为以400r/s的转速前转10s,1000r/s的转速后转30s,得到 PDMS胶体;之后将步骤1所得聚碳酸酯/MnO2纳米管复合薄膜贴在PDMS胶体表面,在80℃热台上加热固化1h后,转移完成。
步骤3:在聚碳酸酯/MnO2纳米管复合薄膜表面制备叉指电极(即集流体),获得初步器件,具体为:
步骤3.1:在步骤2的聚碳酸酯/MnO2纳米管复合薄膜表面旋涂光刻胶 AZ5214E,之后经软烘、曝光、显影和硬烘,获得长度为7.7mm,宽度为100μm,电极间隙为50μm的叉指电极光刻图案;
步骤3.2:将步骤3.1所得带有叉指电极光刻图案的聚碳酸酯/MnO2纳米管复合薄膜置于电子束蒸发镀膜系统中,先后沉积10nm的Cr和50nm的Au,作为集流体;之后浸泡在丙酮中2min进行剥离,用异丙醇和去离子水分别冲洗后得到叉指电极,获得初步器件。
步骤4:将步骤3所得初步器件浸泡在二氯甲烷中24h,以移除聚碳酸酯 /MnO2纳米管复合薄膜的聚碳酸酯;再放置于0.1mol/L的盐酸溶液中超声清洗 120s,以刻蚀叉指电极间的MnO2纳米管;之后利用氧等离子体刻蚀叉指电极间的聚碳酸酯和MnO2纳米管的残留物,保留叉指电极所覆盖区域的完整MnO2纳米管阵列(即电极材料),如图3所示,获得MnO2纳米管阵列薄膜微电极;其中,氧等离子体刻蚀的条件为:在150torr的压强,500W的功率条件下刻蚀2h。
步骤5:在90℃下搅拌配置浓度为0.1g/mL的PVA溶液,向PVA溶液中加入Na2SO4,持续搅拌2~5h,使Na2SO4完全溶解,冷却至室温后得到Na离子浓度为1mol/L的PVA/Na2SO4凝胶状固态电解质;在步骤4所得MnO2纳米管阵列薄膜微电极表面旋涂PVA/Na2SO4凝胶状固态电解质,封装后得到多孔MnO2纳米管阵列微型储能器件,其光学图如图4所示。
对本实施例所得多孔MnO2纳米管阵列微型储能器件进行电化学性能测试,获得如图5所示的不同扫速下的伏安循环曲线,当扫速为5mV/S时,其面积比容量为13.2mF/cm2,性能优异。

Claims (8)

1.一种多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,包括以下步骤:
步骤1:制备聚碳酸酯/MnO2纳米管复合薄膜;
步骤2:将聚碳酸酯/MnO2纳米管复合薄膜转移至衬底上;
步骤3:在聚碳酸酯/MnO2纳米管复合薄膜表面制备叉指电极,获得初步器件;
步骤4:将初步器件浸泡在二氯甲烷中,以移除聚碳酸酯/MnO2纳米管复合薄膜中的聚碳酸酯,再通过酸洗刻蚀叉指电极间的MnO2纳米管,之后利用氧等离子体刻蚀叉指电极间的聚碳酸酯和MnO2纳米管的残留物,获得MnO2纳米管阵列薄膜微电极;
步骤5:在MnO2纳米管阵列薄膜微电极表面旋涂聚乙烯醇基凝胶电解质,封装后得到多孔MnO2纳米管阵列微型储能器件。
2.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤1的具体过程为:
步骤1.1:配置浓度为0.01~0.1mol/L的高锰酸钾溶液,并搅拌;
步骤1.2:将孔径为50~200nm的聚碳酸酯模板进行酸洗预处理;
步骤1.3:将步骤1.2预处理后的聚碳酸酯模板浸入高锰酸钾溶液中,静置30~120min后,转入水热反应釜中进行80~160℃的水热反应12~36h,水热反应结束后,经清洗、干燥得到聚碳酸酯/MnO2纳米管复合薄膜。
3.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,所述聚碳酸酯/MnO2纳米管复合薄膜的MnO2纳米管为多孔结构。
4.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤2的具体过程为:将PDMS的预聚物和固化剂按10:1的质量比混合得到PDMS前驱液,旋涂于衬底上,得到PDMS胶体,之后将聚碳酸酯/MnO2纳米管复合薄膜贴在PDMS胶体表面,加热固化后转移完成。
5.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤2中衬底为硅片或PET膜。
6.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤3的具体过程为:
步骤3.1:在步骤2的聚碳酸酯/MnO2纳米管复合薄膜表面获得叉指电极光刻图案;
步骤3.2:在步骤3.1所得带有叉指电极光刻图案的聚碳酸酯/MnO2纳米管复合薄膜表面沉积Cr/Au薄膜,剥离后得到叉指电极,获得初步器件。
7.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤4中初步器件在二氯甲烷中浸泡时间为12~48h。
8.根据权利要求1所述多孔MnO2纳米管阵列微型储能器件的制备方法,其特征在于,步骤4中氧等离子体刻蚀的条件为:在150torr的压强、500W的功率条件下刻蚀1~5h。
CN202210561414.6A 2022-05-23 2022-05-23 一种多孔MnO2纳米管阵列微型储能器件的制备方法 Active CN114883116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210561414.6A CN114883116B (zh) 2022-05-23 2022-05-23 一种多孔MnO2纳米管阵列微型储能器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210561414.6A CN114883116B (zh) 2022-05-23 2022-05-23 一种多孔MnO2纳米管阵列微型储能器件的制备方法

Publications (2)

Publication Number Publication Date
CN114883116A CN114883116A (zh) 2022-08-09
CN114883116B true CN114883116B (zh) 2023-01-31

Family

ID=82677876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210561414.6A Active CN114883116B (zh) 2022-05-23 2022-05-23 一种多孔MnO2纳米管阵列微型储能器件的制备方法

Country Status (1)

Country Link
CN (1) CN114883116B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482704A (zh) * 2013-09-04 2014-01-01 重庆大学 一种MnO2纳米片自组装纳米管及其制备方法
CN113675006A (zh) * 2021-08-11 2021-11-19 浙江浙能技术研究院有限公司 一种锰基氧化物微型超级电容器的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482704A (zh) * 2013-09-04 2014-01-01 重庆大学 一种MnO2纳米片自组装纳米管及其制备方法
CN113675006A (zh) * 2021-08-11 2021-11-19 浙江浙能技术研究院有限公司 一种锰基氧化物微型超级电容器的制备方法

Also Published As

Publication number Publication date
CN114883116A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
AU2020103599A4 (en) Preparation Method of CVD Graphene Planar Micro Super Capacitor
US7553341B2 (en) High power density supercapacitors with carbon nanotube electrodes
CN111564611A (zh) 硅氧碳复合材料、制备方法及锂电池材料
CN113889611B (zh) 一种硅碳负极材料及其制备方法
CN105609690B (zh) 一种电池隔膜及其制备方法和锂硫电池
CN112366095A (zh) 一种水平有序碳纳米管阵列微型超级电容器的制备方法
CN106505200A (zh) 碳纳米管/石墨烯/硅复合锂电池负极材料及其制备方法
CN113035590A (zh) 非对称三维叉梳微柱阵列电极结构超级电容器制备方法
CN107393724A (zh) 一种基于石墨烯/碳纳米管气凝胶的微型超级电容器制作方法
CN104701020B (zh) 基于su‑8光刻胶的三维微电极制备方法
CN111115618A (zh) 一种石墨烯/碳/氧化锡纳米复合材料及其制备方法和应用
CN114883116B (zh) 一种多孔MnO2纳米管阵列微型储能器件的制备方法
CN111725492B (zh) 一种碳/钛酸锂复合材料及其制备方法
CN107863410A (zh) 一种太阳能电池制备方法
CN108878160B (zh) 泡沫镍/ITO-NWs材料、超级电容器及其制备方法
CN108598557B (zh) 一种全固态电池一体化模块及包含该模块的全固态电池
CN114360927B (zh) 一种氢氧化镍电极材料的制备方法
JP7228203B2 (ja) リチウム金属陽極及びその製造方法、リチウム金属陽極を含むリチウムイオン電池
CN110853938B (zh) 对称超级电容器
CN111261420B (zh) 柔性微型储能器件及其制作方法
CN111261863B (zh) 三维镍纳米管阵列及其制备方法、锂离子电池及应用
CN113948677B (zh) 可直接用于制备锂离子电池的硅烯负极片及其制备和应用
CN114975906B (zh) 氮掺杂氟化改性石墨烯负极材料的制备方法及电池
CN112736202B (zh) 提高钙钛矿墨水与电性传输层间浸润性的方法及其应用
CN117578911A (zh) 一种基于蛭石纳米片薄膜的湿气发电器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant