CN114768844A - 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用 - Google Patents

一种超薄多孔片状g-C3N4光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN114768844A
CN114768844A CN202210285891.4A CN202210285891A CN114768844A CN 114768844 A CN114768844 A CN 114768844A CN 202210285891 A CN202210285891 A CN 202210285891A CN 114768844 A CN114768844 A CN 114768844A
Authority
CN
China
Prior art keywords
urea
photocatalyst
furnace
weighing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210285891.4A
Other languages
English (en)
Inventor
黄鹏儒
彭乐宇
张颖
孙志海
刘佳溪
李子源
蔡丹
李彬
邹勇进
徐芬
孙立贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210285891.4A priority Critical patent/CN114768844A/zh
Publication of CN114768844A publication Critical patent/CN114768844A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄多孔片状g‑C3N4光催化剂的制备方法,所述g‑C3N4以尿素为前驱体,甲醇为气体模板,采用热聚合方法制备而成,包括如下步骤:1)称取6~7g的尿素并研磨充分,置于透明石英坩埚中,并将其在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到g‑C3N4;2)称取6~7g的尿素加入不同的甲醇溶液中,在水浴锅50℃条件下进行搅拌,分散均匀后倒入透明石英坩埚中,在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到一种超薄多孔片状多孔g‑C3N4光催化剂。这种催化剂制备方法简单,成本低,在光催化降解方向表现出较高的活性,具有广泛的应用前景。

Description

一种超薄多孔片状g-C3N4光催化剂的制备方法及应用
技术领域
本发明涉及到光催化降解领域,具体是一种超薄多孔片状g-C3N4光催化剂的制备方法及应用。
背景技术
当前,随着全球经济发展所依赖的不可再生能源(天然气、煤炭、石油等)的持续减少,能源短缺以及环境污染成为影响人类可持续发展的两大重要问题,因此,寻求清洁、可持续的再生能源是当今各个国家努力的方向。而半导体光催化技术是一种有效的应对环境危机的绿色技术。
环境污染,尤其是空气中挥发性有机物和水体有机物污染是当今社会亟需解决的重要问题,寻求高效、低成本、无二次污染的新技术的研究热度日益高涨。作为高级氧化技术的一员,半导体光催化技术在环境修复领域以其绿色高效、可持续的特点展现出巨大的应用前景,吸引了研究者们的广泛关注。光催化技术的核心是设计高效稳定的光催化材料,并研究其对太阳光/可见光光催化性能。石墨相氮化碳具有独特的Π电子结构、优异的化学稳定性以及可见光吸收性能进入了人们的视野。然而,体相g-C3N4存在比表面积小、光生载流子复合率高以及可见光吸收范围窄等缺点导致了光催化降解有机污染物的效率较低。为了解决以上问题,我们需要对体相g-C3N4进行改性处理。
常见的一些改性手段主要包括:元素掺杂,构筑异质结,形貌的调控,碳或氮空位缺陷的控制等。已见报道的策略主要集中在元素掺杂、微观形貌等方面的研究,实际上并不能满足高效稳定催化剂的设计要求,因此我们需要构建丰富的活性位点和促进光生载流子的分离来进一步提高光催化活性。
发明内容
本发明的目的是针对现有技术的不足,而提供一种超薄多孔片状g-C3N4光催化剂的制备方法及应用。这种催化剂增强了体相g-C3N4的可见光响应,减少了g-C3N4的电荷转移内阻,增强了其在可见光下降解罗丹明b的活性,具有广泛的应用前景。
实现本发明目的的技术方案是:
一种超薄多孔片状g-C3N4光催化剂的制备方法,包括如下步骤:
1) 称取6~7g的尿素研磨充分,放置于透明石英坩埚中,将其在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到g-C3N4,记作CN;
2)称取6~7g的尿素加入不同容积的甲醇溶液中,在水浴锅50℃条件下进行搅拌,分散均匀后倒入透明石英坩埚中,在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到含有碳缺陷片状多孔g-C3N4光催化剂。
所述步骤1)中的尿素质量为6.372g;
所述步骤2)中的尿素质量为6.372g,甲醇溶液的容积分别为30ml、50ml、70ml、90ml,分别记为CN-30、CN-50、CN-70、CN-90。
用上述方法合成一种超薄多孔片状g-C3N4光催化剂,上述g-C3N4光催化剂作为光催化降解方面的应用,该应用用于光催化降解罗丹明b中。
相对于现有技术,本技术方案的优点为:
1)原材料尿素和甲醇价格便宜,经济成本低,易于大规模生产;
2)在反应过程中仅需调控甲醇的用量便可制备具有超薄多孔片状g-C3N4纳米片;
3)在热聚合过程中,甲醇分子不仅可以转化成气体,而且能够促进尿素的分解,形成孔状结构,增大了反应活性位点。
这种催化剂增强了体相g-C3N4的可见光响应,减少了g-C3N4的电荷转移内阻,增强了其在可见光下降解罗丹明b的活性,具有广泛的应用前景。
附图说明
图1为实施例中氮化碳光催化剂的X射线衍射图;
图2为实施例中氮化碳光催化剂的红外光谱图;
图3为实施例中氮化碳光催化剂的扫描电镜表征图;
图4为实施例中氮化碳光催化剂的电化学阻抗图;
图5为实施例中氮化碳光催化剂的光电流响应对比图;
图6为实施例中氮化碳光催化剂的光降解速率对比图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细描述,但不是对本发明的限定。
实施例1:
步骤1):称取6.372g尿素溶于30ml甲醇溶液中,将其置于50℃水浴锅中充分搅拌20~30min;步骤2):将步骤1)得到的混合溶液倒入透明石英坩埚中,在马弗炉中以2.5℃/min的速率升温至550℃并保温2~4h,随炉冷却至室温,即得到超薄多孔片状g-C3N4光催化剂,记作CN-30。
实施例2:
步骤1):称取6.372g尿素溶于50ml甲醇溶液中,将其置于50℃水浴锅中充分搅拌20~30min;步骤2):将步骤1)得到的混合溶液倒入透明石英坩埚中,在马弗炉中以2.5℃/min的速率升温至550℃并保温2~4h,随炉冷却至室温,即得到超薄多孔片状g-C3N4光催化剂,记作CN-50。
实施例3:
步骤1):称取6.372g尿素溶于70ml甲醇溶液中,将其置于50℃水浴锅中充分搅拌20~30min;步骤2):将步骤1)得到的混合溶液倒入透明石英坩埚中,在马弗炉中以2.5℃/min的速率升温至550℃并保温2~4h,随炉冷却至室温,即得到超薄多孔片状g-C3N4光催化剂,记作CN-70。
实施例4:
步骤1):称取6.372g尿素溶于90ml甲醇溶液中,将其置于50℃水浴锅中充分搅拌20~30min;步骤2):将步骤1)得到的混合溶液倒入透明石英坩埚中,在马弗炉中以2.5℃/min的速率升温至550℃并保温2~4h,随炉冷却至室温,即得到超薄多孔片状g-C3N4光催化剂,记作CN-90。
对比例1:
称取6.372g尿素研磨充分,放置于透明石英坩埚中,将其在马弗炉中以2.5℃/min的速率升温至550℃并保温2~4h,随炉冷却至室温,即得到g-C3N4,记作CN。
光降解罗丹明b(Rhb) ,具体过程如下:
将10 mgCN、CN-30、CN-50、CN-70、CN-90催化剂分别置于50 ml 20 mg/l Rhb水溶液中,避光条件下搅拌30 min以达到物理吸附平衡,然后在氙灯下照射进行反应,每隔10min取样3 ml,10000rpm离心分散后取上清液,用紫外分光光度计测定溶液在554 nm左右处的吸光度,以此来监测Rhb的浓度变化。
如图1所示,CN、CN-30、CN-50、CN-70、CN-90在2θ为13.2°和27.5°处存在两个明显的峰值,分别归属于石墨相氮化碳的(100)和(002)晶面。
如图2所示,CN、CN-30、CN-50、CN-70、CN-90均在810 cm-1、1200-1700 cm-1、3000-3400 cm-1处出现峰值,分别对应C-N-C、CN杂环、氨基以及羟基基团。
根据图1的XRD图以及图2的FT-IR图中发现通过甲醇修饰后的g-C3N4的晶体结构并没有发生明显的变化。
如图3所示,通过对CN以及CN-70的扫描电镜表征,很明显的可以看出,CN表面较为粗糙,而CN-70表面呈现出多孔的薄片状结构,这为光催化反应中提供了大量的活性位点,更有利于反应的进行。
如图4所示,用电化学阻抗表征了界面电荷的转移,从样品的内阻可以看出,CN-70的电化学内阻最小,内阻越小越有利于电荷载流子的分离,即光催化性能越好。
如图5所示,用光电流表征了光生载流子电荷的分离速率,从图中可以看出,CN-70的载流子分离速率较快,这越有利于光催化反应的进行。
如图6所示,为了研究不同甲醇用量合成的g-C3N4的光催化降解性能,对实施例1,实施例2,实施例3,实施例4,对比例1进行性能测试,在相同条件下,60 min中内,CN、CN-30、CN-50、CN-70、CN-90分别降解了约31.2%、42.7%、81.4%、83.3%、97.5%的污染物。可以看出随着甲醇用量的增加,性能逐步提升,但当甲醇用量为90ml时,会导致g-C3N4的降解性能下降。
因此,尿素使用量为6.372g,甲醇使用70ml时,合成的超薄多孔g-C3N4的降解性能相比较于其他比例的最佳。

Claims (5)

1.一种超薄多孔片状g-C3N4光催化剂的制备方法,其特征在于,包括如下步骤:
1)称取6~7g的尿素研磨充分,放置于透明石英坩埚中,将其在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到g-C3N4,记作CN;
2)称取6~7g的尿素加入不同容积的甲醇溶液中,在水浴锅50℃条件下进行搅拌,分散均匀后倒入透明石英坩埚中,在马弗炉中以2~5℃/min的速率升温至520~580℃并保温2~4h,随炉冷却至室温,即得到一种超薄多孔片状g-C3N4光催化剂。
2.根据权利要求1所述的超薄多孔片状g-C3N4光催化剂的制备方法,其特征在于,步骤1)中所述的尿素为6.372g。
3.根据权利要求1所述的超薄多孔片状g-C3N4光催化剂的制备方法,其特征在于,步骤2)中所述的尿素为6.372g,甲醇溶液的容积分别为30ml、50ml、70ml、90ml,分别记为CN-30、CN-50、CN-70、CN-90。
4.据权利要求1- 3任意一项超薄多孔片状g-C3N4光催化剂的制备方法制得g-C3N4光催化剂。
5.权利要求4所述的g-C3N4光催化剂在罗丹明b中的应用,该应用包括g-C3N4光催化剂用于光催化降解罗丹明b。
CN202210285891.4A 2022-03-23 2022-03-23 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用 Withdrawn CN114768844A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210285891.4A CN114768844A (zh) 2022-03-23 2022-03-23 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210285891.4A CN114768844A (zh) 2022-03-23 2022-03-23 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN114768844A true CN114768844A (zh) 2022-07-22

Family

ID=82425717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210285891.4A Withdrawn CN114768844A (zh) 2022-03-23 2022-03-23 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114768844A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745836A (zh) * 2013-12-29 2014-04-23 渤海大学 g-C3N4/碳量子点复合电极的制备方法
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN107469851A (zh) * 2016-06-07 2017-12-15 中国地质大学(北京) 一种超薄多孔N掺杂g‑C3N4光催化剂及其制备方法
CN108273533A (zh) * 2017-01-05 2018-07-13 广西民族大学 一种高比表面积多孔g-C3N4的制备方法
CN109647487A (zh) * 2019-01-18 2019-04-19 三峡大学 p-n结结构的Cu2O@g-C3N4纳米复合材料,合成制备方法及其应用
CN110314693A (zh) * 2019-07-23 2019-10-11 青岛滨海学院 一种类石墨相氮化碳纳米片及制备方法与应用
CN111097477A (zh) * 2020-01-16 2020-05-05 兰州大学 超薄二维层状复合光催化材料的制备及其应用
CN111215116A (zh) * 2020-02-10 2020-06-02 中南林业科技大学 一种3d缺陷氮化碳光催化材料及其制备方法与用途
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL
CN112958141A (zh) * 2021-03-17 2021-06-15 桂林电子科技大学 一种含氧g-C3N4纳米片光催化剂的制备方法和应用
CN113828345A (zh) * 2021-11-09 2021-12-24 桂林电子科技大学 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN113830742A (zh) * 2021-07-16 2021-12-24 中国科学技术大学 一种富含氮缺陷的超薄氮化碳纳米片及其制备方法、光催化制备过氧化氢的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745836A (zh) * 2013-12-29 2014-04-23 渤海大学 g-C3N4/碳量子点复合电极的制备方法
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN107469851A (zh) * 2016-06-07 2017-12-15 中国地质大学(北京) 一种超薄多孔N掺杂g‑C3N4光催化剂及其制备方法
CN108273533A (zh) * 2017-01-05 2018-07-13 广西民族大学 一种高比表面积多孔g-C3N4的制备方法
CN109647487A (zh) * 2019-01-18 2019-04-19 三峡大学 p-n结结构的Cu2O@g-C3N4纳米复合材料,合成制备方法及其应用
CN110314693A (zh) * 2019-07-23 2019-10-11 青岛滨海学院 一种类石墨相氮化碳纳米片及制备方法与应用
CN111097477A (zh) * 2020-01-16 2020-05-05 兰州大学 超薄二维层状复合光催化材料的制备及其应用
CN111215116A (zh) * 2020-02-10 2020-06-02 中南林业科技大学 一种3d缺陷氮化碳光催化材料及其制备方法与用途
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL
CN112958141A (zh) * 2021-03-17 2021-06-15 桂林电子科技大学 一种含氧g-C3N4纳米片光催化剂的制备方法和应用
CN113830742A (zh) * 2021-07-16 2021-12-24 中国科学技术大学 一种富含氮缺陷的超薄氮化碳纳米片及其制备方法、光催化制备过氧化氢的方法
CN113828345A (zh) * 2021-11-09 2021-12-24 桂林电子科技大学 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUXIN YANG ET AL.,: "Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C3N4 nanosheets", 《APPLIED SURFACE SCIENCE》 *
刘国等: "g-C3N4 制备及其协同PDS可见光催化降解布洛芬的研究", 《安全与环境学报》 *

Similar Documents

Publication Publication Date Title
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN115007194B (zh) 一种非晶硼掺杂氮化碳的制备方法及应用
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
CN112023974B (zh) 一种P-CeO2/g-C3N4异质结材料及其制备方法和应用
CN115181265B (zh) 一种亚甲基修饰共价三嗪骨架材料及其制备方法和应用
CN106423223A (zh) 一种饼状多孔结构MoSe2@TiO2光催化剂及其制备方法
CN111203234A (zh) 一种CdIn2S4纳米块/SnIn4S8片状堆集结构双功能复合光催化剂的制备方法
CN114054066A (zh) 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用
CN114768852B (zh) 一种钾离子梯度掺杂氮化碳材料的制备方法
CN116532135A (zh) 钴离子掺杂改性的上转换光催化剂及其制备方法与应用
CN102553626A (zh) 一种碳氮共掺杂TiO2纳米催化材料的制备方法
CN115090318A (zh) 一种高比表面积分子间异质结氮化碳光催化剂的制备方法及其应用
CN114768844A (zh) 一种超薄多孔片状g-C3N4光催化剂的制备方法及应用
CN110227490B (zh) 一种碳包覆协同碳硫共掺杂的SnO2光催化剂及其制备方法
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法
CN113856668A (zh) 一种Bi/BiVO4复合异质结光催化材料的制备方法
CN110075879B (zh) 碳包覆四氧化三铁磁性微球修饰碘氧化铋复合光催化材料及其制备方法与应用
CN112871165A (zh) 贵金属负载改性的二维wo3纳米片光催化剂的制备方法
CN115301267A (zh) 一种适用于可见光催化的多孔管状氮化碳催化剂及其制备方法和应用
CN111807336A (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法
CN113926481B (zh) 一种CNC/g-C3N4纳米复合材料及其制备和应用
CN109772419A (zh) 在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220722