CN114538915B - 一种co2稳定的双相混合导体透氧膜及其制备方法与应用 - Google Patents

一种co2稳定的双相混合导体透氧膜及其制备方法与应用 Download PDF

Info

Publication number
CN114538915B
CN114538915B CN202210108964.2A CN202210108964A CN114538915B CN 114538915 B CN114538915 B CN 114538915B CN 202210108964 A CN202210108964 A CN 202210108964A CN 114538915 B CN114538915 B CN 114538915B
Authority
CN
China
Prior art keywords
membrane
mixed conductor
oxygen
permeable membrane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210108964.2A
Other languages
English (en)
Other versions
CN114538915A (zh
Inventor
薛健
朱恒成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210108964.2A priority Critical patent/CN114538915B/zh
Publication of CN114538915A publication Critical patent/CN114538915A/zh
Application granted granted Critical
Publication of CN114538915B publication Critical patent/CN114538915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种CO2稳定的双相混合导体透氧膜及其制备方法与应用。其化学通式为x Ce0.9La0.1O2‑δ‑y La2CuO4+δ,其中δ代表氧原子得失的数目,为非化学计量,0≤δ≤1,0<x<1,0<y<1。本发明的透氧膜材料采用溶胶‑凝胶一锅法制备。本发明通过引入高氧离子导电性的萤石型氧化物作为氧离子传导相,构建两相从而提升材料的透氧性能。本发明选用的双相膜材料不含碱土金属元素,且所得的两相未发现有相反应,其在CO2气氛下也具有较好的稳定性,可用于从空气中分离提纯氧气,也可以与涉氧反应耦合构建膜反应器,用于甲烷氧化偶联制乙烯以及水裂解制氢等反应。

Description

一种CO2稳定的双相混合导体透氧膜及其制备方法与应用
技术领域
本发明属于混合导体膜材料技术领域,具体涉及一种CO2稳定的双相混合导体透氧膜及其制备方法与应用。
背景技术
混合导体透氧膜是一种既有氧离子导电性又有电子导电性的材料,在无外加电场的条件下,它也能同时传导氧离子和电子。理论上,混合导体透氧膜对氧气的分离选择性能达到100%,并且是一种经济且操作简便的方法。与目前的深冷分离技术相比,基于混合导体透氧膜的氧气分离过程能降低约60%的能耗并且节约35%左右的生产成本,除了用于氧气分离之外,混合导体透氧膜还能通过与反应耦合构建膜反应器,用于甲烷氧化偶联制乙烯以及水裂解制氢等反应,其在固体氧化物燃料电池方面也有着广泛的应用前景。
透氧膜材料主要有三种类型:钙钛矿型氧化物、K2NiF4型氧化物和萤石型氧化物。钙钛矿型氧化物是一种透氧量相对较高的材料,但其大多含有碱土金属元素,在CO2气氛中易生成碳酸盐,导致其结构不稳定,因此限制了其工业化应用。K2NiF4型氧化物的结构不对称,存在各向异性限制了其氧离子的迁移,导致其透氧量不高,但其结构相对稳定,受到了人们的广泛关注。萤石型氧化物是一种氧离子电导率较高的材料,但其电子电导率不高,通常需要电场驱动力的作用或构建双相膜材料来提升材料的透氧性能。(Zhu X,Yang W:Chapter 12-Critical Factors Affecting Oxygen Permeation Through Dual-phaseMembranes,Oyama S T,Stagg-Williams S M,editor,Membrane Science andTechnology:Elsevier,2011:275-293.)
据美国能源部的数据显示,在未来的一二十年里,碳氢化合物对于世界能源供应的占比仍将大于60%,而碳氢化合物的燃烧产物是CO2。La2CuO4是一种不含碱土金属元素的铜基材料,在CO2气氛中具有较好的相结构稳定性,将其构筑催化膜反应器有一定的应用潜力,但单相的La2CuO4透氧量不高,其应用受到了限制。
发明内容
为了解决现有技术的缺点与不足之处,本发明通过在La2CuO4中引入氧离子导电相构建双相混合导体透氧膜来提升其透氧性能,以满足实际应用的需要。本发明的目的是提供一种在CO2气氛中稳定的双相混合导体透氧膜及其制备方法与应用。
本发明的目的通过以下技术方案来实现。
一种CO2稳定的双相混合导体透氧膜,其化学通式为:x Ce0.9La0.1O2-δ-y La2CuO4+δ,其中δ代表氧原子得失的数目,为非化学计量,0≤δ≤1,0<x<1,0<y<1,x+y=1。
以上所述的一种CO2稳定的双相混合导体透氧膜材料,其制备方法为溶胶-凝胶一锅法,具体包括以下步骤:
(1)按照化学计量比依次称取x Ce0.9La0.1O2-δ-y La2CuO4+δ中金属对应的硝酸盐分别用去离子水溶解在烧杯中,然后将其混合得到金属盐混合溶液;
(2)选用乙二胺四乙酸和无水柠檬酸作为络合剂,并将乙二胺四乙酸、无水柠檬酸加入到步骤(1)所得的金属盐混合溶液中,与之进行络合配位;
(3)将步骤(2)所得的溶液混合后置于磁力搅拌器不断搅拌,并加入碱性非金属化合物调节pH值为7~9;
(4)调节步骤(3)所得的混合溶液的温度到一定范围,使在搅拌的过程中水逐渐蒸发,形成凝胶;
(5)将步骤(4)所得的凝胶转移至蒸发皿中,置于电炉上以一定的温度焙烧,形成前驱体粉体;
(6)在步骤(5)所得的前驱体粉体冷却后,将其转移至刚玉坩埚中,随后置于高温马弗炉中以一定的温度焙烧,形成成相粉体;
(7)将步骤(6)所得的成相粉体进行研磨,研磨后称取一定量的粉体置于不锈钢模具中,施加一定的压力进行预压成型,随后再将其置于微型等静压机内以一定的压力保压一段时间,得到膜片生胚;
(8)将步骤(7)所得的膜片生胚转移到刚玉板上,随后置于高温马弗炉中以一定的温度烧结致密,打磨清洗后即可得到所述的双相混合导体透氧膜材料。
优选的,步骤(2)所述金属盐混合溶液中的金属离子总量、乙二胺四乙酸、无水柠檬酸三者的摩尔比为金属离子总量:乙二胺四乙酸:无水柠檬酸=1:(1~1.5):(1~2.5)
进一步优选的,步骤(2)所述金属盐混合溶液中的金属离子总量、乙二胺四乙酸、无水柠檬酸三者的摩尔比为金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5
优选的,步骤(3)所述碱性非金属化合物为氨水。
优选的,步骤(4)所述温度为60~95℃。
优选的,步骤(4)所述搅拌的时间为2~10h。
优选的,步骤(5)所述焙烧的温度为200~450℃。
优选的,步骤(5)所述焙烧的时间为1~3h。
优选的,步骤(6)所述焙烧的温度为800℃,升温速率和降温速率为2℃/min。
优选的,步骤(6)所述焙烧的时间为8~10h。
优选的,步骤(7)所述一定量的粉体的质量为0.5~1.5g。
优选的,步骤(7)所述预压成型的压力为1~3Mpa,预压成型的时间为0~1min。
优选的,步骤(7)所述保压的压力为6~10Mpa,保压时间为5~15min。
优选的,步骤(8)所述烧结的温度为1030℃,升温速率和降温速率为2℃/min。
优选的,步骤(8)所述烧结的时间为8~10h。
进一步地,步骤(8)中,将烧结致密后的膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
以上所述的一种CO2稳定的双相混合导体透氧膜可用于氧气的分离提纯和分离-反应耦合构建膜反应器,用于甲烷氧化偶联制乙烯以及水裂解制氢等反应。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明成功地将一种氧离子导体与K2NiF4型透氧膜材料结合制备了双相混合导体透氧膜,两相未发现有相反应,并且两相分布均匀,致密性较好。
(2)本发明制备的双相混合导体透氧膜不含碱土金属元素,所以其在CO2气氛下也具有较好的稳定性。
(3)通过引入高氧离子导电性的萤石型氧化物作为氧离子传导相,构建两相从而提升材料的透氧性能。本发明制备的双相膜透氧量可达到0.25mL·min-1·cm-2,是单相膜La2CuO4的2.49倍。
(4)本发明采用溶胶-凝胶一锅法制备双相混合导体透氧膜。该方法制备流程简单,且制备时间短,满足工业化生产需要。
附图说明
图1为实施例1~3制得的双相混合导体透氧膜60%Ce0.9La0.1O2-δ-40%La2CuO4+δ、50%Ce0.9La0.1O2-δ-50%La2CuO4+δ、40%Ce0.9La0.1O2-δ-60%La2CuO4+δ粉末的X射线衍射谱图;
图2为实施例1制得的双相混合导体透氧膜60%Ce0.9La0.1O2-δ-40%La2CuO4+δ粉末在CO2气氛中的原位X射线衍射谱图;
图3为实施例1~3制得的双相混合导体透氧膜60%Ce0.9La0.1O2-δ-40%La2CuO4+δ、50%Ce0.9La0.1O2-δ-50%La2CuO4+δ、40%Ce0.9La0.1O2-δ-60%La2CuO4+δ的扫描电子显微镜图;
图4为实施例1~3制得的双相混合导体透氧膜60%Ce0.9La0.1O2-δ-40%La2CuO4+δ、50%Ce0.9La0.1O2-δ-50%La2CuO4+δ、40%Ce0.9La0.1O2-δ-60%La2CuO4+δ的透氧温度曲线图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种CO2稳定的双相混合导体透氧膜60%Ce0.9La0.1O2-δ-40%La2CuO4+δ(记为60CLO-40LCO)的制备方法,具体包括以下步骤:
(1)称取26.0672gLa(NO3)3·6H2O、16.4135gCe(NO3)3·6H2O和6.7648g Cu(NO3)2·3H2O,分别溶于装有200mL去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000mL大烧杯中,混合均匀得到金属盐混合溶液。
(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取36.8222g乙二胺四乙酸和36.3107g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且pH值约等于8,随后将其置于95℃水浴锅中恒温加热,同时搅拌约2h,水蒸发后形成凝胶。
(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在200℃预烧约3h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧8h,得到成相粉体。对该粉体研磨后进行X射线衍射分析,结果如图1所示,将得到的X射线衍射谱图与标准PDF卡片进行对比,确保得到的是纯相的双相膜粉体。此外,对其进行CO2气氛的原位X射线衍射表征,结果如图2所示,其温度变化过程为从30℃升温至900℃,然后从900℃降温至30℃,谱图结果峰形基本保持不变,表明其在CO2气氛中相结构是稳定的。
(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加1Mpa的压力保压1min进行初步预压成型,随后转移至微型等静压机中施加6Mpa的压力并保压15min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧8h,得到致密的膜片。利用HITACHI SU8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(a)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
(6)将膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150mL/min的空气,吹扫侧通入30mL/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890A气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于La2CuO4+δ(LCO)单相膜,本实施例制备的双相膜透氧量最高可提升2.49倍。
实施例2
一种CO2稳定的双相混合导体透氧膜50%Ce0.9La0.1O2-δ-50%La2CuO4+δ(记为50CLO-50LCO)的制备方法,具体包括以下步骤:
(1)称取22.7330gLa(NO3)3·6H2O、9.7700gCe(NO3)3·6H2O和6.0400g Cu(NO3)2·3H2O,分别溶于装有200mL去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000mL大烧杯中,混合均匀得到金属盐混合溶液。
(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取29.2240g乙二胺四乙酸和28.8180g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且pH值约等于8,随后将其置于60℃水浴锅中恒温加热,同时搅拌约10h,水蒸发后形成凝胶。
(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在450℃预烧约1h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧10h,得到成相粉体。对该粉体研磨后进行X射线衍射分析,结果如图1所示,将得到的X射线衍射谱图与标准PDF卡片进行对比,确保得到的是纯相的双相膜粉体。
(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加3Mpa的压力保压0min进行初步预压成型,随后转移至微型等静压机中施加10Mpa的压力并保压5min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧10h,得到致密的膜片。利用HITACHISU8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(b)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
(6)将膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150mL/min的空气,吹扫侧通入30mL/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890A气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于La2CuO4+δ(LCO)单相膜,本实施例制备的双相膜透氧量最高可提升1.38倍。
实施例3
一种CO2稳定的双相混合导体透氧膜40%Ce0.9La0.1O2-δ-60%La2CuO4+δ(记为40CLO-60LCO)的制备方法,具体包括以下步骤:
(1)称取26.8466gLa(NO3)3·6H2O、7.8160gCe(NO3)3·6H2O和7.2480g Cu(NO3)2·3H2O,分别溶于装有200mL去离子水的烧杯中,得到三种金属盐溶液,然后将这三种金属盐溶液倒入2000mL大烧杯中,混合均匀得到金属盐混合溶液。
(2)按金属离子总量:乙二胺四乙酸:无水柠檬酸=1:1:1.5的摩尔比称取32.1464g乙二胺四乙酸和31.6998g无水柠檬酸,加入到上述金属盐混合溶液中,在不断搅拌的条件下滴加质量分数浓度为25%的氨水,直至溶液澄清且pH值约等于8,随后将其置于80℃水浴锅中恒温加热,同时搅拌约5h,水蒸发后形成凝胶。
(3)将凝胶转移至蒸发皿中,随后置于电炉上加热,在300℃预烧约2h,直至其变得蓬松,并且无剧烈的燃烧现象后停止加热,得到前驱体粉体。
(4)待前驱体粉体冷却后,将其转移至刚玉坩埚中,随后放入高温马弗炉中以2℃/min的升降温速率在800℃恒温焙烧10h,得到成相粉体。对该粉体研磨后进行X射线衍射分析,结果如图1所示,将得到的X射线衍射谱图与标准PDF卡片进行对比,确保得到的是纯相的双相膜粉体。
(5)称取0.9g研磨后的双相膜粉体,将其加入到内径为16mm的不锈钢模具中,施加3Mpa的压力保压0min进行初步预压成型,随后转移至微型等静压机中施加7Mpa的压力并保压10min得到膜片生胚。将膜片生胚置于表面铺有成相粉体的刚玉板上,随后放入高温马弗炉中以2℃/min的升降温速率在1030℃恒温焙烧10h,得到致密的膜片。利用HITACHISU8200型扫描电镜对膜片的表面形貌进行表征,结果如图3中的(c)所示,可以看到,各晶粒之间堆积紧密,无气泡或通孔,表明制备的膜片致密性较好。
(6)将膜片先后用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的0.5mm目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
(7)将膜片用高温陶瓷胶密封在内径为16mm的测试模具上,经过24h的固化后,进行装置和膜片的气密性检验,检验无误后安装到立式管式炉上升温至测试所需温度。经皂泡流量计校准后,在进料侧通入150mL/min的空气,吹扫侧通入30mL/min的氦气,经过约60h的活化过程,将尾气通入安捷伦7890A气相色谱仪检测气体组分,待透氧量稳定后进行透氧温度曲线测试,观察该双相混合导体透氧膜从空气中进行氧气的分离提纯的效果,结果如图4所示,相比于La2CuO4+δ(LCO)单相膜,本实施例制备的双相膜透氧量最高可提升2.11倍。
双相混合导体透氧膜在分离-反应耦合构建膜反应器中的应用:在制备得到的双相膜的供水侧表面涂覆Pt/SDC等水裂解催化剂,在双相膜的另一侧涂覆催化CH4等还原性气体氧化的Sr2Fe1.5Mo0.5等催化剂。反应主要有三个过程:供水侧膜表面的水裂解反应,氧在膜体相的扩散过程,以及膜的另一侧还原性气体被氧化的过程。传统的水裂解反应在1600℃时产生的氢气浓度仅有0.1%,而通过混合导体膜反应器耦合水裂解反应,可以打破热力学平衡的限制,在1600℃有望将水分解产生的氢气浓度提升至11%及以上。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种CO2稳定的双相混合导体透氧膜,其特征在于,其化学通式为:x Ce0.9La0.1O2-δ -y La2CuO4+δ,其中δ代表氧原子得失的数目,为非化学计量,0≤δ≤1,0.4≤x≤0.6,0.4≤y≤0.6,x+y=1。
2.一种权利要求1所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,该方法为溶胶-凝胶一锅法,具体包括以下步骤:
(1)按照化学计量比依次称取x Ce0.9La0.1O2-δ - y La2CuO4+δ中金属对应的硝酸盐分别用去离子水溶解在烧杯中,然后将其混合得到金属盐混合溶液;
(2)选用乙二胺四乙酸和无水柠檬酸作为络合剂,并将乙二胺四乙酸、无水柠檬酸加入到步骤(1)所得的金属盐混合溶液中,与之进行络合配位;
(3)将步骤(2)所得的溶液混合后置于磁力搅拌器不断搅拌,并加入碱性非金属化合物调节pH值为7~9;
(4)调节步骤(3)所得的混合溶液的温度,使在搅拌的过程中水逐渐蒸发,形成凝胶;
(5)将步骤(4)所得的凝胶转移至蒸发皿中,置于电炉上焙烧,形成前驱体粉体;
(6)在步骤(5)所得的前驱体粉体冷却后,将其转移至刚玉坩埚中,随后置于高温马弗炉中焙烧,形成成相粉体;
(7)将步骤(6)所得的成相粉体进行研磨,研磨后称取0.5~1.5 g粉体置于不锈钢模具中,施加1~3 Mpa的压力进行预压成型,时间为0~1 min,随后再将其置于微型等静压机内以6~10 Mpa的压力保压5~15 min,得到膜片生胚;
(8)将步骤(7)所得的膜片生胚转移到刚玉板上,随后置于高温马弗炉中烧结致密,打磨清洗后即可得到所述双相混合导体透氧膜材料;
步骤(2)所述金属盐混合溶液中的金属离子总量、乙二胺四乙酸、无水柠檬酸三者的摩尔比为金属离子总量:乙二胺四乙酸:无水柠檬酸=1:(1~1.5):(1~2.5);
步骤(5)所述焙烧的温度为200~450℃;焙烧的时间为1~3 h。
3.根据权利要求2所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,步骤(3)所述碱性非金属化合物为氨水。
4.根据权利要求2所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,步骤(4)所述温度为60~95℃;所述搅拌的时间为2~10 h。
5.根据权利要求2所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,步骤(6)所述焙烧的温度为800℃,升温速率和降温速率均为2℃/min,焙烧的时间为8~10 h。
6.根据权利要求2所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,步骤(8)所述烧结的温度为1030℃,升温速率和降温速率均为2℃/min;烧结的时间为8~10 h。
7.根据权利要求2所述的CO2稳定的双相混合导体透氧膜的制备方法,其特征在于,步骤(8)中,将烧结致密后的膜片依次用200目、400目、800目、1200目和2000目的碳化硅砂纸进行打磨,在打磨的过程中用游标卡尺测量膜片的厚度,以确保达到测试所需的目标厚度,随后用无水乙醇将打磨后的膜片进行超声清洗,即可得到用于测试的双相混合导体透氧膜。
8.权利要求1所述的一种CO2稳定的双相混合导体透氧膜的应用,其特征在于,用于氧气的分离提纯和分离-反应耦合构建膜反应器,或者用于甲烷氧化偶联制乙烯以及水裂解制氢。
CN202210108964.2A 2022-01-28 2022-01-28 一种co2稳定的双相混合导体透氧膜及其制备方法与应用 Active CN114538915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210108964.2A CN114538915B (zh) 2022-01-28 2022-01-28 一种co2稳定的双相混合导体透氧膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210108964.2A CN114538915B (zh) 2022-01-28 2022-01-28 一种co2稳定的双相混合导体透氧膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114538915A CN114538915A (zh) 2022-05-27
CN114538915B true CN114538915B (zh) 2023-10-24

Family

ID=81673119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210108964.2A Active CN114538915B (zh) 2022-01-28 2022-01-28 一种co2稳定的双相混合导体透氧膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114538915B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234291A (zh) * 1998-05-05 1999-11-10 南京化工大学 镍氟酸钾型无机致密透氧膜材料
JP2017020815A (ja) * 2015-07-07 2017-01-26 国立大学法人九州工業大学 ガスセンサ用材料及びその製造方法、並びにこれを用いたガスセンサの製造方法
CN108530108A (zh) * 2018-04-04 2018-09-14 南京工业大学 一种陶瓷氧渗透膜复合结构及制备方法
CN113121231A (zh) * 2021-03-25 2021-07-16 中山大学 一种具有良好稳定性的含铝双相混合导体透氧膜材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184324A1 (en) * 2006-01-26 2007-08-09 The Government Of The Us, As Represented By The Secretary Of The Navy Solid oxide fuel cell cathode comprising lanthanum nickelate
US20180363150A1 (en) * 2017-06-20 2018-12-20 Low Emission Resources Corporation Electrochemical Production of Water Using Mixed Ionically and Electronically Conductive Membranes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234291A (zh) * 1998-05-05 1999-11-10 南京化工大学 镍氟酸钾型无机致密透氧膜材料
JP2017020815A (ja) * 2015-07-07 2017-01-26 国立大学法人九州工業大学 ガスセンサ用材料及びその製造方法、並びにこれを用いたガスセンサの製造方法
CN108530108A (zh) * 2018-04-04 2018-09-14 南京工业大学 一种陶瓷氧渗透膜复合结构及制备方法
CN113121231A (zh) * 2021-03-25 2021-07-16 中山大学 一种具有良好稳定性的含铝双相混合导体透氧膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Composite cathode for IT-SOFC: Sr-doped lanthanum cuprate and Gd-doped ceria";Seung Jun Lee et al.;《Electrochemistry Communications》;20100402;第12卷;第808–811页 *

Also Published As

Publication number Publication date
CN114538915A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US9527044B2 (en) Proton conducting membranes for hydrogen production and separation
Luo et al. Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas
JP5126535B2 (ja) 複合体型混合導電体
CN106925136B (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
CN101733048B (zh) 用于气相氧化反应的中空纤维膜反应器及其制备和应用
CN105845945B (zh) 一种中低温质子导体固体氧化物电池用复合电极及制备
Yang et al. New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation
CN101479021A (zh) 氧气分离膜
JP2005336022A (ja) プロトン伝導性セラミックス
CN106943888B (zh) 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用
CN109734438B (zh) 一种不含钴和铁的钛基钙钛矿型陶瓷透氧膜及其制备方法和应用
CN112457012B (zh) 热化学分解水制氢用萤石-钙钛矿型双相混合导体膜材料及其制备方法
CN114538915B (zh) 一种co2稳定的双相混合导体透氧膜及其制备方法与应用
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN113233518B (zh) 一种具有多碳燃料催化制氢功能的固体氧化物燃料电池阳极催化材料及其制备方法
CN101596414A (zh) 一种含钽钙钛矿混合导体透氧膜及其制法和应用
CN102603298B (zh) 一种高透氧率双相致密透氧材料的制备方法
JP4330151B2 (ja) プロトン−電子混合伝導性セラミックス
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
JP2009101310A (ja) 酸素分離膜、及びその製造方法
JP2009195865A (ja) 酸素分離材及びその製造方法
CN110092664B (zh) 一种自分相混合导体三相膜材料及其制备方法与应用
JPH07267748A (ja) 多孔質焼結体及びその製造方法
CN112694329B (zh) 一种非金属阴离子掺杂的lamox型氧离子导体透氧膜材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant