CN114573330A - 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用 - Google Patents

一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用 Download PDF

Info

Publication number
CN114573330A
CN114573330A CN202210184279.8A CN202210184279A CN114573330A CN 114573330 A CN114573330 A CN 114573330A CN 202210184279 A CN202210184279 A CN 202210184279A CN 114573330 A CN114573330 A CN 114573330A
Authority
CN
China
Prior art keywords
wave
transparent ceramic
deposition
transparent
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210184279.8A
Other languages
English (en)
Other versions
CN114573330B (zh
Inventor
叶昉
宋强
梁杰
曹雨宸
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210184279.8A priority Critical patent/CN114573330B/zh
Publication of CN114573330A publication Critical patent/CN114573330A/zh
Application granted granted Critical
Publication of CN114573330B publication Critical patent/CN114573330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62849Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用,属于吸波材料的领域;通过在透波纳米线上原位沉积缺陷石墨烯,再在缺陷石墨烯上原位沉积透波陶瓷,交替循环形成缺陷石墨烯/透波陶瓷多层结构,构筑多单元、大数量纳米尺度异质界面,在交变电场下产生丰富的界面极化,高效衰减、吸收电磁波,满足严峻的应用条件对材料宽频吸波、高温稳定的高性能要求。本发明工艺简单可控,各层材料厚度均在纳米尺度,因此制备周期短、成本低,具有有能力实现大规模生产的有益效果;该材料基本不改变纳米线原有的柔韧性和强度,所以能够被制成柔性吸波薄膜、弹性吸波泡沫等特殊防护材料,具有广泛应用的有益效果。

Description

一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用
技术领域
本发明属于吸波材料的领域,具体涉及一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用。
背景技术
随着电子设备快速发展,电磁波的干扰问题逐渐严重,因而具有电磁波吸收功能的材料成为了研究的热点。“薄、轻、宽、强”和高温不敏感性是吸波材料追求的目标,其中宽的有效吸收频带和高温不敏感性最具挑战。通过在材料中设计异质界面结构不仅能够有效提高介电常数的频散效应,拓宽有效吸收频带,还能提高极化损耗的占比,缓解由于高温电导率突变带来的高温吸波性能退化的问题,提高高温吸波性能稳定性。因此,发展异质界面结构吸波材料是快速有效提升高温宽频吸波性能、满足当前严苛应用要求的关键途径。
目前,异质界面结构的设计主要是以半导体和高电导相为主,例如银纳米线和四氧化三铁形成的异质界面(陈甜甜,姚建涛,张贵泉等.一种银纳米线和四氧化三铁复合吸波材料及其制备方法,中国,CN113881869A[P]),碳化硅纳米线和金属氧化物形成的异质界面(王红洁,谢强,卢德等.一种碳化硅@金属氧化物吸波泡沫及其制备方法,中国,CN111170761A[P]),非晶碳和碳化硅形成的异质界面(王红洁,蔡志新,苏磊等.一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法,中国,CN111138206A[P]),但是上述异质界面中两相的电性能差异不大,不会在千兆赫兹频段内产生界面极化的弛豫,因此其吸波性能有待提升;此外,异质界面的尺度也是影响吸波性能的关键因素,一些研究人员在连续透波长纤维表面旋涂/浸渍的方法引入了氧化石墨烯,形成了轴向毫米尺度、径向微米尺度的异质界面(殷小玮,韩美康,宋昶晴.一种柔性的石墨烯/透波纤维复合吸波材料的制备方法,中国,CN106893550A[P].2017),但是纤维或晶须等毫米、微米级尺度结构的比表面积远小于纳米级结构,导致产生的异质界面极化也较弱,吸波性能会受到影响。
发明人团队经过研究分析发现,电性能差异大的两相之间形成的异质界面会在千兆赫兹频段内发生界面极化,纳米级结构相比其他尺度结构能够获得更多的界面,从而产生足够强的界面极化。石墨烯(高导电)和透波陶瓷(近绝缘)刚好符合上述要求,但是传统的石墨烯具有过高的电导率,容易造成阻抗失配,需要进行缺陷结构设计调控其电导率。材料中丰富的缺陷结构也会使得偶极子极化加强,从而进一步提高吸波性能。
因此,本发明提出一种多层交替缺陷石墨烯/透波陶瓷结构的纳米线吸波材料制备方法,并成功制备了微观结构为透波纳米线表面交替沉积多层石墨烯和透波陶瓷的吸波材料,其具有优良的宽频吸收和高温吸波性能,有望解决目前研究领域内高温宽频吸波的难题。
发明内容
要解决的技术问题:
为了避免现有技术的不足之处,本发明提出一种缺陷石墨烯/透波陶瓷复合吸波材料、制备方法及应用,通过在透波纳米线上原位沉积缺陷石墨烯,再在缺陷石墨烯上原位沉积透波陶瓷,交替循环形成缺陷石墨烯/透波陶瓷多层结构,构筑多单元、大数量纳米尺度异质界面,在交变电场下产生丰富的界面极化,高效衰减、吸收电磁波,满足严峻的应用条件对材料宽频吸波、高温稳定的高性能要求。
本发明的技术方案是:一种缺陷石墨烯/透波陶瓷复合吸波材料,其特征在于:包括透波纳米线以及依次沉积于其表面的缺陷石墨烯和透波陶瓷,所述透波陶瓷的沉积厚度为10~50nm。
本发明的进一步技术方案是:所述缺陷石墨烯和透波陶瓷为交替沉积的多层结构。
本发明的进一步技术方案是:所述透波纳米线为长径比为103~104、微结构呈现单晶特征的Si3N4纳米线,长径比为102~103、微结构呈现多晶特征的BN纳米线或长径比为102~103、微结构呈现非晶特征的SiO2纳米线。
一种缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于具体步骤如下:
步骤1:将透波纳米线放入石墨烯沉积炉中,采用化学气相沉积法在透波纳米线表面沉积缺陷石墨烯,工艺参数限定为:沉积温度为900~1200℃,炉内压力为5~10kPa,沉积时间为0~60min;
步骤2:将步骤1沉积了缺陷石墨烯的透波纳米线试样放入透波陶瓷沉积炉中,调整工艺参数,控制透波陶瓷的沉积厚度为10~50nm;
步骤3:调控步骤1和步骤2的循环次数为1-3次,制备出多层交替缺陷石墨烯/透波陶瓷交替结构的纳米线吸波材料。
本发明的进一步技术方案是:所述步骤1中以含C、H和O元素的有机物作为碳源,所述碳源为CH3OH、C2H5OH或C6H12O6
本发明的进一步技术方案是:所述透波陶瓷沉积炉为Si3N4沉积炉、BN沉积炉或SiO2沉积炉。
本发明的进一步技术方案是:所述透波陶瓷沉积炉为Si3N4沉积炉时,工艺参数限定为:沉积温度为800~1200℃,沉积时间为20~60min,通入气体为NH3、Ar、载气H2和稀释气体H2,并控制其流量比为7:10:8:4,其中载气H2带入SiCl4
本发明的进一步技术方案是:所述透波陶瓷沉积炉为BN沉积炉时,工艺参数限定为:沉积温度为600~1000℃,沉积时间为20~60min,通入的气体为BCl3、NH3、Ar和稀释气体H2,并控制其流量比为1:3:5:5。
本发明的进一步技术方案是:所述透波陶瓷沉积炉为SiO2沉积炉时,工艺参数限定为:沉积温度为700~1200℃,沉积时间为20~60min,通入的气体为O2、Ar、载气H2和稀释气体H2,并控制其流量比为5:5:4:2,其中载气H2带入SiCl4
一种缺陷石墨烯/透波陶瓷复合吸波材料的应用,其特征在于:所述缺陷石墨烯/透波陶瓷复合吸波材料能够作为电磁波防护材料使用,并可制成柔性吸波薄膜和弹性吸波泡沫。
有益效果
本发明的有益效果在于:
本发明提出一种缺陷石墨烯/透波陶瓷复合吸波材料及其制备方法,通过化学气相沉积法,在陶瓷纳米线表面交替制备缺陷石墨烯层和透波陶瓷层。有益效果为:
(1)因为本发明工艺简单可控,各层材料厚度均在纳米尺度,因此制备周期短、成本低,具有有能力实现大规模生产的有益效果;
(2)因为以含C、H和O元素的有机物作为碳源,在高温下裂解生成C原子和H2O、CO2,而H2O和CO2会对石墨烯进行刻蚀,使石墨烯具有丰富的缺陷结构,从而降低其电导率和提高偶极子极化,有利于阻抗匹配以及后续多层交替实验的进行。因此,实现了纳米尺度下高导电相缺陷石墨烯和近绝缘透波陶瓷的复合,获得了丰富的纳米级异质界面,在交变电场下实现了界面极化损耗,表现出优异宽频吸波性能的有益效果,有效吸收带宽达到了8.0GHz(10~18GHz);
(3)由于透波陶瓷对电磁波几乎不存在损耗能力,一般用于透波天线罩,因此研究人员几乎很少复合透波陶瓷应用于吸波领域。然而,只有当异质界面两相的电导率差异足够大,才能使自由电子在界面处产生集聚,从而引发界面极化的弛豫,对电磁波进行损耗,因此透波陶瓷(近绝缘)和缺陷石墨烯(高电导)复合后能实现在千兆赫兹频段内的界面极化的弛豫。此外,透波陶瓷纳米线和透波陶瓷层不仅具有好的耐温性,还具有优良的抗氧化性,所以能够保护石墨烯层免受高温有氧环境侵蚀。结合界面极化作用对吸波性能高温不敏感的有力控制,材料具有良好的高温吸波稳定性的有益效果;
(4)陶瓷的缺点在于其脆性大,纳米线表面沉积厚度过大时会使得复合材料力学性能下降。因此沉积的石墨烯层和透波陶瓷层的厚度均为纳米尺度,基本不改变纳米线原有的柔韧性和强度,所以材料能够被制成柔性吸波薄膜、弹性吸波泡沫等特殊防护材料,具有广泛应用的有益效果。
附图说明
图1是本发明的制备工艺流程。
图2是实施例1~3中缺陷石墨烯/透波陶瓷复合吸波材料的SEM照片。图中纳米线相互搭接,构成了三维网络。
图3是实施例1~3中缺陷石墨烯/透波陶瓷复合吸波材料的TEM照片。图中显示的微观结构为纳米线表面交替沉积了石墨烯和氮化硅。
图4是实施例1~3中缺陷石墨烯/透波陶瓷复合吸波材料的吸波性能。
具体实施方式
下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1:
(1)将长径比为103~104、微结构呈现单晶特征的Si3N4纳米线置于石墨烯沉积炉中,使用真空泵将炉内气压抽至真空,以5℃/min升至980℃,通过水浴锅将CH3OH加热至28℃后打开气阀通入CH3OH气体,控制炉内气压为7kPa,沉积60min后关闭气阀并开始降温。
(2)将步骤(1)后得到的试样,放置于Si3N4沉积炉中,使用真空泵将炉内气压抽至真空以5℃/min升至900℃,通过水浴锅将SiCl4加热至30℃后,同时通入NH3、Ar、H2(载气,带入SiCl4)和H2(稀释气体),并分别控制其流量为35ml/min,50ml/min,40ml/min和30ml/min,沉积30min后关闭气阀并开始降温。
如附图1所示纳米线相互搭接,构成了三维网络,其直径大约在200~300nm。在TEM下,纳米线外侧的壳层依次是缺陷石墨烯和非晶Si3N4,其中非晶Si3N4层约为15nm,并且沉积十分均匀。通过介电常数计算了材料的吸波性能,在8.32GHz且试样厚度为5mm时,RCmin为-16.46dB。在试样厚度为4.38mm时,可以实现X波段(8-12GHz)的全频吸收,但是在Ku波段(12-18GHz)却无法实现较宽的吸收频带。
实施例2:
(1)将长径比为103~104、微结构呈现单晶特征的Si3N4纳米线置于石墨烯沉积炉中,使用真空泵将炉内气压抽至真空,以5℃/min升至980℃,通过水浴锅将CH3OH加热至28℃后打开气阀通入CH3OH气体,控制炉内气压为7kPa,沉积30min后关闭气阀并开始降温。
(2)将步骤(1)后得到的试样,放置于Si3N4沉积炉中,使用真空泵将炉内气压抽至真空以5℃/min升至900℃,通过水浴锅将SiCl4加热至30℃后,同时通入NH3、Ar、H2(载气,带入SiCl4)和H2(稀释气体),并分别控制其流量为35ml/min,50ml/min,40ml/min和30ml/min,沉积30min后关闭气阀并开始降温。
(3)重复步骤(1)和(2)1次。
如附图1所示纳米线相互搭接,构成了三维网络,其直径大约在200~300nm。在TEM下,纳米线外侧的壳层是两层交替的缺陷石墨烯和非晶Si3N4,非晶Si3N4层约为15nm,并且沉积十分均匀。通过介电常数计算了材料的吸波性能,在17.78GHz且试样厚度为2.16mm时,RCmin为-22.88dB。在试样厚度为2.7mm时,可以实现8.0GHz(12.0~18.0GHz)的宽频吸收。
实施例3:
(1)将长径比为103~104、微结构呈现单晶特征的Si3N4纳米线置于石墨烯沉积炉中,使用真空泵将炉内气压抽至真空,以5℃/min升至980℃,通过水浴锅将CH3OH加热至28℃后打开气阀通入CH3OH气体,控制炉内气压为7kPa,沉积20min后关闭气阀并开始降温。
(2)将步骤(1)后得到的试样,放置于Si3N4沉积炉中,使用真空泵将炉内气压抽至真空以5℃/min升至900℃,通过水浴锅将SiCl4加热至30℃后,同时通入NH3、Ar、H2(载气,带入SiCl4)和H2(稀释气体),并分别控制其流量为35ml/min,50ml/min,40ml/min和30ml/min,沉积30min后关闭气阀并开始降温。
(3)重复步骤(1)和(2)2次。
如附图1所示纳米线相互搭接,构成了三维网络,其直径大约在200~300nm。在TEM下,纳米线外侧的壳层是三层交替的缺陷石墨烯和非晶Si3N4,非晶Si3N4层约为15nm,并且沉积十分均匀。通过介电常数计算了材料的吸波性能,在12.88GHz且试样厚度为1.75mm时,RCmin为-15.08dB。在试样厚度为1.52mm时,可以实现4.8GHz(14.2~18GHz)的宽频吸收。
实施例4:
(1)将长径比为102~103、微结构呈现多晶特征的BN纳米线置于石墨烯沉积炉中,使用真空泵将炉内气压抽至真空,以5℃/min升至980℃,通过水浴锅将CH3OH加热至28℃后打开气阀通入CH3OH气体,控制炉内气压为7kPa,沉积20min后关闭气阀并开始降温。
(2)将步骤(1)后得到的试样,放置于BN沉积炉中,使用真空泵将炉内气压抽至真空以5℃/min升至680℃,同时通入BCl3、NH3、Ar和H2(稀释气体),并分别控制其流量为10ml/min、30ml/min、50ml/min和50ml/min,沉积30min后关闭气阀并开始降温。
(3)重复步骤(1)和(2)2次。
实施例2中交替沉积缺陷石墨烯和Si3N4两次的试样相比于实施例1、3中的试样,获得了最优的宽频吸波性能,达到了8GHz。实施例1中试样的缺陷石墨烯/Si3N4异质界面数量较少从而影响了吸波性能,而实施例3中试样的石墨烯层数较多造成阻抗失配,也会使得吸波性能下降。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种缺陷石墨烯/透波陶瓷复合吸波材料,其特征在于:包括透波纳米线以及依次沉积于其表面的缺陷石墨烯和透波陶瓷,所述透波陶瓷的沉积厚度为10~50nm。
2.根据权利要求1所述缺陷石墨烯/透波陶瓷复合吸波材料,其特征在于:所述缺陷石墨烯和透波陶瓷为交替沉积的多层结构。
3.根据权利要求1所述缺陷石墨烯/透波陶瓷复合吸波材料,其特征在于:所述透波纳米线为长径比为103~104、微结构呈现单晶特征的Si3N4纳米线,长径比为102~103、微结构呈现多晶特征的BN纳米线或长径比为102~103、微结构呈现非晶特征的SiO2纳米线。
4.一种权利要求1-3任一项所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于具体步骤如下:
步骤1:将透波纳米线放入石墨烯沉积炉中,采用化学气相沉积法在透波纳米线表面沉积缺陷石墨烯,工艺参数限定为:沉积温度为900~1200℃,炉内压力为5~10kPa,沉积时间为0~60min;
步骤2:将步骤1沉积了缺陷石墨烯的透波纳米线试样放入透波陶瓷沉积炉中,调整工艺参数,控制透波陶瓷的沉积厚度为10~50nm;
步骤3:调控步骤1和步骤2的循环次数为1-3次,制备出多层交替缺陷石墨烯/透波陶瓷交替结构的纳米线吸波材料。
5.根据权利要求4所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于:所述步骤1中以含C、H和O元素的有机物作为碳源,所述碳源为CH3OH、C2H5OH或C6H12O6
6.根据权利要求4所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于:所述透波陶瓷沉积炉为Si3N4沉积炉、BN沉积炉或SiO2沉积炉。
7.根据权利要求6所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于:所述透波陶瓷沉积炉为Si3N4沉积炉时,工艺参数限定为:沉积温度为800~1200℃,沉积时间为20~60min,通入气体为NH3、Ar、载气H2和稀释气体H2,并控制其流量比为7:10:8:4,其中载气H2带入SiCl4
8.根据权利要求6所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于:所述透波陶瓷沉积炉为BN沉积炉时,工艺参数限定为:沉积温度为600~1000℃,沉积时间为20~60min,通入的气体为BCl3、NH3、Ar和稀释气体H2,并控制其流量比为1:3:5:5。
9.根据权利要求6所述缺陷石墨烯/透波陶瓷复合吸波材料的制备方法,其特征在于:所述透波陶瓷沉积炉为SiO2沉积炉时,工艺参数限定为:沉积温度为700~1200℃,沉积时间为20~60min,通入的气体为O2、Ar、载气H2和稀释气体H2,并控制其流量比为5:5:4:2,其中载气H2带入SiCl4
10.一种权利要求1所述缺陷石墨烯/透波陶瓷复合吸波材料的应用,其特征在于:所述缺陷石墨烯/透波陶瓷复合吸波材料能够作为电磁波防护材料使用,并可制成柔性吸波薄膜和弹性吸波泡沫。
CN202210184279.8A 2022-02-24 2022-02-24 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用 Active CN114573330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210184279.8A CN114573330B (zh) 2022-02-24 2022-02-24 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210184279.8A CN114573330B (zh) 2022-02-24 2022-02-24 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用

Publications (2)

Publication Number Publication Date
CN114573330A true CN114573330A (zh) 2022-06-03
CN114573330B CN114573330B (zh) 2023-03-31

Family

ID=81772171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210184279.8A Active CN114573330B (zh) 2022-02-24 2022-02-24 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用

Country Status (1)

Country Link
CN (1) CN114573330B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717326A (zh) * 2022-11-05 2023-02-28 西北工业大学 超高温陶瓷@垂直石墨烯核壳结构纳米线及一步合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219066A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 二维石墨烯与一维纳米线复合的柔性导电薄膜及其制备方法
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
US20150311363A1 (en) * 2012-11-26 2015-10-29 Massachusetts Institute Of Technology Nanowire-modified graphene and methods of making and using same
CN105506579A (zh) * 2015-12-15 2016-04-20 南京工程学院 一种石墨烯包覆碳化硅纳米线的制备方法
CN108947552A (zh) * 2018-07-30 2018-12-07 西北工业大学 一种吸波型SiC纳米线增强SiBCN复合陶瓷涂层及制备方法
CN110591642A (zh) * 2019-08-21 2019-12-20 中国科学院重庆绿色智能技术研究院 一种基于磁性纳米粒子/石墨烯/碳纤维的复合吸波材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219066A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 二维石墨烯与一维纳米线复合的柔性导电薄膜及其制备方法
US20150311363A1 (en) * 2012-11-26 2015-10-29 Massachusetts Institute Of Technology Nanowire-modified graphene and methods of making and using same
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
CN105506579A (zh) * 2015-12-15 2016-04-20 南京工程学院 一种石墨烯包覆碳化硅纳米线的制备方法
CN108947552A (zh) * 2018-07-30 2018-12-07 西北工业大学 一种吸波型SiC纳米线增强SiBCN复合陶瓷涂层及制备方法
CN110591642A (zh) * 2019-08-21 2019-12-20 中国科学院重庆绿色智能技术研究院 一种基于磁性纳米粒子/石墨烯/碳纤维的复合吸波材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANG YE等: "Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717326A (zh) * 2022-11-05 2023-02-28 西北工业大学 超高温陶瓷@垂直石墨烯核壳结构纳米线及一步合成方法
CN115717326B (zh) * 2022-11-05 2024-02-06 西北工业大学 超高温陶瓷@垂直石墨烯核壳结构纳米线及一步合成方法

Also Published As

Publication number Publication date
CN114573330B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
Duan et al. Absorption properties of twinned SiC nanowires reinforced Si3N4 composites fabricated by 3d-prining
CN113896543B (zh) 一种具有层状结构吸波硅碳氮陶瓷及制备方法
CN111040729B (zh) 一种碳化硅基纳米复合吸波材料制备方法及其应用
Liang et al. Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions
CN114573330B (zh) 一种缺陷石墨烯/透波陶瓷复合吸波材料、方法及应用
CN113186528B (zh) 一种铂金薄膜及其制备方法和用途
CN113896556B (zh) 一种低介电损耗碳化硅纤维增强陶瓷复合材料的制备方法
CN114685189A (zh) 具有多层交替石墨烯/透波陶瓷结构的纳米线吸波材料及制备方法
CN109686667A (zh) 一种SiC基MOS器件及其制备方法和应用
Nan et al. Electromagnetic interference shielding performance of alternatively-deposited multilayer SiC/PyC porous ceramics
CN115538155B (zh) 一种碳化硅纤维复合电磁吸波材料及其制备方法
CN114621612B (zh) 一种原位生长碳纳米管修饰的CNT/SiCNWs复合吸波材料的制备方法
CN115072706A (zh) 一种氮掺杂石墨烯的可控制备方法及其所制备的氮掺杂石墨烯
CN108190868A (zh) 一种石墨烯材料的制备方法
CN113725076A (zh) 一种氢终端金刚石隧穿欧姆接触电阻的制备方法
CN106653569A (zh) 一种半导体材料β‑SiC薄膜的制备方法
Huang et al. Overcoming the Incompatibility Between Electrical Conductivity and Electromagnetic Transmissivity: A Graphene Glass Fiber Fabric Design Strategy
CN113555418B (zh) 基于P区和I区渐变掺杂的4H-SiC PIN微波二极管及制作方法
CN110071044A (zh) 场效应管的制备方法和场效应管
CN114804082B (zh) 一种台阶调控的石墨烯蓝宝石晶圆及其制备方法
CN113832541B (zh) 用于外延生长大尺寸单晶金刚石的复合衬底的制备方法
CN109987597B (zh) 一种异性堆叠石墨烯的制备方法
CN107093548B (zh) 制备SiC基MOS器件栅介质薄膜的方法
CN117423657A (zh) 一种氧化钛异质结薄膜及其制备方法
CN117143563A (zh) 碳和氮化碳面内共轭的二维吸波材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant