CN114192163A - 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法 - Google Patents

一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法 Download PDF

Info

Publication number
CN114192163A
CN114192163A CN202111543929.5A CN202111543929A CN114192163A CN 114192163 A CN114192163 A CN 114192163A CN 202111543929 A CN202111543929 A CN 202111543929A CN 114192163 A CN114192163 A CN 114192163A
Authority
CN
China
Prior art keywords
srtio
plane
nano
photocatalyst
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111543929.5A
Other languages
English (en)
Inventor
方帆
苏志远
常焜
丁玲玲
李婧晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111543929.5A priority Critical patent/CN114192163A/zh
Publication of CN114192163A publication Critical patent/CN114192163A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法,属于光催化纳米材料的形貌调控领域,本发明纳米光催化剂为暴露出36面{110}晶面的K离子掺杂SrTiO3,并担载RhCrOx作为析氢助催化剂,CoOOH为析氧助催化剂,K摩尔占比为1%~10%,助催化剂担载量为0.1wt%‑0.5wt%的不同的RhCrOx/K‑SrTiO3/CoOOH复合纳米光催化材料;所述催化剂具有特殊形貌,能实现在紫外—可见光下的光催化反应,在光催化反应中具有很好的催化活性和稳定性,且制备工艺操作简单,反应条件温和,所用试剂价格低廉。

Description

一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其 制备方法
技术领域
本发明属于光催化纳米材料的形貌调控领域,尤其涉及一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法。
背景技术
半导体光催化在温和条件下能促成多类困难的化学反应有利进行,例如光催化降解有机物、光催化合成氨、甲醇及其它高附加值的化工原料,光催化分解水等,这被认为是一种将光子能量转化为化学能的关键技术。由于氢具有较高的燃烧热值和环境友好性,被认为是一种清洁的替代能源,2 mol的水分解可生成2 mol的氢气和1 mol氧气,在以光能源的利用为前提转化成可存储的氢能时,光催化纯水分解技术就以很高的水准可能替代化石燃料的纯粹消耗机制,因而成为研究热门。但是水分解反应是一个热力学上的“爬坡”过程,分解水占用的大比重能耗致使水分解产氢的策略无法大面积投入实际生产。
自从1972年Fujishima和Honda利用金红石型TiO2阳极和铂阴极进行光电化学的水分解以来,人们一直致力于构建高效的多相光催化的研究。到目前为止,已经有大量的半导体光催化剂被研究出来,如硫化物(CdS)、氮化物(Ta3N5)和金属氧化物(TiO2)等。SrTiO3具有简单的立方钙钛矿结构,还原后为n型半导体,禁带宽度为3.2 eV。在研究早期,SrTiO3已经被一些尝试证明可以作为光电极电解水产氢。截至目前,SrTiO3基半导体材料又被证实可在无偏压下转化太阳能进行纯水分解。然而如何促进光生载流子的激发,以及载流子的分离和迁移效率的进一步提高,都是目前该领域研究是重中之重。
因为光催化反应都在材料的表面进行,所以光催化材料的表面结构就直接影响着反应物分子的吸附、光生载流子的转移以及产物分子的脱附,最终影响着光催化材料的催化活性,因此针对光催化材料的晶面调控,特别是合成具有高能晶面暴露的光催化材料成为近年来研究的热点。研究表明,Domen等人合成了无规则的Al-SrTiO3纳米颗粒,暴露出{110}晶面,显著提高了光生电子与空穴的分离效率。但是,其{110}晶面暴露数量有限。
发明内容
本发明提供了一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法,所述催化剂具有特殊形貌,并暴露出36面{110}晶面,能实现在紫外—可见光下的光催化反应,在光催化反应中具有很好的催化活性和稳定性,且制备工艺操作简单,反应条件温和,所用试剂价格低廉。
为实现以上目的,本发明采用以下技术方案:
一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂,所述光催化剂为K离子掺杂SrTiO3,所述K相对于SrTiO3的摩尔占比为1%~10%,且催化剂颗粒形貌共暴露36面{110}晶面,并担载RhCrOx作为析氢助催化剂、CoOOH为析氧助催化剂,所述RhCrOx和CoOOH的担载量为K-SrTiO3的0.5wt%;所述K离子掺杂的SrTiO3纳米立方体的8个顶角和12条棱同时被剪切,暴露出36面{110}晶面。
一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,包括以下步骤:
(1)将定量摩尔比K: Ti为0-0.06的含钾化合物与SrTiO3纳米颗粒均匀球磨混合1~24小时;
(2)将步骤(1)中球磨混合好的含钾化合物和SrTiO3与过量SrCl2均匀混合后,于800-1300℃保温4-12小时;
(3)将步骤(2)高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到K-SrTiO3纳米颗粒;
(4)将步骤(3)合成的K-SrTiO3纳米颗粒与一定量的NaRhCl6和Cr(NO3)3(按各自占K-SrTiO3质量比0.1wt%~0.5wt%)均匀球磨混合1~5小时,于200-800℃保温1-5小时,制得RhCrOx/K-SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/K-SrTiO3纳米颗粒分散水中,加入占RhCrOx/K-SrTiO3质量比为0.1wt%~0.5wt%的硝酸钴,300W氙灯光照1-12小时后,过滤洗涤并烘干,制得RhCrOx/K-SrTiO3/CoOOH纳米复合光催化剂。
以上所述步骤中,步骤(1)中所述的含钾化合物为碳酸钾、醋酸钾、硝酸钾、氯化钾中的一种或多种,所述含钾化合物与SrTiO3的摩尔比为n(K): n(Ti)为0-0.06;步骤(3)中得到的K-SrTiO3纳米颗粒尺寸为200-300纳米。
有益效果:本发明提供了一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法,所述K离子掺杂SrTiO3纳米立方体具有特殊形貌,暴露了36面{110}晶面,极大地提高了光生电子与空穴的分离效率,实现在紫外—可见光下的光催化反应,在光催化反应中具有很好的催化活性和稳定性,且制备工艺操作简单,反应条件温和,所用试剂价格低廉。
附图说明
图1是本发明实施例1制得的K-SrTiO3材料的XRD图谱;
图2-3是本发明实施例2制得的K-SrTiO3扫描电镜图;
图4是本发明实施例3制得的RhCrOx/K-SrTiO3/CoOOH光催化水分解活性图;
图5为本发明制得的光催化剂纳米立方体结构示意图;
图6为本发明制得的光催化剂循环测试结果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,包括以下步骤:
分别称取0.008mol的硝酸钾和0.084mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨10h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在800度下保温12小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到K-SrTiO3纳米催化剂材料,取0.5gK-SrTiO3纳米颗粒,加入2.5mg的NaRhCl6和2.5mg的Cr(NO3)3,球磨混合1小时,于空气中600度煅烧2小时后,分散于100ml水中,加入2.5mgCo(NO3)2,300W氙灯光照8小时后,过滤洗涤并烘干,制得RhCrOx/K-SrTiO3/CoOOH纳米复合光催化剂。
上述制备得到的K-SrTiO3纳米催化剂材料的XRD图如图1所示,其晶型保持了与SrTiO3相同的钙钛矿型,说明少量金属离子掺杂对其晶型改变影响不大。
实施例2
一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,包括以下步骤:
分别称取0.005mol的硝酸钾和0.09mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨24h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在1000度下保温8小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到K-SrTiO3纳米催化剂材料,取0.5gK-SrTiO3纳米颗粒,加入1mg的NaRhCl6和2.5mg的Cr(NO3)3,球磨混合1小时,于空气中400度煅烧2小时后,分散于100ml水中,加入1.5mgCo(NO3)2,300W氙灯光照5小时后,过滤洗涤并烘干,制得RhCrOx/K-SrTiO3/CoOOH纳米复合光催化剂。
上述制备得到的K-SrTiO3纳米催化剂材料的扫描电镜图如图2-3所示,纳米立方体的尺寸在200-300纳米,如图5所示,立方体的8个顶角和12条棱边都被剪切,暴露出36面{110}晶面。
实施例3
一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,包括以下步骤:
分别称取0.003mol的硝酸钾和0.095mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨24h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在800度下保温8小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到K-SrTiO3纳米催化剂材料,取0.5gK-SrTiO3纳米颗粒,加入1.5mg的NaRhCl6和1.5mg的Cr(NO3)3,球磨混合1小时,于空气中500度煅烧2小时后,分散于100ml水中,加入1.5mgCo(NO3)2,300W氙灯光照4小时后,过滤洗涤并烘干,制得RhCrOx/K-SrTiO3/CoOOH纳米复合光催化剂。
将上述得到的RhCrOx/K-SrTiO3/CoOOH纳米催化剂材料用于光催化分解水,光催化水分解测试前,在紫外-可见全光谱照射纯水中测试其光催化水分解性能,催化剂用量为40mg,纯水80ml,光源为300W氙灯,如图4所示,RhCrOx/K-SrTiO3/CoOOH纳米催化剂平均析氢速率为1.94mmol/h,析氧速率为0.95mmol/h,氢氧比接近2:1,如图6所示,在6次循环后仍展现良好的催化活性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (9)

1.一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂,其特征在于,所述光催化剂为K离子掺杂SrTiO3,所述K摩尔占比为1%~10%,所述光催化剂颗粒形貌共暴露36面{110}晶面。
2.根据权利要求1所述的外切36面{110}晶面K离子掺杂的SrTiO3纳米光催化剂,其特征在于,所述光催化剂担载RhCrOx作为析氢助催化剂、CoOOH为析氧助催化剂;所述RhCrOx和CoOOH的担载量分别为0.5wt%。
3.根据权利要求1所述的外切36面{110}晶面K离子掺杂的SrTiO3纳米光催化剂,其特征在于,所述K离子掺杂的SrTiO3纳米立方体的8个顶角和12条棱同时被剪切,暴露出36面{110}晶面。
4.根据权利要求1或3所述的外切36面{110}晶面K离子掺杂的SrTiO3纳米光催化剂,其特征在于,所述K离子掺杂的SrTiO3纳米颗粒尺寸为200-300纳米。
5.一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将定量摩尔比的含钾化合物与SrTiO3纳米颗粒均匀球磨混合1~24小时;
(2)将步骤(1)中球磨混合好的含钾化合物和SrTiO3与过量SrCl2均匀混合后,于800-1300℃保温4-12小时;
(3)将步骤(2)高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到K-SrTiO3纳米颗粒;
(4)将步骤(3)合成的K-SrTiO3纳米颗粒与一定量的NaRhCl6和Cr(NO3)3均匀球磨混合1~5小时,于200-800℃保温1-5小时,制得RhCrOx/K-SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/K-SrTiO3纳米颗粒分散水中,加入硝酸钴,300W氙灯光照1-12小时后,过滤洗涤并烘干,制得RhCrOx/K-SrTiO3/CoOOH纳米复合光催化剂。
6.根据权利要求5所述的外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,其特征在于,步骤(1)中所述含钾化合物与SrTiO3的摩尔比为n(K): n(Ti)为0-0.06。
7.根据权利要求5或6所述的外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,其特征在于,步骤(1)中所述的含钾化合物为碳酸钾、醋酸钾、硝酸钾、氯化钾中的一种或多种。
8.根据权利要求5所述的外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,其特征在于,步骤(4)中所述NaRhCl6和Cr(NO3)3各自占K-SrTiO3质量比0.1wt%~0.5wt%。
9.根据权利要求5所述的外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂的制备方法,其特征在于,步骤(5)中所述硝酸钴占RhCrOx/K-SrTiO3质量比为0.1wt%~0.5wt%的硝酸钴。
CN202111543929.5A 2021-12-16 2021-12-16 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法 Pending CN114192163A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111543929.5A CN114192163A (zh) 2021-12-16 2021-12-16 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111543929.5A CN114192163A (zh) 2021-12-16 2021-12-16 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN114192163A true CN114192163A (zh) 2022-03-18

Family

ID=80654573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111543929.5A Pending CN114192163A (zh) 2021-12-16 2021-12-16 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114192163A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739115A (zh) * 2022-11-25 2023-03-07 南京航空航天大学 一种b位双离子掺杂钛酸锶纳米复合光催化材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739115A (zh) * 2022-11-25 2023-03-07 南京航空航天大学 一种b位双离子掺杂钛酸锶纳米复合光催化材料及其制备方法

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Miyoshi et al. Water splitting on rutile TiO2‐based photocatalysts
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
CN108671955B (zh) 一种光解水产氢复合催化剂及其制备方法
CN106552651B (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
CN102080262A (zh) 一种可见光催化材料及其制备方法与应用
Song et al. Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol
Liu et al. CoS/ZnWO4 composite with band gap matching: simple impregnation synthesis, efficient dye sensitization system for hydrogen production
Huang et al. Molecule assembly of heterostructured TiO2@ BiOCl via fenton-like reaction for enhanced solar energy conversion
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法
CN109876826B (zh) 一种富硫空位光催化剂的制备方法
CN110038641B (zh) 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用
CN109317160B (zh) 一种半导体异质结光催化材料及其制备方法和应用
CN112007663B (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN114308034A (zh) 一种(ⅲ)、(ⅴ)价双过渡金属离子共掺杂的钛酸锶半导体催化剂及其制备方法
CN113426461B (zh) 银掺杂多晶面铁酸锌光催化纳米材料的制备方法
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
CN102139220A (zh) 一种光催化剂及其制备方法和用途
CN114588916A (zh) 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法
CN113797940A (zh) 一种硒化钴石墨氮化碳复合材料及其制备方法和应用
An et al. The multiple roles of rare earth elements in the field of photocatalysis
CN109589963B (zh) 一种铌酸锂型氧化物/凹凸棒石非线性光学复合光催化材料及其制备方法与应用
CN111992226B (zh) 一种光催化纳米复合催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication