CN109440058B - 一种含氮铁基非晶纳米晶软磁合金及其制备方法 - Google Patents

一种含氮铁基非晶纳米晶软磁合金及其制备方法 Download PDF

Info

Publication number
CN109440058B
CN109440058B CN201811442720.8A CN201811442720A CN109440058B CN 109440058 B CN109440058 B CN 109440058B CN 201811442720 A CN201811442720 A CN 201811442720A CN 109440058 B CN109440058 B CN 109440058B
Authority
CN
China
Prior art keywords
based amorphous
soft magnetic
magnetic alloy
nitrogen
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811442720.8A
Other languages
English (en)
Other versions
CN109440058A (zh
Inventor
黎嘉威
王文泉
董亚强
贺爱娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201811442720.8A priority Critical patent/CN109440058B/zh
Publication of CN109440058A publication Critical patent/CN109440058A/zh
Application granted granted Critical
Publication of CN109440058B publication Critical patent/CN109440058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种含氮铁基非晶纳米晶软磁合金的制备方法,包括:将铁基非晶软磁合金进行等离子渗氮得到完全非晶态结构的含氮铁基非晶软磁合金后,进行退火处理得到含氮铁基非晶纳米晶软磁合金。等离子渗氮的温度为100~400℃,渗氮时间为10~60min。本发明制备方法具有渗氮温度低、渗氮时间短的特点,克服了渗氮过程中铁基非晶晶化的问题,解决了铁基非晶软磁合金渗氮后韧性变差、不易加工的问题。本发明还公开了上述制备方法制备得到的含氮铁基非晶软磁合金和含氮铁基非晶纳米晶软磁合金,纳米晶的晶粒尺寸为10~15nm,饱和磁感应强度为1.48~1.74T。

Description

一种含氮铁基非晶纳米晶软磁合金及其制备方法
技术领域
本发明涉及磁电功能材料领域,具体涉及一种含氮铁基非晶纳米晶软磁合金及其制备方法。
背景技术
非晶纳米晶软磁材料具有诸多优异的性能,如饱和磁感应强度高、矫顽力低、磁导率高以及高频损耗低等优异的软磁性能。其中,铁基非晶纳米晶软磁合金是在铁基非晶基体的晶化温度以上退火而获得的,其中纳米尺寸的体心立方铁(bcc-Fe)晶粒散布在基体上。
非晶纳米晶软磁合金材料用作磁性器件可以有效促进其“小型化”、“轻量化”、“高效化”,与传统软磁材料相比,具有明显的优势。铁基非晶纳米晶软磁合金近年来得到迅速发展,应用于诸多领域,比如:在电气方面该软磁合金带材已经取代了大部分的铁氧体和坡莫软磁合金;在电力方面,非晶/纳米晶变压器国家正在大规模推广。
此外,铁基非晶纳米晶因其低廉的成本、简单的生产工艺以及良好的磁热性能,被认为是一种优异的磁制冷材料,近年来受到广泛的关注。但是,铁基非晶纳米晶软磁合金,尤其是具有高饱和磁感应强度的铁基非晶纳米晶软磁合金,在高温潮湿等恶劣环境下或在制冷液中的耐腐蚀性能差,导致其服役稳定性较差。
氮作为大气中资源最丰富的元素,与金属复合后呈现出许多独特的物理和化学性质,近年来受到人们的广泛关注。氮的引入可以调控软磁合金的相析出行为以及在腐蚀介质中的离子种类和离子行为,从而可以有效解决上述问题。例如在钢铁中适量添加氮可以极大地提高钢铁的耐蚀性和力学性能。
公开号为CN 106086776 B的专利说明书公开了一种氮化铁磁粉的低温等离子氮化制备方法,采用低温等离子氮化的方式对铁粉进行渗氮,控制温度120~200℃,氮化时间1~30h,解决了氨气渗氮法中氨气分解效率低下的瓶颈问题,有效提高了渗氮效率。但是此发明所述的制备方法无法获得非晶纳米晶结构,且用时长。
虽然晶体材料、硬磁材料、高分子材料以及陶瓷材料等材料渗氮的方法多样,但渗氮的温度通常高于500℃,且处理时间普遍较长(姚佳伟,等离子体渗氮过程中钢表面纳米晶层形成机理研究,哈尔滨工业大学,2017)。这些高温、长时间的渗氮方法如果应用于铁基非晶材料,则会导致铁基非晶材料在渗氮过程中转变为晶体结构,无法得到非晶态产品。
因此,本领域的渗氮研究面临的关键的问题是如何在渗氮过程中维持材料原有的非晶态。
发明内容
针对本领域存在的不足之处,本发明提供了一种含氮铁基非晶纳米晶软磁合金的制备方法,促进了氮化反应的快速进行,避免了长时间的高温处理,具有渗氮温度低、渗氮时间短的特点,可大面积连续渗氮处理,克服了渗氮过程中铁基非晶晶化的问题,解决了铁基非晶软磁合金渗氮后韧性变差、不易加工的问题,具有简单高效、成本低、产品质量可控以及适合大规模生产等优点。
一种含氮铁基非晶纳米晶软磁合金的制备方法,包括:
(1)将铁基非晶软磁合金进行等离子渗氮,得到完全非晶态结构的含氮铁基非晶软磁合金;所述的等离子渗氮的温度为100~400℃,渗氮时间为10~60min;
(2)将步骤(1)得到的含氮铁基非晶软磁合金进行退火处理得到含氮铁基非晶纳米晶软磁合金。
步骤(1)中,所述的铁基非晶软磁合金可以是下列组成中的一种或多种:
Fe73-84Si3-16B8-12M2.4-3Cu0.6-3
Fe80-91M3-10B3-10Cu0-3
Fe33-66Co20-52M2-7B3-10Cu0.6-3
Fe65-78Si5-14B6-12P3-6C2-5Cu0.6-3
Fe80-91M3-10B3-10
其中,M为Nb、Mo、Zr、Hf、Al和V中的一种或两种。
所述的铁基非晶软磁合金可以是铁基非晶软磁合金带材或铁基非晶软磁合金粉末中的一种或多种。
所述的铁基非晶软磁合金带材可依次采用熔炼法和快淬法制备得到,具体包括:
a.熔炼法:将单质配比混合后,在坩埚内感应熔炼或电弧熔炼,得到软磁合金铸锭;
b.快淬法:将步骤a得到的软磁合金铸锭打磨后破碎成小块重熔,单辊快淬获得铁基非晶软磁合金带材。
所述的铁基非晶软磁合金粉末可依次采用熔炼法和气雾化制备得到,所述的熔炼法可采用步骤a所述的方法。
所述的等离子渗氮的温度为100~400℃,渗氮时间为10~60min。
渗氮过程的发生需要达到一定的温度,但是渗氮温度过高反而会导致得到的含氮铁基非晶软磁合金发生晶化,无法得到完全非晶态结构的含氮铁基非晶软磁合金。
渗氮时间过短会导致得到的含氮铁基非晶软磁合金的氮含量不足,进而导致含氮铁基非晶纳米晶软磁合金的氮含量不足;渗氮时间过长会导致得到的含氮铁基非晶软磁合金发生晶化,无法得到完全非晶态结构的含氮铁基非晶软磁合金。
不完全非晶态的含氮铁基非晶软磁合金无法通过进一步退火获得尺寸可控且均一的纳米晶,极大地降低了得到的含氮铁基非晶纳米晶软磁合金的性能。另一方面,这种不完全非晶态的含氮铁基非晶软磁合金由于发生了部分晶化,其韧性大大下降,从而也极大地限制了铁基非晶软磁合金进一步的加工生产。
所述的等离子渗氮可采用低温低压等离子渗氮或低温常压等离子渗氮。
优选地,所述的等离子渗氮为低温低压等离子渗氮。更优选地,所述的等离子渗氮的渗氮压力为0.5~1Pa。
因为低压条件下的渗氮过程对铁基非晶软磁合金传热较慢,铁基非晶软磁合金的受热分布较为均匀,可避免非晶异常长大晶化。
优选地,所述的等离子渗氮的温度为150-300℃,渗氮压力为0.6-0.8Pa,渗氮时间为10-20min。在该条件下,进行等离子渗氮后的含氮铁基非晶软磁合金为完全非晶态结构。
所述的等离子渗氮可以采用等离子渗氮反应炉进行,以铁基非晶软磁合金为阴极,渗氮炉壁为阳极,在低压低温或低温常压下施加脉冲电压使N2电离,从而实现对铁基非晶软磁合金的渗氮。
所述的脉冲电压为脉冲偏压,大小为-300V,频率为40kHz,占空比为20%,电弧等离子源的电流为50A。
所述的等离子渗氮的具体步骤包括:
a.将铁基非晶软磁合金放入等离子渗氮反应炉中,通入氩气进行表面活化和清理;
b.停止氩气通入,通入氮气,控制等离子渗氮的温度和渗氮时间,进行等离子渗氮,得到完全非晶态结构的含氮铁基非晶软磁合金;
c.将含氮铁基非晶软磁合金在大气、真空或保护气氛中随炉冷却。
所述的保护气氛可以是稀有气体气氛或氮气气氛。
步骤(2)中,所述的退火为去应力退火或纳米晶化退火。
优选地,所述的退火的温度为500~640℃,退火的时间为10~60min,以此调控含氮铁基非晶软磁合金在退火时的晶化行为,控制得到的含氮铁基非晶纳米晶软磁合金中纳米晶的晶粒尺寸,析出有助于提高耐蚀性的Fe3N和ZrN,进而有效提高了含氮铁基非晶纳米晶软磁合金的软磁性能、韧性以及耐蚀性,提高了铁基非晶纳米晶软磁合金在复杂、恶劣的环境中的服役性能,极大地拓宽了铁基非晶纳米晶软磁合金的应用范围。
本发明又提供了一种根据所述的等离子渗氮方法制备得到的含氮铁基非晶软磁合金。
所述的含氮铁基非晶软磁合金为所述的含氮铁基非晶纳米晶软磁合金的制备方法制备过程中的中间产物,为完全非晶态,氮含量高,为600~1000ppm,可承受最大弯折角度不小于180°,具有优异的弯折韧性,有利于进一步的纳米晶化处理和机械卷绕加工过程的进行。
在另一优选例中,所述的含氮铁基非晶软磁合金的组成包括Fe80-91M3-10B3-10N0-2,M为Nb、Mo、Zr、Hf、Al和V中的一种或两种。
本发明还提供了一种根据所述的含氮铁基非晶纳米晶软磁合金的制备方法制备得到的含氮铁基非晶纳米晶软磁合金。
所述的含氮铁基非晶纳米晶软磁合金的纳米晶的晶粒尺寸为10~15nm,饱和磁感应强度高,为1.48~1.74T,耐蚀性好,腐蚀速率低,在腐蚀介质为0.5M NaCl溶液的条件下,腐蚀速率不大于0.11mm/a。
在另一优选例中,所述的含氮铁基非晶纳米晶软磁合金的组成包括Fe80-91M3- 10B3-10N0-2,M为Nb、Mo、Zr、Hf、Al和V中的一种或两种。
本发明与现有技术相比,主要优点包括:
(1)采用的等离子渗氮方法促进了氮化反应的快速进行,避免了长时间的高温处理,具有渗氮温度低、渗氮时间短的特点,可大面积连续渗氮处理,克服了渗氮过程中铁基非晶晶化的问题,解决了铁基非晶软磁合金渗氮后韧性变差、不易加工的问题,简单高效,成本低,产品质量可控,适合大规模生产。
(2)中间产物含氮铁基非晶软磁合金为完全非晶态,可承受最大弯折角度不小于180°,具有优异的弯折韧性,氮含量高,为600~1000ppm。
(3)根据所述的含氮铁基非晶纳米晶软磁合金的制备方法制备得到的含氮铁基非晶纳米晶软磁合金的纳米晶的晶粒尺寸为10~15nm,饱和磁感应强度高,为1.48~1.74T,耐蚀性好,腐蚀速率低,在腐蚀介质为0.5M NaCl溶液的条件下,腐蚀速率不大于0.11mm/a,提高了铁基非晶纳米晶软磁合金在复杂、恶劣的环境中的服役性能,极大地拓宽了铁基非晶纳米晶软磁合金的应用范围。
附图说明
图1为实施例1制备得到的原始铁基非晶软磁合金带材、含氮铁基非晶软磁合金带材和实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材以及对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的X射线衍射(XRD)图;
图2为实施例1制备得到的含氮铁基非晶软磁合金带材的弯折韧性测试照片;
图3为实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材的透射电镜照片;
图4为实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的室温磁滞回线对比图;
图5为实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的极化曲线对比图;
图6为实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的阻抗谱图;
图7为实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的循环极化曲线对比图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1
制备含氮铁基非晶软磁合金带材,化学分子式为(Fe90Zr7B3)99.75N0.25
(1)将单质Fe、Zr和B按上述化学计量比混合均匀,利用电弧熔炼炉制备成分均匀的母软磁合金铸锭。
(2)将步骤(1)得到的母软磁合金铸锭用砂轮磨掉表面杂质,然后置于单辊快淬装置中获得原始铁基非晶软磁合金带材(原始铁基非晶)。得到的原始铁基非晶软磁合金带材表面光滑,厚度为23μm,XRD图如图1所示,具有完全非晶结构。
(3)对步骤(2)得到的原始铁基非晶软磁合金带材进行等离子渗氮处理,采用-300V脉冲偏压,频率为40kHz,占空比为20%,电弧等离子源电流为50A,渗氮温度200℃,渗氮压力0.7Pa,渗氮时间15min,得到完全非晶的含氮铁基非晶软磁合金带材(含氮铁基非晶),氮含量为900ppm。
如图1所示,得到的完全非晶的含氮铁基非晶软磁合金带材具有典型非晶结构。
如图2所示,得到的完全非晶的含氮铁基非晶软磁合金带材具有优异的弯折韧性,可对折180°。
使用得到的完全非晶的含氮铁基非晶软磁合金带材进一步卷绕制成铁芯制品,所制成的铁芯制品具有氮分布均匀的特点。
实施例2
对实施例1制备得到的含氮铁基非晶软磁合金带材进行高真空热处理获得含氮铁基非晶纳米晶软磁合金带材(含氮铁基纳米晶),热处理温度为630℃,处理时间为1h。
得到的含氮铁基非晶纳米晶软磁合金带材的氮含量为900ppm,饱和磁感应强度为1.63T,在腐蚀介质为0.5M NaCl溶液的条件下,腐蚀速率为0.11mm/a,具有优异的饱和磁感应强度和抗腐蚀能力。
得到的含氮铁基非晶纳米晶软磁合金带材的XRD图如图1所述,透射电镜照片如图3所示,纳米晶的晶粒尺寸约为13nm。
实施例3
制备含氮铁基非晶软磁合金带材,化学分子式为(Fe84Nb7B9)99.85N0.15
(1)将单质Fe、Nb和B按上述化学计量比混合均匀,利用电弧熔炼炉制备成分均匀的母软磁合金铸锭。
(2)将步骤(1)得到的母软磁合金铸锭用砂轮磨掉表面杂质,然后置于单辊快淬装置中获得铁基非晶软磁合金带材。得到的铁基非晶软磁合金带材表面光滑,具有完全非晶结构。
(3)对步骤(2)得到的铁基非晶软磁合金带材进行等离子渗氮处理,采用-300V脉冲偏压,频率为40kHz,占空比为20%,电弧等离子源电流为50A,渗氮温度200℃,渗氮压力0.7Pa,渗氮时间15min,得到完全非晶的含氮铁基非晶软磁合金带材,氮含量为760ppm。
(4)将步骤(3)得到的含氮铁基非晶软磁合金带材在大气下进行热处理获得含氮铁基非晶纳米晶软磁合金带材,热处理温度为570℃,处理时间为1h。
得到的含氮铁基非晶纳米晶软磁合金带材的饱和磁感应强度高达1.48~1.53T。
实施例4
制备含氮铁基非晶软磁合金粉末,化学分子式为(Fe80Nb7B12Cu1)99.63N0.37
(1)将单质Fe、Nb、B和Cu按上述化学计量比混合均匀,利用电弧熔炼炉制备成分均匀的母软磁合金铸锭。
(2)将步骤(1)得到的母软磁合金铸锭用砂轮磨掉表面杂质,气雾化获得具有完全非晶结构的铁基非晶软磁合金粉末,粒径为75~100μm。
(3)对步骤(2)得到的铁基非晶软磁合金带材进行等离子渗氮处理,采用-300V脉冲偏压,频率为40kHz,占空比为20%,电弧等离子源电流为50A,渗氮温度150℃,渗氮压力0.7Pa,渗氮时间10min,得到完全非晶的含氮铁基非晶软磁合金粉末,氮含量为970ppm。
(4)将步骤(3)得到的含氮铁基非晶软磁合金粉末进行低真空热处理获得含氮铁基非晶纳米晶软磁合金粉末,热处理温度为630℃,处理时间为1h。
使用步骤(4)得到的含氮铁基非晶纳米晶软磁合金粉末制备的含氮铁基非晶纳米晶磁粉芯,具有氮分布均匀的特点。
对比例1
对实施例1步骤(2)得到的原始铁基非晶软磁合金带材进行高真空热处理获得原始铁基非晶纳米晶软磁合金带材(原始铁基纳米晶),热处理温度为630℃,处理时间为1h。
得到的原始铁基非晶纳米晶软磁合金带材在腐蚀介质为0.5M NaCl溶液的条件下,腐蚀速率为0.3mm/a。。
利用振动样品磁强计测试实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的软磁性能。如图4所示,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材的软磁性能与对比例1制备得到的原始铁基非晶纳米晶软磁合金带材的软磁性能相当。
用电化学工作站测试实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材和对比例1制备得到的原始铁基非晶纳米晶软磁合金带材在0.5M NaCl溶液中的极化曲线、阻抗谱和循化极化曲线,以此表征耐蚀性。
如图5所示,与对比例1制备得到的原始铁基非晶纳米晶软磁合金带材相比,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材有更小的钝化电流、更高的点蚀电位、更宽的钝化区间。
如图6所示,与对比例1制备得到的原始铁基非晶纳米晶软磁合金带材相比,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材有更大的容抗弧。
如图7所示,与对比例1制备得到的原始铁基非晶纳米晶软磁合金带材相比,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材有更小的点蚀敏感性。
上述测试说明实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材的耐蚀性远好于对比例1制备得到的原始铁基非晶纳米晶软磁合金带材。
这是由于等离子渗氮后,纳米晶晶化析出相行为得到控制。如图3c所示,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材获得了Fe3N和ZrN相的析出,因此,实施例2制备得到的含氮铁基非晶纳米晶软磁合金带材有更小的钝化电流、更高的点蚀电位、更宽的钝化区间。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (9)

1.一种含氮铁基非晶纳米晶软磁合金的制备方法,包括:
(1)将铁基非晶软磁合金在100~400℃进行等离子渗氮10~60min,得到完全非晶态结构的含氮铁基非晶软磁合金;
(2)将步骤(1)得到的含氮铁基非晶软磁合金在500~640℃进行退火处理10~60min得到含氮铁基非晶纳米晶软磁合金。
2.根据权利要求1所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的铁基非晶软磁合金为下列组成中的一种或多种:
Fe73-84Si3-16B8-12M2.4-3Cu0.6-3
Fe80-91M3-10B3-10Cu0-3
Fe33-66Co20-52M2-7B3-10Cu0.6-3
Fe65-78Si5-14B6-12P3-6C2-5Cu0.6-3
Fe80-91M3-10B3-10
其中,M为Nb、Mo、Zr、Hf、Al和V中的一种或两种。
3.根据权利要求1所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的铁基非晶软磁合金为铁基非晶软磁合金带材或铁基非晶软磁合金粉末中的一种或多种。
4.根据权利要求1所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的等离子渗氮的具体步骤包括:
(1)将铁基非晶软磁合金放入等离子渗氮反应炉中,通入氩气进行表面活化和清理;
(2)停止氩气通入,通入氮气,控制等离子渗氮的温度和渗氮时间,进行等离子渗氮,得到完全非晶态结构的含氮铁基非晶软磁合金;
(3)将含氮铁基非晶软磁合金在大气、真空、稀有气体气氛或氮气气氛中随炉冷却。
5.根据权利要求1或4所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的等离子渗氮的渗氮压力为0.5~1Pa。
6.根据权利要求5所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的等离子渗氮的温度为150~300℃,渗氮压力为0.6~0.8Pa,渗氮时间为10~20min。
7.根据权利要求1所述的含氮铁基非晶纳米晶软磁合金的制备方法,其特征在于,所述的退火为去应力退火或纳米晶化退火。
8.根据权利要求1~6任一权利要求所述的含氮铁基非晶纳米晶软磁合金的制备方法制备得到的含氮铁基非晶软磁合金,其特征在于,所述的含氮铁基非晶软磁合金的氮含量为600~1000ppm。
9.根据权利要求1~7任一权利要求所述的含氮铁基非晶纳米晶软磁合金的制备方法制备得到的含氮铁基非晶纳米晶软磁合金,其特征在于,所述的含氮铁基非晶纳米晶软磁合金的纳米晶的晶粒尺寸为10~15nm,饱和磁感应强度为1.48~1.74T。
CN201811442720.8A 2018-11-29 2018-11-29 一种含氮铁基非晶纳米晶软磁合金及其制备方法 Active CN109440058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811442720.8A CN109440058B (zh) 2018-11-29 2018-11-29 一种含氮铁基非晶纳米晶软磁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811442720.8A CN109440058B (zh) 2018-11-29 2018-11-29 一种含氮铁基非晶纳米晶软磁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN109440058A CN109440058A (zh) 2019-03-08
CN109440058B true CN109440058B (zh) 2020-08-11

Family

ID=65555033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811442720.8A Active CN109440058B (zh) 2018-11-29 2018-11-29 一种含氮铁基非晶纳米晶软磁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN109440058B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323054B (zh) * 2019-06-11 2021-10-08 上海超诚电子科技有限公司 电磁装置用铁芯的处理方法、铁芯及电磁装置
CN112872348B (zh) * 2020-12-31 2021-11-30 广东省科学院稀有金属研究所 一种提高稀土-铁合金氮化效率的方法
CN113151774B (zh) * 2021-03-10 2022-05-24 南京理工大学 一种具有双梯度的竹节式纳米结构金属材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935812A (zh) * 2010-09-20 2011-01-05 安泰科技股份有限公司 一种高饱和磁感应强度的铁基非晶软磁合金及其制备方法
CN102816991A (zh) * 2012-08-09 2012-12-12 河北工程大学 一种铁基稀土永磁粉体的低温氮化制备方法
CN104028746A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料的绝缘包覆处理方法
WO2015179593A1 (en) * 2014-05-21 2015-11-26 The Trustees Of The Unversity Of Pennsylvania Non-volatile resistance switching devices
CN105420642A (zh) * 2015-11-25 2016-03-23 北京科技大学 一种氮氧合金化的钛基非晶合金及其制备方法
CN105895291A (zh) * 2016-06-26 2016-08-24 彭晓领 一种软磁复合材料及其制备方法
CN105986202A (zh) * 2015-02-13 2016-10-05 有研稀土新材料股份有限公司 铁基非晶材料及其制备方法
CN207811849U (zh) * 2018-01-31 2018-09-04 沈阳新橡树磁性材料有限公司 一种稀土氮化物合金分区晶化及渗氮一体式装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935812A (zh) * 2010-09-20 2011-01-05 安泰科技股份有限公司 一种高饱和磁感应强度的铁基非晶软磁合金及其制备方法
CN102816991A (zh) * 2012-08-09 2012-12-12 河北工程大学 一种铁基稀土永磁粉体的低温氮化制备方法
WO2015179593A1 (en) * 2014-05-21 2015-11-26 The Trustees Of The Unversity Of Pennsylvania Non-volatile resistance switching devices
CN104028746A (zh) * 2014-05-28 2014-09-10 浙江大学 一种软磁复合材料的绝缘包覆处理方法
CN105986202A (zh) * 2015-02-13 2016-10-05 有研稀土新材料股份有限公司 铁基非晶材料及其制备方法
CN105420642A (zh) * 2015-11-25 2016-03-23 北京科技大学 一种氮氧合金化的钛基非晶合金及其制备方法
CN105895291A (zh) * 2016-06-26 2016-08-24 彭晓领 一种软磁复合材料及其制备方法
CN207811849U (zh) * 2018-01-31 2018-09-04 沈阳新橡树磁性材料有限公司 一种稀土氮化物合金分区晶化及渗氮一体式装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microstructural study of nanocrystalline Fe-(Cu-Nb)-Si-B ribbons obtained by a nitriding thermochemical treatment;S. Grognet等;《Journal of Magnetism and Magnetic Materials》;20000229;第210卷(第1-3期);第167-180页 *

Also Published As

Publication number Publication date
CN109440058A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN109440058B (zh) 一种含氮铁基非晶纳米晶软磁合金及其制备方法
US10072356B2 (en) Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
JP2020010039A (ja) 窒化鉄永久磁石および窒化鉄永久磁石の形成技術
CN106119739B (zh) 铁基非晶纳米晶软磁合金及其制备方法
CN110387500B (zh) 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN104823249A (zh) 稀土永磁粉、包括其的粘结磁体及应用该粘结磁体的器件
Wu et al. Evolution from amorphous to nanocrystalline and corresponding magnetic properties of Fe-Si-B-Cu-Nb alloys by melt spinning and spark plasma sintering
JP2012246174A (ja) 窒化鉄材の製造方法及び窒化鉄材
CN109440023A (zh) 一种高磁感氮耦合铁基非晶纳米晶合金及其制备方法
CN109234628A (zh) 一种低损耗纳米晶软磁合金的制备方法
JP2001176715A (ja) 高飽和磁化Fe−N系磁性体
CN109930080A (zh) 一种无铜纳米晶软磁合金及其制备方法
WO2020118599A1 (zh) 一种利用液氮高速球磨制备γ'-Fe4N软磁材料的方法
Rehman et al. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets
CN106834930A (zh) 具有高磁感应强度高杂质兼容性的铁基纳米晶合金及利用工业原料制备该合金的方法
WO2008026439A1 (fr) Film mince magnetique
JP2024506431A (ja) 高磁気誘導高周波ナノ結晶軟磁性合金及びその製造方法
US12018386B2 (en) Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CN117637282A (zh) 一种耐腐蚀的铁基纳米晶软磁合金及其制备方法
JP2016134498A (ja) 磁性材料の製造方法
CN113628823B (zh) 高耐蚀性的铁基纳米晶软磁合金及制备方法
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
TWI400698B (zh) 合金的序化方法及其垂直記錄媒體的製作方法
US11858820B2 (en) Mn4C manganese carbide magnetic substance and manufacturing method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190308

Assignee: Ningbo Jingfei New Material Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2022330000372

Denomination of invention: A kind of nitrogen-containing iron-based amorphous nanocrystalline soft magnetic alloy and preparation method thereof

Granted publication date: 20200811

License type: Common License

Record date: 20220804

Application publication date: 20190308

Assignee: Ningbo magnetic materials Application Technology Innovation Center Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2022330000376

Denomination of invention: A kind of nitrogen-containing iron-based amorphous nanocrystalline soft magnetic alloy and preparation method thereof

Granted publication date: 20200811

License type: Common License

Record date: 20220805

Application publication date: 20190308

Assignee: NINGBO ZHONGKE B PLUS NEW MATERIALS TECHNOLOGY Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2022330000374

Denomination of invention: A kind of nitrogen-containing iron-based amorphous nanocrystalline soft magnetic alloy and preparation method thereof

Granted publication date: 20200811

License type: Common License

Record date: 20220805

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190308

Assignee: NINGBO TAIFENGYUAN ELECTRIC Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2022980024090

Denomination of invention: A Fe based amorphous nanocrystalline soft magnetic alloy containing nitrogen and its preparation method

Granted publication date: 20200811

License type: Common License

Record date: 20221130

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190308

Assignee: NINGBO ZHAOBAO MAGNET Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2023980030244

Denomination of invention: A nitrogen-containing Fe-based amorphous nanocrystalline soft magnetic alloy and its preparation method

Granted publication date: 20200811

License type: Common License

Record date: 20230109

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190308

Assignee: Ningbo Senpu Magnetic Industry Co.,Ltd.

Assignor: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2023980041753

Denomination of invention: A nitrogen-containing iron-based amorphous nanocrystalline soft magnetic alloy and its preparation method

Granted publication date: 20200811

License type: Common License

Record date: 20230915