CN112023938B - 一种双金属离子掺杂的纳米复合光催化剂及其制备方法 - Google Patents

一种双金属离子掺杂的纳米复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN112023938B
CN112023938B CN202010736072.8A CN202010736072A CN112023938B CN 112023938 B CN112023938 B CN 112023938B CN 202010736072 A CN202010736072 A CN 202010736072A CN 112023938 B CN112023938 B CN 112023938B
Authority
CN
China
Prior art keywords
srtio
lanthanum
aluminum
composite photocatalyst
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010736072.8A
Other languages
English (en)
Other versions
CN112023938A (zh
Inventor
常焜
秦亚雷
林惠文
韩文君
徐旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010736072.8A priority Critical patent/CN112023938B/zh
Publication of CN112023938A publication Critical patent/CN112023938A/zh
Application granted granted Critical
Publication of CN112023938B publication Critical patent/CN112023938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双金属离子掺杂的纳米复合光催化剂及其制备方法,属于光催化纳米材料的合成技术领域,所述的光催化剂具有很好的催化活性和稳定性;而且制备工艺操作简单,反应条件温和,所用试剂价格低廉。本发明以La源和Al源化合物按比例与SrTiO3和SrCl2均匀混合,在一定温度下热处理,再经大量水洗,除去多余SrCl2,烘干后得到目标产物,得到的光催化剂为La,Al双金属离子共掺SrTiO3,担载RhCrOx和CoOOH作为助催化剂,其中La摩尔占比为1%~10%,Al摩尔占比为1%~10%,La和Al为等摩尔比,制备得到的光催化剂能够实现可见光下的纯水分解。

Description

一种双金属离子掺杂的纳米复合光催化剂及其制备方法
技术领域
本发明属于光催化纳米材料的合成技术领域,尤其涉及一种双金属离子掺杂的纳米复合光催化剂及其制备方法。
背景技术
半导体光催化在温和条件下能促成多类困难的化学反应有利进行,例如光催化降解有机物、光催化合成氨、甲醇及其它高附加值的化工原料,光催化分解水等,这被认为是一种将光子能量转化为化学能的关键技术。由于氢具有较高的燃烧热值和环境友好性,被认为是一种清洁的替代能源,2 mol的水分解可生成2 mol的氢气和1 mol氧气,在以光能源的利用为前提转化成可存储的氢能时,光催化纯水分解技术就以很高的水准可能替代化石燃料的纯粹消耗机制,因而成为研究热门。但是水分解反应是一个热力学上的“爬坡”过程,分解水占用的大比重能耗致使水分解产氢的策略无法大面积投入实际生产。
自从1972年Fujishima和Honda利用金红石型TiO2阳极和铂阴极进行光电化学的水分解以来,人们一直致力于构建高效的多相光催化的研究。到目前为止,已经有大量的半导体光催化剂被研究出来,如硫化物(CdS)、氮化物(Ta3N5)和金属氧化物(TiO2)等。SrTiO3具有简单的立方钙钛矿结构,还原后为n型半导体,禁带宽度为3.2 eV。在研究早期,SrTiO3已经被一些尝试证明可以作为光电极电解水产氢。截至目前,SrTiO3基半导体材料又被证实可在无偏压下转化太阳能进行纯水分解。然而如何促进光生载流子的激发,以及载流子的分离和迁移效率的进一步提高,都是目前该领域研究是重中之重。
有许多手段用于改善材料的光催化活性,其中,元素掺杂是最常用的手段之一。许多研究表明SrTiO3结构存在本征缺陷,Ti3+的存在降低了其催化活性;研究发现Rh3+金属离子掺杂可以提升SrTiO3材料的光催化活性,但几次光激发循环后易导致Rh4+价态的形成,致使光催化活性降低;日本东京大学Domen等报导,Al3+单一金属离子掺杂SrTiO3光催化剂展示了很高的光催化活性,但由于Al3+占据Ti位后,导致SrTiO3基半导体整体电荷不平衡,从而造成催化活性和稳定性下降。而有研究表面,Sr2+阳离子位的金属离子取代,如La3+则有利于Rh3+掺杂到SrTiO3晶体结构中并稳定其结构晶型,降低了形成能从而提高了析氢速率。
发明内容
本发明提供了一种双金属离子掺杂的纳米复合光催化剂及其制备方法,所述的光催化剂具有很好的催化活性和稳定性;而且制备工艺操作简单,反应条件温和,所用试剂价格低廉。
为实现以上目的,本发明采用以下技术方案:
一种双金属离子掺杂的纳米复合光催化剂,所述光催化剂为La,Al双金属离子共掺SrTiO3,并担载RhCrOx和CoOOH作为助催化剂,所述La摩尔占比为1%~10%,Al摩尔占比为1%~10%,所述La和Al为等摩尔比,所述RhCrOx和CoOOH的担载量为1.0wt%。
一种双金属离子掺杂的纳米复合光催化剂的制备方法,包括以下步骤:
(1)将等量摩尔比的含镧化合物和含铝化合物与SrTiO3纳米颗粒均匀球磨混合1~24小时;
(2)将步骤(1)中球磨混合好的含镧化合物、含铝化合物和SrTiO3再与过量SrCl2均匀搅拌后,于800-1300℃保温4-12小时;
(3)将步骤(2)高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到La,Al-SrTiO3纳米颗粒;
(4)将步骤(3)合成的La,Al-SrTiO3纳米颗粒与一定量的NaRhCl6和Cr(NO3)3(按各自占La,Al-SrTiO3质量比0.01wt%~0.5wt%)均匀球磨混合1~5小时,于200-800℃保温1-5小时,制得RhCrOx/La,Al-SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/La,Al-SrTiO3纳米颗粒分散水中,加入质量比为0.01wt%~0.5wt%的硝酸钴,300W氙灯光照1-12小时后,过滤洗涤并烘干,制得RhCrOx/La,Al-SrTiO3/CoOOH纳米复合光催化剂。
以上所述步骤中,步骤(1)中所述的含镧化合物为氧化镧、碳酸镧、醋酸镧、硝酸镧、氯化镧中的一种或多种,所述含铝化合物为氧化铝、碳酸铝、醋酸铝、硝酸铝氯化铝中的一种或多种;步骤(3)中得到La,Al-SrTiO3纳米颗粒的尺寸为200-500纳米。
有益效果:本发明提供了一种双金属离子掺杂的纳米复合光催化剂及其制备方法,所述催化剂为La,Al双金属离子共掺SrTiO3,相比于单一金属离子如Al掺杂SrTiO3材料以及其他双金属离子掺杂SrTiO3材料,具有更稳定的结构;本发明制备的RhCrOx/La,Al-SrTiO3/CoOOH材料能实现可见光下纯水分解,在光催化反应中具有很好的催化活性和稳定性;而且本发明制备工艺操作简单,反应条件温和,所用试剂价格低廉。
附图说明
图1是本发明实施例1制得的La,Al-SrTiO3材料的XRD图谱;
图2是本发明实施例1制得的La,Al-SrTiO3扫描电镜图;
图3是本发明实施例2制得的RhCrOx/La,Al-SrTiO3/CoOOH与单金属Al离子掺杂RhCrOx/Al-SrTiO3/CoOOH光催化水分解活性对比图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
一种双金属离子掺杂的纳米复合光催化剂的制备方法,包括以下步骤:
分别称取0.008mol的硝酸镧、0.008mol的硝酸铝和0.084mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨10h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在800度下保温12小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到La,Al-SrTiO3纳米催化剂材料,取0.5g La,Al-SrTiO3纳米颗粒,加入2.5mg的NaRhCl6和2.5mg的Cr(NO3)3,球磨混合1小时,于空气中600度煅烧2小时后,分散于100ml水中,加入2.5mgCo(NO3)2,300W氙灯光照8小时后,过滤洗涤并烘干,制得RhCrOx/La,Al-SrTiO3/CoOOH纳米复合光催化剂。
La,Al-SrTiO3纳米催化剂材料的XRD图如图1所示,其晶型保持了与SrTiO3相同的钙钛矿型,说明少量金属离子掺杂对其晶型改变影响不大。
扫描电镜图如图2所示,制得的La,Al-SrTiO3纳米颗粒尺寸在200-500纳米。
实施例2
一种双金属离子掺杂的纳米复合光催化剂的制备方法,包括以下步骤:
分别称取0.005mol的硝酸镧、0.005mol的硝酸铝和0.09mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨24h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在1000度下保温8小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到La,Al-SrTiO3纳米催化剂材料,取0.5g La,Al-SrTiO3纳米颗粒,加入1.0mg的NaRhCl6和2.5mg的Cr(NO3)3,球磨混合1小时,于空气中400度煅烧3小时后,分散于100ml水中,加入1.5mgCo(NO3)2,300W氙灯光照5小时后,过滤洗涤并烘干,制得RhCrOx/La,Al-SrTiO3/CoOOH纳米复合光催化剂。
将上述得到的RhCrOx/La,Al-SrTiO3/CoOOH纳米催化剂材料以及无La元素掺杂的RhCrOx/Al-SrTiO3/CoOOH催化剂用于光催化分解水,光催化水分解测试前,在紫外-可见全光谱照射纯水中测试其光催化水分解性能,催化剂用量为20mg,纯水200ml,光源为300W氙灯,如图3所示,RhCrOx/La,Al-SrTiO3/CoOOH纳米催化剂平均析氢速率为1056μmol/h/g,析氧速率为462μmol/h/g,氢氧比接近2:1,同条件下与RhCrOx/Al-SrTiO3/CoOOH催化剂相比,活性提升了1.4倍。
实施例3
一种双金属离子掺杂的纳米复合光催化剂的制备方法,包括以下步骤:
分别称取0.001mol的硝酸镧、0.001mol的硝酸铝和0.098mol的SrTiO3,在玛瑙研钵中混合研磨1h,将研磨后的混合物置于球磨机中,4000转速下球磨24h,再加入1mol的SrCl2继续球磨1h。将球磨后的混合物过筛分离,并置于马弗炉中,在800度下保温4小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到La,Al-SrTiO3纳米催化剂材料,取0.5g La,Al-SrTiO3纳米颗粒,加入1.5mg的NaRhCl6和0.5mg的Cr(NO3)3,球磨混合5小时,于空气中500度煅烧2小时后,分散于100ml水中,加入2.5mgCo(NO3)2,300W氙灯光照4小时后,过滤洗涤并烘干,制得RhCrOx/La,Al-SrTiO3/CoOOH纳米复合光催化剂。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (5)

1.一种双金属离子掺杂的纳米复合光催化剂,其特征在于,所述光催化剂为La,Al双金属离子共掺SrTiO3,并担载RhCrOx和CoOOH作为助催化剂;所述La摩尔占比为1%~10%,所述Al摩尔占比为1%~10%,所述RhCrOx和CoOOH的担载量为1.0wt%。
2.根据权利要求1所述的双金属离子掺杂的纳米复合光催化剂,其特征在于,所述La和Al为等摩尔比。
3.一种双金属离子掺杂的纳米复合光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将等量摩尔比的含镧化合物和含铝化合物与SrTiO3纳米颗粒均匀球磨混合1~24小时;
(2)将步骤(1)中球磨混合好的含镧化合物、含铝化合物和SrTiO3再与过量SrCl2均匀搅拌后,于800-1300℃保温4-12小时;
(3)将步骤(2)高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到La,Al-SrTiO3纳米颗粒;
(4)将步骤(3)合成的La,Al-SrTiO3纳米颗粒与一定量的NaRhCl6和Cr(NO3)3,按各自占La,Al-SrTiO3质量比0.01wt%~0.5wt%均匀球磨混合1~5小时,于200-800℃保温1-5小时,制得RhCrOx/La,Al-SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/La,Al-SrTiO3纳米颗粒分散于水中,加入质量比为0.01wt%~0.5wt%的硝酸钴,300W氙灯光照1-12小时后,过滤洗涤并烘干,制得RhCrOx/La,Al-SrTiO3/CoOOH纳米复合光催化剂。
4.根据权利要求3所述的双金属离子掺杂的纳米复合光催化剂的制备方法,其特征在于,步骤(1)中所述的含镧化合物为氧化镧、碳酸镧、醋酸镧、硝酸镧、氯化镧中的一种或多种,所述含铝化合物为氧化铝、碳酸铝、醋酸铝、硝酸铝、 氯化铝中的一种或多种。
5.根据权利要求3所述的双金属离子掺杂的纳米复合光催化剂的制备方法,其特征在于,步骤(3)中得到La,Al-SrTiO3纳米颗粒的尺寸为200-500纳米。
CN202010736072.8A 2020-07-28 2020-07-28 一种双金属离子掺杂的纳米复合光催化剂及其制备方法 Active CN112023938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736072.8A CN112023938B (zh) 2020-07-28 2020-07-28 一种双金属离子掺杂的纳米复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736072.8A CN112023938B (zh) 2020-07-28 2020-07-28 一种双金属离子掺杂的纳米复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112023938A CN112023938A (zh) 2020-12-04
CN112023938B true CN112023938B (zh) 2022-07-12

Family

ID=73583332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736072.8A Active CN112023938B (zh) 2020-07-28 2020-07-28 一种双金属离子掺杂的纳米复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112023938B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113274995B (zh) * 2021-05-10 2023-08-08 天津大学 一种掺杂型钛酸锶半导体材料及其制备方法
CN114308034A (zh) * 2021-12-07 2022-04-12 南京航空航天大学 一种(ⅲ)、(ⅴ)价双过渡金属离子共掺杂的钛酸锶半导体催化剂及其制备方法
CN115055192B (zh) * 2022-06-16 2023-06-30 中南大学 一种Al3+/Zn0.4(CuGa)0.3Ga2S4复合材料及其制备方法和应用
CN115739115A (zh) * 2022-11-25 2023-03-07 南京航空航天大学 一种b位双离子掺杂钛酸锶纳米复合光催化材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179418A (zh) * 2016-07-05 2016-12-07 济南大学 一种负载型双金属共掺杂纳米光催化剂的制备方法
CN106423136A (zh) * 2016-11-08 2017-02-22 上海纳米技术及应用国家工程研究中心有限公司 一种铈、镧双掺杂二氧化钛纳米棒光催化剂及制备和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631525A (zh) * 2004-11-16 2005-06-29 燕山大学 铁酸镧/锂纳米复合粉体光催化剂及其制备工艺
CN107597093B (zh) * 2017-07-31 2019-08-02 吉林师范大学 一种纳米颗粒自组装芍药状La3+掺杂ZnO及其制备方法和应用
CN108187669A (zh) * 2018-01-23 2018-06-22 常州大学 一种用于降解四环素光催化纳米材料的制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179418A (zh) * 2016-07-05 2016-12-07 济南大学 一种负载型双金属共掺杂纳米光催化剂的制备方法
CN106423136A (zh) * 2016-11-08 2017-02-22 上海纳米技术及应用国家工程研究中心有限公司 一种铈、镧双掺杂二氧化钛纳米棒光催化剂及制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination";Hao Lyu等;《Chem. Sci.》;20190124;第10卷;第3196页右栏第2段-3197页左栏第1段、第3199页右栏第2-5段 *
"Exploring the Role of La Codoping beyond Charge Compensation for Enhanced Hydrogen Evolution by Rh−SrTiO3";Brindaban Modak等;《J. Phys. Chem. B》;20150630;第119卷;摘要 *

Also Published As

Publication number Publication date
CN112023938A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
CN109876841B (zh) 一种2-氨基对苯二甲酸和胺化合物共聚合制备石墨相氮化碳可见光催化剂的方法
CN108671955B (zh) 一种光解水产氢复合催化剂及其制备方法
Shao et al. Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol
CN102631919B (zh) 铜-钛氧化物介晶材料的制备方法
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
CN111841530A (zh) 一种促进水光解产氢的催化剂及其制备方法
CN107961785B (zh) 一种高活性铬酸铋纳米光催化剂的制备方法及其应用
CN114308034A (zh) 一种(ⅲ)、(ⅴ)价双过渡金属离子共掺杂的钛酸锶半导体催化剂及其制备方法
CN112007663B (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
CN109317160B (zh) 一种半导体异质结光催化材料及其制备方法和应用
CN114768852B (zh) 一种钾离子梯度掺杂氮化碳材料的制备方法
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法
EP2840066B1 (en) Metal complex of fluorinated tin oxide and titanium oxide and preparation method thereof
CN114588916A (zh) 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法
KR101876938B1 (ko) 고효율 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄
CN115569658A (zh) Cabb/ucnt异质结复合光催化剂及其制备方法与应用
CN111992226B (zh) 一种光催化纳米复合催化剂及其制备方法
JP3735711B2 (ja) 可視光応答性稀土類化合物光触媒とそれを用いた水素の製造方法及び有害化学物質分解方法
CN114534746A (zh) 一种基于异质结光催化剂和甲醛水溶液的光催化制氢体系
JP3834625B2 (ja) インジウムバリウム複合酸化物可視光応答性光触媒とこの光触媒を用いた水素の製造方法及び有害化学物質分解方法
CN111790418B (zh) 一种钙钛复合材料及其制备方法和用途
CN109078636B (zh) 一种等离子体光催化剂、其制备方法及其在制氢中的应用
WO2020178862A1 (en) Photocatalytic nano-composite and applications thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant