CN114588916A - 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法 - Google Patents

一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法 Download PDF

Info

Publication number
CN114588916A
CN114588916A CN202210085670.2A CN202210085670A CN114588916A CN 114588916 A CN114588916 A CN 114588916A CN 202210085670 A CN202210085670 A CN 202210085670A CN 114588916 A CN114588916 A CN 114588916A
Authority
CN
China
Prior art keywords
iii
ion
bimetallic
doped
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210085670.2A
Other languages
English (en)
Inventor
常焜
高维荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Changfa New Energy Technology Co ltd
Original Assignee
Yangzhou Changfa New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Changfa New Energy Technology Co ltd filed Critical Yangzhou Changfa New Energy Technology Co ltd
Priority to CN202210085670.2A priority Critical patent/CN114588916A/zh
Publication of CN114588916A publication Critical patent/CN114588916A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法,本发明以(IIIA)源化合物和(IIIB)源化合物按比例与含Sr、Ti元素的普通化学品进行常规混合,通过简单的加热处理进行化学络合,直接合成出双金属离子共掺杂的SrTiO3本体。掺杂型SrTiO3再和SrCl2均匀混合,经过一定的保温热处理,用大量水洗除去多余SrCl2后即可得到目标产物,合成出特定形貌的(IIIA),(IIIB)双金属离子共掺杂SrTiO3,其中(IIIA)离子摩尔占比为0.1%~0.5%,(IIIB)离子摩尔占比为0.1%~0.5%,负载RhCrOx和CoOOH作为助催化剂,本发明制备工艺操作简单,反应条件温和安全,所用试剂价格低廉。

Description

一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半 导体催化剂的制备方法
技术领域
本发明归属在光催化纳米材料的合成技术领域,尤其涉及两种类的(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂及其制备方法。
背景技术
半导体光催化在温和条件下能有利地促成许多困难的化学反应进行,例如光催化降解有机物、光催化CO2还原、合成氨、甲醇及其它高附加值的化工原料,光催化分解水等,是生产燃料和化学品的可持续策略,光催化被认为是一种将光子能量转化为化学能的关键技术。由于氢具有较高的燃烧热值和环境友好性,被认为是一种清洁的替代能源,2mol的水分解可生成2mol的氢气和1mol氧气,在以光能源的利用为前提转化成可存储的氢能时,光催化纯水分解技术就以很高的水准可能替代化石燃料的纯粹消耗机制,因而成为研究热门。但是水分解反应是一个热力学上的“爬坡”过程,分解水占用的大比重能耗致使水分解产氢的策略无法大面积投入实际生产。
自从1972年Fujishima和Honda利用金红石型TiO2阳极和铂阴极进行光电化学的水分解以来,人们一直努力在设计高效的均相和多相光催化的研究。到目前为止,已经有大量的半导体光催化剂被研究出来,如硫化物(CdS)、氮化物(Ta3N5)和金属氧化物(TiO2)等,用于在各种条件下的水分解产氢、产氧等光催化过程。SrTiO3是一种具有立方型钙钛矿结构的无机化合物,还原后为n型半导体,禁带宽度为3.2eV。在研究早期,SrTiO3在实验中被证实可以作为光电阳极进行电解水产生氢气。截至目前,SrTiO3基半导体材料又被证实可在无偏压下直接转化太阳能为化学能,以纯水分解为氢气和氧气的形式进行催化反应。然而如何促进光生载流子的激发,以及载流子的分离和迁移效率的进一步提高,都是目前该领域研究时需要克服的难点。
但是,由于SrTiO3半导体材料的较宽的带隙,仅表现出对紫外光的响应,这给SrTiO3半导体光催化剂的应用带来了阻碍。为了拓展催化剂的光吸收范围直到可见光区,有许多手段用于改善材料的光催化活性。掺杂工程被利用,它被认为是调节能带结构、提高光生载流子分离效率的重要手段之一。通过外源杂质金属元素掺杂,一方面可在带隙中引入额外的掺杂能级,从而降低能量势垒并诱导本体产生新的光吸收边缘,提高光生载流子的分离效率;另一方面,研究表明使用贵金属离子掺杂的SrTiO3通过表面等离子体共振效应可以捕获更多的可见光。研究表明,通过掺杂Cr3+金属离子可以提高SrTiO3的光催化活性,但Cr3+离子在反应过程中容易被氧化成为Cr6+从而失去活性,往往通过三价金属如La3+离子在A位的掺杂,替代Sr2+离子来稳定钙钛矿结构;然而,对于钙钛矿SrTiO3半导体催化剂来说,氧缺陷普遍存在,从而导致其光催化水分解活性很低,近日,有文章报导称Al3+离子的引入可以调控氧缺陷,虽然不能实现可见光响应,但可以使其紫外光响应范围内的光催化水分解活性大大提升。
基于此,本发明结合钙钛矿结构的缺陷调控及能带控制,通过限定的双金属离子掺杂钛酸锶,一方面实现SrTiO3结晶度的提升及缺陷的减少,同时调控其禁带宽度,实现可见光响应,扩宽其光谱吸收范围,提升整体光催化水分解活性。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法,所述的光催化剂具有很好的催化活性和稳定性;而且制备工艺操作简单,反应条件温和,所用试剂价格低廉。
为实现上述目的,本发明采用的技术方案是:
一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其创新点在于:所述光催化剂为两种类别的(IIIA)和(IIIB)价双金属离子掺杂SrTiO3,并负载RhCrOx和CoOOH作为助催化剂,所涉及的两种(Ⅲ)价金属离子相对Ti的摩尔占比均为0.1mol%~0.5mol%,所述RhCrOx和CoOOH的担载量分别为0.1wt%和0.05wt%。
进一步的,所述掺杂金属离子等摩尔比。
进一步的,所述(IIIA)价金属离子为Al3+、Ga3+、In3+;所述(IIIB)价金属离子为Cr3 +、Rh3+
一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其创新点在于:所述钛酸锶半导体催化剂用于光催化纯水分解。
一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂的制备方法,其创新点在于,其包括以下制备步骤:
(1)将定量的乙二醇、钛酸异丙酯、硝酸锶充分混合后,加入适量的柠檬酸和定量摩尔比的一种(IIIA)价金属化合物和另一种(IIIB)价化合物,60~150℃加热搅拌500~800min,得到树脂状透明凝胶,凝胶干燥后在200~650℃空气中热处理3~8小时,获得双金属离子共掺杂的SrTiO3前驱体,前驱体普遍呈现黑色;
(2)将步骤(1)中900℃热处理后获得的双金属离子共掺杂SrTiO3前驱体与过量SrCl2均匀搅拌后,于1000~1200℃保温10~30小时;
(3)将步骤(2)得到的高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到双金属离子共掺杂SrTiO3纳米级粉体;
(4)将步骤(3)合成的双金属离子共掺杂SrTiO3纳米级粉体与一定量的NaRhCl6和Cr(NO3)3分别混合,其中,担载剂各自按占双金属离子共掺杂SrTiO3质量比0.05wt%~0.2wt%,均匀混合1~3小时,于150~500℃保温1~5小时,制得RhCrOx/双金属离子共掺杂SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/双金属离子共掺杂SrTiO3纳米颗粒分散水中,加入质量比为0.01wt%~0.1wt%的Co(NO3)2,300W氙灯光照1~7小时后,过滤洗涤并烘干,制得RhCrOx/双金属离子共掺杂SrTiO3/CoOOH纳米复合光催化剂。
进一步的,步骤(1)中所述(IIIA)价金属化合物为含Al或Ga或In元素的化合物,所述另一类(IIIB)价金属化合物为含Cr或Rh元素的化合物.
进一步的,所述含(IIIA)化合物为碳酸盐、醋酸盐、硝酸盐、氯化盐中的一种或多种,所述含(IIIB)化合物为硝酸盐、氯化盐中的一种或多种。
进一步的,步骤(3)中得到的纳米颗粒的尺寸为50~500纳米。
本发明有益效果为:
本发明提供了一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法,采用聚合物络合法和熔融盐助熔法制备(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,相比于纯相SrTiO3材料,其带隙明显变窄,有利于提高可见光吸收能力;本发明制备的RhCrOx/IIIA,IIIB-SrTiO3/CoOOH材料能实现可见光下整体纯水分解,在光催化反应中具有很好的催化活性和稳定性;而且本发明制备工艺操作简单,反应条件温和安全,所用试剂价格低廉。
附图说明
图1是本发明实施例1制得的Al,Cr-SrTiO3催化剂的扫描电镜图;
图2是本发明实施例2制得的Al,Cr-SrTiO3催化剂的扫描电镜图;
图3是本发明实施例1制得的Al,Cr-SrTiO3紫外吸收图谱;
图4是本发明实施例2制得的RhCrOx/Al,Cr-SrTiO3/CoOOH催化剂,在不同添加量100mg,200mg,300mg时的光催化纯水分解活性图;
图5是本发明实施例1制得的Al,Cr-SrTiO3催化剂及的XPS测试Cr2p分峰图;
图6是本发明实施例1制得的Al,Cr-SrTiO3催化剂及的XPS测试Al2p分峰图。
具体实施方式
下面结合附图对本发明作进一步的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅用以解释本发明,并不用于限定本发明。
实施例1
一种Al3+、Cr3+离子共掺杂的钛酸锶半导体催化剂的制备方法,包括以下步骤:
分别称取0.08mol的硝酸锶、20ml的乙二醇和6ml的钛酸异丙酯,在烧杯中混合,80℃加热搅拌100min,继续添加0.0008mol的硝酸铝以及0.0008mol的硝酸铬,将混合物转移并置于油浴120℃加热600min,得到透明树脂凝胶,再在450℃空气中热处理6小时,获得双金属离子共掺杂的SrTiO3前驱体,前驱体普遍呈现黑色。前驱体900℃热处理后获得的双金属离子共掺杂SrTiO3,再与过量SrCl2均匀研磨后,于马弗炉中1000℃保温10小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到Al,Cr-SrTiO3纳米催化剂材料,取0.5g的Al,Cr-SrTiO3纳米颗粒,加入3mg的NaRhCl6和6mg的Cr(NO3)3,球磨混合1小时,于空气中400度煅烧2小时后,分散于100ml水中,加入2.5mg的Co(NO3)2,300W氙灯光照5小时后,过滤洗涤并烘干,制得RhCrOx/Al,Cr-SrTiO3/CoOOH纳米复合光催化剂。
上述方法得到的Al,Cr-SrTiO3纳米催化剂材料的SEM图如图1所示,其晶型保持了与SrTiO3相同的立方体钙钛矿型,说明少量金属离子掺杂对其晶型改变影响不大。
如图3所示实施例1制得的Al,Cr-SrTiO3紫外吸收图谱,其显示了550nm的吸收边。
如图5所示,制得的Al,Cr-SrTiO3催化剂的XPS测试Cr2p分峰图,表明Cr离子成功分布再本体钛酸锶中,其成功掺杂可能对于可见光的吸收有利。
如图6所示,制得的Al,Cr-SrTiO3催化剂的XPS测试Al2p分峰图,表明Cr离子成功分布再本体钛酸锶中,其成功掺杂可能对于可见光的吸收有利。
实施例2
一种Ga3+、Rh3+离子共掺杂的钛酸锶半导体催化剂的制备方法,包括以下步骤:
分别称取0.15mol的硝酸锶、25ml的乙二醇和10ml的钛酸异丙酯,在烧杯中混合,90℃加热搅拌100min,继续添加0.0015mol的硝酸镓以及0.0015mol的硝酸铑,将混合物转移并置于油浴150℃加热700min,得到透明树脂凝胶,再550℃空气中热处理6小时,获得双金属离子共掺杂的SrTiO3前驱体,前驱体普遍呈现黑色。前驱体900℃热处理后获得的双金属离子共掺杂SrTiO3,再与过量SrCl2均匀研磨后,于马弗炉中1100℃保温12小时。取出后用大量去离子水抽滤洗涤,随后将材料置于干燥箱中80度过夜干燥,即得到Ga,Rh-SrTiO3纳米催化剂材料,取1.5g的Ga,Rh-SrTiO3纳米颗粒,加入6mg的NaRhCl6和9mg的Cr(NO3)3,球磨混合1小时,于空气中400度煅烧2小时后,分散于100ml水中,加入5mg的Co(NO3)2,300W氙灯光照7小时后,过滤洗涤并烘干,制得RhCrOx/Ga,Rh-SrTiO3/CoOOH纳米复合光催化剂。
上述方法制备得到的RhCrOx/Ga,Rh-SrTiO3/CoOOH纳米复合光催化剂扫描电镜图如图2所示,Ga,Rh-SrTiO3纳米颗粒尺寸为100-500纳米,晶型为立方体结构。
将上述得到的RhCrOx/Ga,Rh-SrTiO3/CoOOH纳米复合光催化剂用于光催化纯水分解,在可见光谱照射纯水中测试其光催化水分解性能,催化剂用量为100mg,200mg,300mg。纯水100ml,光源为300W氙灯,配置了一个420nm波长截止滤光片,这使得辐照光源光谱的波长大于420nm,即代表了可见光。如图4所示,RhCrOx/Ga,Rh-SrTiO3/CoOOH纳米催化剂最高析氢速率为70μmol/h,析氧速率为34μmol/h,氢氧比接近2:1。
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其特征在于:所述光催化剂为两种类别的(IIIA)和(IIIB)价双金属离子掺杂SrTiO3,并负载RhCrOx和CoOOH作为助催化剂,所涉及的两种(Ⅲ)价金属离子相对Ti的摩尔占比均为0.1mol%~0.5mol%,所述RhCrOx和CoOOH的担载量分别为0.1wt%和0.05wt%。
2.根据权利要求1所述的一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其特征在于:所述掺杂金属离子等摩尔比。
3.根据权利要求1所述的一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其特征在于:所述(IIIA)价金属离子为Al3+、Ga3+、In3+;所述(IIIB)价金属离子为Cr3+、Rh3 +
4.一种根据权利要求1-3任意一项所述含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂,其特征在于:所述钛酸锶半导体催化剂用于光催化纯水分解。
5.一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂的制备方法,其特征在于,其包括以下制备步骤:
(1)将定量的乙二醇、钛酸异丙酯、硝酸锶充分混合后,加入适量的柠檬酸和定量摩尔比的一种(IIIA)价金属化合物和另一种(IIIB)价化合物,60~150℃加热搅拌500~800min,得到树脂状透明凝胶,凝胶干燥后在200~650℃空气中热处理3~8小时,获得双金属离子共掺杂的SrTiO3前驱体,前驱体普遍呈现黑色;
(2)将步骤(1)中900℃热处理后获得的双金属离子共掺杂SrTiO3前驱体与过量SrCl2均匀搅拌后,于1000~1200℃保温10~30小时;
(3)将步骤(2)得到的高温热处理后的样品洗涤除去多余的SrCl2,干燥后得到双金属离子共掺杂SrTiO3纳米级粉体;
(4)将步骤(3)合成的双金属离子共掺杂SrTiO3纳米级粉体与一定量的NaRhCl6和Cr(NO3)3分别混合,其中,担载剂各自按占双金属离子共掺杂SrTiO3质量比0.05wt%~0.2wt%,均匀混合1~3小时,于150~500℃保温1~5小时,制得RhCrOx/双金属离子共掺杂SrTiO3纳米颗粒;
(5)将步骤(4)合成的RhCrOx/双金属离子共掺杂SrTiO3纳米颗粒分散水中,加入质量比为0.01wt%~0.1wt%的Co(NO3)2,300W氙灯光照1~7小时后,过滤洗涤并烘干,制得RhCrOx/双金属离子共掺杂SrTiO3/CoOOH纳米复合光催化剂。
6.根据权利要求5所述一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂的制备方法,其特征在于:步骤(1)中所述(IIIA)价金属化合物为含Al或Ga或In元素的化合物,所述另一类(IIIB)价金属化合物为含Cr或Rh元素的化合物。
7.根据权利要求5或6所述一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂的制备方法,其特征在于:所述的含(IIIA)化合物为碳酸盐、醋酸盐、硝酸盐、氯化盐中的一种或多种,所述含(IIIB)化合物为硝酸盐、氯化盐中的一种或多种。
8.根据权利要求5所述一种含有两类(Ⅲ)价双金属离子共掺杂的钛酸锶半导体催化剂的制备方法,其特征在于:步骤(3)中得到的纳米颗粒的尺寸为50~500纳米。
CN202210085670.2A 2022-01-25 2022-01-25 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法 Pending CN114588916A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210085670.2A CN114588916A (zh) 2022-01-25 2022-01-25 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210085670.2A CN114588916A (zh) 2022-01-25 2022-01-25 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN114588916A true CN114588916A (zh) 2022-06-07

Family

ID=81805086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210085670.2A Pending CN114588916A (zh) 2022-01-25 2022-01-25 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114588916A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055192A (zh) * 2022-06-16 2022-09-16 中南大学 一种Al3+/Zn0.4(CuGa)0.3Ga2S4复合材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055192A (zh) * 2022-06-16 2022-09-16 中南大学 一种Al3+/Zn0.4(CuGa)0.3Ga2S4复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Zhang et al. Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
CN108404959B (zh) 一种棒状g-C3N4@SnIn4S8复合光催化剂及其制备方法
Lu et al. The effect of different co-catalysts (CuO, MoS2 and Pt) on hydrogen production of Er3+: YAlO3/NaTaO3 by visible-light-induced methanol splitting
Shao et al. Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol
CN111604053A (zh) 三元水滑石光催化剂及其制备方法与应用
Padmaja et al. Fabrication of hetero-structured mesoporours TiO2-SrTiO3 nanocomposite in presence of Gemini surfactant: characterization and application in catalytic degradation of Acid Orange
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN111151246A (zh) 一种金原子/二氧化钛复合材料、其制备方法及用途
Jeyalakshmi et al. Metal oxides as photo catalysts: Modified sodium tantalate as catalyst for photo reduction of carbon dioxide
CN111790431A (zh) 一种以Al2O3修饰的g-C3N4光催化材料的制备方法
Li et al. Visible-light driven photocatalyst (Er3+: YAlO3/Pt–NaTaO3) for hydrogen production from water splitting
CN114588916A (zh) 一种双金属离子共掺杂钛酸锶实现可见光响应的纯水裂解半导体催化剂的制备方法
CN114950439B (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN114308034A (zh) 一种(ⅲ)、(ⅴ)价双过渡金属离子共掺杂的钛酸锶半导体催化剂及其制备方法
KR101876938B1 (ko) 고효율 이산화티타늄의 제조방법 및 이로부터 제조된 이산화티타늄
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
CN110586057A (zh) 杂化改性TiO2复合光催化剂、其制备及用途
CN112007663B (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法
CN111790418B (zh) 一种钙钛复合材料及其制备方法和用途
CN113578368A (zh) 一种g-C3N4/Ag3PO4/BiFeO3复合可见光催化剂制备方法及其应用
CN111939912B (zh) 一种钴基催化剂及其制备方法和用途
CN109078636B (zh) 一种等离子体光催化剂、其制备方法及其在制氢中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220607

WD01 Invention patent application deemed withdrawn after publication