CN114566370A - 低温氧化/氮化处理提高钕铁硼抗蚀性的方法 - Google Patents

低温氧化/氮化处理提高钕铁硼抗蚀性的方法 Download PDF

Info

Publication number
CN114566370A
CN114566370A CN202210199160.8A CN202210199160A CN114566370A CN 114566370 A CN114566370 A CN 114566370A CN 202210199160 A CN202210199160 A CN 202210199160A CN 114566370 A CN114566370 A CN 114566370A
Authority
CN
China
Prior art keywords
magnet
low
equal
neodymium iron
iron boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210199160.8A
Other languages
English (en)
Inventor
严密
金佳莹
陈望
吴琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210199160.8A priority Critical patent/CN114566370A/zh
Priority to US17/711,551 priority patent/US12112884B2/en
Priority to JP2022062188A priority patent/JP2023129177A/ja
Publication of CN114566370A publication Critical patent/CN114566370A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开一种低温氧化/氮化处理提高钕铁硼抗蚀性的方法,通过200~400℃的低温氧化/氮化处理,在钕铁硼磁体表面原位生长氧化物、氮化物或氮氧化物薄层,大幅提高磁体的抗蚀性。本方法操作简单,生产成本低,不同于传统电镀和化学镀等方法,是一种绿色、安全、高效的技术方法。根据工艺调整,磁体表面生成的氧化物、氮化物或氮氧化物薄层厚度在10nm~100μm间连续可调,提高磁体抗蚀性的同时可保持优异的磁性能。并且,本方法磁体表面薄层为原位生成,与基体结合力强,长时稳定,可大批量推广应用。

Description

低温氧化/氮化处理提高钕铁硼抗蚀性的方法
技术领域
本发明涉及腐蚀防护领域,具体涉及低温氧化/氮化处理提高钕铁硼抗蚀性的方法。
背景技术
钕铁硼永磁材料具有高矫顽力、高剩磁、高磁能积等优异的综合磁性能,是应用最广泛的稀土永磁材料,已发展成为新能源、轨道交通、电子信息和航天航空等国民经济和国防建设的关键基础材料之一。尽管钕铁硼磁性很强,其极易腐蚀的缺陷严重影响了在海上风电、国防军工等重要领域的应用。已经发现,钕铁硼低抗蚀性的主要原因是晶界富钕相的电极电位太低,优先氧化腐蚀和吸氢粉化,形成晶间腐蚀并导致铁磁性Nd2Fe14B主相晶粒脱落,最终导致磁体磁性失效。
为了提高钕铁硼的抗蚀性,过去研究人员主要关注合金成分和表面防护两方面的研究。由于需要保持Nd2Fe14B主相的晶体结构以保障优异的磁性能,通过调整钕铁硼合金成分提高抗蚀性的作用十分有限。表面防护需要对钕铁硼磁体进行复杂的多次电镀、化学镀或电泳处理等,不仅提高了生产成本,易引起各种环保问题,而且由于钕铁硼基体与镀层结合力较差,镀层在磁体服役过程中易于剥落,降低了可靠性。因此,如何提高钕铁硼磁体的抗蚀性,一直是稀土永磁材料行业的难点。
发明内容
本发明的目的是克服现有技术的不足,提供一种低温氧化/氮化处理提高钕铁硼抗蚀性的方法。
本发明使用低温氧化/氮化处理方法,在钕铁硼磁体表面原位生长氧化物、氮化物或氮氧化物薄层,大幅提高磁体的抗蚀性。其特征在于:在管式炉或气氛炉中,抽真空至10-2~10-4Pa后,通入气体,气体为O2、N2、NH3或水蒸气中的一种或几种,流量为15~5000ml/min,低温氧化或氮化的温度控制在200~400℃,反应时间控制在0.5~24h。
所述氧化物、所述氮化物或所述氮氧化物的薄层厚度在10nm~100μm间连续可调。
所述钕铁硼磁体的成分,以原子百分数计,为(REaRE’1-a)x(FebM1-b)100-x-y-zM’yBz,RE为除La、Ce、Y以外的其它镧系元素中的一种或几种,RE’为La、Ce、Y元素中的一种或几种;Fe为铁元素,M为Co或Ni中的一种或两种;M’为Nb、Zr、Ta、V、Al、Cu、Ga、Ti、Cr、Mo、Mn、Ag、Au、Pb、Si元素中的一种或几种,B为硼元素;a、b、x、y、z满足以下关系:0.55≤a≤1、0.8≤b≤1、12≤x≤18、0≤y≤2、5.5≤z≤6.5。
本发明与现有技术相比的有益效果:1)传统方法是基于长期以来对低电位富钕相的认识,通过合金化微调富钕相的成分,提高其电极电位,降低其与主相电位差;或通过磁体表面镀Cu、镀Ni等保护涂层,隔绝富Nd相与腐蚀液的直接接触;不同于这些传统方法,本发明的最大创新在于充分利用了富钕相中稀土元素含量高,易于氧化或氮化的特征,经低温氧化/氮化处理,在钕铁硼磁体表面形成一层高电位的氧化物、氮化物或氮氧化物薄层,具有良好的化学稳定性和致密性,大幅提高磁体的腐蚀电位,降低腐蚀电流,可起到表面防护的效果;2)针对不同成分的钕铁硼磁体,其高丰度稀土La、Ce、Y含量不同,Fe、Co、Ni含量不同,合金化元素含量不同等,导致磁体富钕相的成分、结构、含量和分布均不同,通过针对性调整氧化/氮化工艺参数,均可大幅提升磁体的抗蚀性;3)磁体表面原位生长的氧化物、氮化物或氮氧化物薄层厚度在10nm~100μm间连续可调,相对于不同尺寸的磁体(mm级的薄片磁体到≥10cm级的大块磁体),均可在提高抗蚀性的同时,保持磁体优异的磁性能;4)原位生长的氧化物、氮化物或氮氧化物薄层与钕铁硼基体的结合力较强,可提高工作寿命;5)相较于钕铁硼的传统真空或惰性气体保护高温热处理(450~1050℃),本发明仅需一步低温氧化/氮化气氛处理(200~400℃),工艺流程简单,成本较低;6)氧化/氮化处理后的钕铁硼磁体可免于后续电镀、化学镀等镀层处理,可减少环境污染。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
钕铁硼磁体的成分,以原子百分数计,为(Pr0.2Nd0.8)14Fe78.95(Cu0.5Al0.2Ga0.2Zr0.1)1B6.05,在管式炉中抽真空至2×10-2Pa后,通入O2,流量为800ml/min,低温氧化的温度控制在350℃,反应时间控制在3h。磁体表面原位生成的氧化物薄层厚度为~1μm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为14.0kG,矫顽力为14.8kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电流为5μA/cm2
对比例1:
与实施例1的不同之处在于,磁体未经低温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为14.0kG,矫顽力为14.9kOe,均与实施例1相近。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为70μA/cm2,较实施例1增大了一个数量级以上。
对比例2:
与实施例1的不同之处在于,提高Cu元素含量,磁体的成分,以原子百分数计,为(Pr0.2Nd0.8)14Fe77.95(Cu1.5Al0.2Ga0.2Zr0.1)1B6.05,且未经低温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为13.6kG,矫顽力为11.7kOe,较实施例1均大幅下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为52μA/cm2,较实施例1增大了一个数量级以上。
对比例3:
与实施例1的不同之处在于,磁体未经低温氧化处理,经表面镀层处理,为亮银色镍铜镍镀层,镀层厚度~10μm。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为13.7kG,矫顽力为14.2kOe,较实施例1均下降。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为10μA/cm2,大于实施例1。
实施例2:
钕铁硼磁体的成分,以原子百分数计,为[Nd0.65(La0.35Ce0.65)0.35]16(Fe0.97Co0.03)76.15(Ga0.35Cu0.2Al0.2Nb0.1Zr0.05)2B5.85,在管式炉中抽真空至3×10-3Pa后,通入O2,流量为200ml/min,低温氧化的温度控制在300℃,反应时间控制在0.5h。磁体表面原位生成的氧化物薄层厚度为~200nm。AMT-4永磁特性测量仪测试结果显示,表面氧化处理后磁体的剩磁为12.4kG,矫顽力为11.1kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化处理后磁体的腐蚀电压为-430mV。
对比例4:
与实施例2的不同之处在于,磁体未经低温氧化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.4kG,矫顽力为11.2kOe,均与实施例2相近。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电压为-870mV,较实施例2明显降低。
实施例3:
钕铁硼磁体的成分,以原子百分数计,为(Pr0.2Nd0.8)18Fe75.55(Ga0.7Al0.15Zr0.15)0.55B5.9,在气氛炉中抽真空至2×10-4Pa后,通入NH3,流量为80ml/min,低温氮化的温度控制在400℃,反应时间控制在1h。磁体表面原位生成的氮化物薄层厚度为~300nm。AMT-4永磁特性测量仪测试结果显示,表面氮化处理后磁体的剩磁为13.6kG,矫顽力为17.5kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氮化处理后磁体的腐蚀电流为11μA/cm2
对比例5:
与实施例3的不同之处在于,磁体未经低温氮化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为13.5kG,矫顽力为17.4kOe,均与实施例3相近。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电流为317μA/cm2,较实施例3增大了一个数量级以上。
实施例4:
钕铁硼磁体的成分,以原子百分数计,为[(Pr0.1Nd0.9)0.75(Y0.15Ce0.85)0.25]15(Fe0.9Co0.1)77.4(Cu0.3Ga0.15Al0.25Si0.2Nb0.1)1.5B6.1,在管式炉中抽真空至1×10-3Pa后,通入O2和N2混合气,比例为7:3,流量为500ml/min,低温氧化和氮化的温度控制在350℃,反应时间控制在12h。磁体表面原位生成的氮氧化物薄层厚度为~5μm。AMT-4永磁特性测量仪测试结果显示,表面氧化和氮化处理后磁体的剩磁为12.6kG,矫顽力为13.0kOe。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,表面氧化和氮化处理后磁体的腐蚀电压为-240mV。
对比例6:
与实施例4的不同之处在于,未经低温氧化和氮化处理。AMT-4永磁特性测量仪测试结果显示,磁体的剩磁为12.6kG,矫顽力为13.3kOe,均与实施例4相近。AMETEK电化学工作站测试结果显示,在3.5%NaCl溶液中,磁体的腐蚀电压为-730mV,较实施例4明显降低。

Claims (4)

1.低温氧化/氮化处理提高钕铁硼抗蚀性的方法,其特征在于:通过低温氧化/氮化处理,在钕铁硼磁体表面原位生长氧化物、氮化物或氮氧化物薄层。
2.根据权利要求1所述的方法,其特征在于:在管式炉或气氛炉中,抽真空至10-2~10- 4Pa后,通入气体,气体为O2、N2、NH3或水蒸气中的一种或几种,流量为15~5000ml/min,低温氧化/氮化的温度控制在200~400℃,反应时间控制在0.5~24h。
3.根据权利要求1所述的方法,其特征在于:所述氧化物、所述氮化物或所述氮氧化物的薄层厚度在10nm~100μm间连续可调。
4.根据权利要求1所述的方法,其特征在于:所述钕铁硼磁体的成分,以原子百分数计,为(REaRE’1-a)x(FebM1-b)100-x-y-zM’yBz,RE为除La、Ce、Y以外的其它镧系元素中的一种或几种,RE’为La、Ce、Y元素中的一种或几种;Fe为铁元素,M为Co或Ni中的一种或两种;M’为Nb、Zr、Ta、V、Al、Cu、Ga、Ti、Cr、Mo、Mn、Ag、Au、Pb、Si元素中的一种或几种,B为硼元素;a、b、x、y、z满足以下关系:0.55≤a≤1、0.8≤b≤1、12≤x≤18、0≤y≤2、5.5≤z≤6.5。
CN202210199160.8A 2022-03-02 2022-03-02 低温氧化/氮化处理提高钕铁硼抗蚀性的方法 Pending CN114566370A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210199160.8A CN114566370A (zh) 2022-03-02 2022-03-02 低温氧化/氮化处理提高钕铁硼抗蚀性的方法
US17/711,551 US12112884B2 (en) 2022-03-02 2022-04-01 Method for improving corrosion resistance of neodymium-iron-boron materials by low-temperature oxidation and/or nitridation treatment
JP2022062188A JP2023129177A (ja) 2022-03-02 2022-04-02 低温酸化/窒化処理によりNdFeBの耐腐食性を増加させる方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210199160.8A CN114566370A (zh) 2022-03-02 2022-03-02 低温氧化/氮化处理提高钕铁硼抗蚀性的方法

Publications (1)

Publication Number Publication Date
CN114566370A true CN114566370A (zh) 2022-05-31

Family

ID=81715171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210199160.8A Pending CN114566370A (zh) 2022-03-02 2022-03-02 低温氧化/氮化处理提高钕铁硼抗蚀性的方法

Country Status (3)

Country Link
US (1) US12112884B2 (zh)
JP (1) JP2023129177A (zh)
CN (1) CN114566370A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266128A (en) * 1989-06-13 1993-11-30 Sps Technologies, Inc. Magnetic materials and process for producing the same
CN101809690A (zh) * 2007-09-27 2010-08-18 日立金属株式会社 经表面改性的稀土类烧结磁铁的制造方法及经表面改性的稀土类烧结磁铁
CN102789872A (zh) * 2012-08-20 2012-11-21 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法
CN105390225A (zh) * 2015-11-26 2016-03-09 宁波科星材料科技有限公司 一种耐腐蚀的钕铁硼磁体及其制备方法
CN113555208A (zh) * 2021-06-11 2021-10-26 杭州电子科技大学 一种烧结钕铁硼磁体的表面处理方法及烧结钕铁硼磁体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007847B (zh) * 1984-12-24 1990-05-02 住友特殊金属株式会社 制造具有改进耐蚀性磁铁的方法
US5122203A (en) * 1989-06-13 1992-06-16 Sps Technologies, Inc. Magnetic materials
JP3073807B2 (ja) * 1990-10-05 2000-08-07 日立金属株式会社 鉄−希土類系永久磁石材料およびその製造方法
CN1725394B (zh) * 2005-06-08 2010-04-07 浙江大学 晶界相中添加纳米氮化硅提高钕铁硼工作温度和耐蚀性方法
CN103526153B (zh) * 2012-07-03 2017-10-24 山东科技大学 一种渗氮方法
JP6037213B2 (ja) * 2012-09-20 2016-12-07 日立金属株式会社 表面改質されたR−Fe−B系焼結磁石の製造方法
CN104342614A (zh) * 2013-08-07 2015-02-11 天津三环乐喜新材料有限公司 一种汽车用烧结钕铁硼永磁材料化学防护层的表面处理方法
CN107507687B (zh) * 2016-06-14 2019-12-27 有研稀土新材料股份有限公司 高耐腐蚀性稀土永磁粉及其制备方法
CN111755236A (zh) * 2020-06-23 2020-10-09 安泰科技股份有限公司 一种烧结钕铁硼磁体的发蓝防腐方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266128A (en) * 1989-06-13 1993-11-30 Sps Technologies, Inc. Magnetic materials and process for producing the same
CN101809690A (zh) * 2007-09-27 2010-08-18 日立金属株式会社 经表面改性的稀土类烧结磁铁的制造方法及经表面改性的稀土类烧结磁铁
CN102789872A (zh) * 2012-08-20 2012-11-21 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法
CN105390225A (zh) * 2015-11-26 2016-03-09 宁波科星材料科技有限公司 一种耐腐蚀的钕铁硼磁体及其制备方法
CN113555208A (zh) * 2021-06-11 2021-10-26 杭州电子科技大学 一种烧结钕铁硼磁体的表面处理方法及烧结钕铁硼磁体

Also Published As

Publication number Publication date
JP2023129177A (ja) 2023-09-14
US12112884B2 (en) 2024-10-08
US20230282414A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
Coey et al. Magnetic nitrides
CN106119739B (zh) 铁基非晶纳米晶软磁合金及其制备方法
CN109841367B (zh) 稀土粘结磁粉及其制备方法和粘结磁体
WO2016086397A1 (zh) 镝氢化合物添加提高烧结钕铁硼磁体矫顽力的方法及产品
EP0311049A2 (en) Corrosion resistant rare earth metal magnet
JPS60131949A (ja) 鉄−希土類−窒素系永久磁石
CN114334416B (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN109440058B (zh) 一种含氮铁基非晶纳米晶软磁合金及其制备方法
EP3937199A1 (en) A method for preparing high-performance sintered ndfeb magnets
CN114420439B (zh) 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN114566370A (zh) 低温氧化/氮化处理提高钕铁硼抗蚀性的方法
CN111755191A (zh) 一种高丰度稀土Ce/Y/Nd/La取代的高最大磁能积的钐铁氮基磁粉
CN110257721B (zh) 一种较低Fe含量的Fe基软磁合金及其制备方法和应用
CN108987014A (zh) 一种提高烧结钕铁硼磁体矫顽力的方法
Davies High coercivity Zr and Co substituted (Nd-Pr)-Fe-B nanophase hard magnetic alloys
JPH07263210A (ja) 永久磁石並びに永久磁石合金粉末とその製造方法
CN112735718A (zh) 一种高耐蚀高矫顽力烧结钕铁硼磁体的制备方法
Wang et al. Magnetic properties and microstructures of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B powders by grain boundary diffusion of Nd-Cu-Al
Wang et al. Preparation and magnetic properties of melt-spun Nd 2 Fe 14 (BC)/α-Fe nanocomposite magnets
CN110600256A (zh) 一种纳米复相稀土永磁材料的制备方法
JP3777225B2 (ja) 高磁束密度を有する等方性永久磁石粉末とその製造方法
CN1234901C (zh) 一种淬态纳米巨磁阻抗薄带材料及其制备方法
WO2022077679A1 (zh) 一种Sr掺杂锰镓合金及其高矫顽力纳米晶磁体的制备方法
JPH06231917A (ja) 希土類−遷移金属系永久磁石およびその製造方法
JP4519118B2 (ja) ボンド磁石に用いる希土類−鉄−ボロン系コンポジット磁石用合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220531

RJ01 Rejection of invention patent application after publication