CN102603298B - 一种高透氧率双相致密透氧材料的制备方法 - Google Patents

一种高透氧率双相致密透氧材料的制备方法 Download PDF

Info

Publication number
CN102603298B
CN102603298B CN2012100760960A CN201210076096A CN102603298B CN 102603298 B CN102603298 B CN 102603298B CN 2012100760960 A CN2012100760960 A CN 2012100760960A CN 201210076096 A CN201210076096 A CN 201210076096A CN 102603298 B CN102603298 B CN 102603298B
Authority
CN
China
Prior art keywords
phase
oxygen
prbaco
mutually
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012100760960A
Other languages
English (en)
Other versions
CN102603298A (zh
Inventor
赵海雷
陈婷
谢志翔
杜志鸿
王捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN2012100760960A priority Critical patent/CN102603298B/zh
Publication of CN102603298A publication Critical patent/CN102603298A/zh
Application granted granted Critical
Publication of CN102603298B publication Critical patent/CN102603298B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种Ce0.8Sm0.2O2- δ–PrBaCo2O5+ δ双相致密透氧膜的制备方法,属致密陶瓷透氧膜领域。本发明方法是通过液相法将电子导电相PrBaCo2O5+ δ包覆于离子导电相Ce0.8Sm0.2O2- δ颗粒表面、并通过高温烧结形成一种高离子导电相含量的双相透氧材料。由于其特殊的包覆结构使得离子相与电子相形成连续贯通的体积比例阀值提高,这将有助于氧渗透性能的改善。该材料具有较高的透氧能力、化学稳定性及机械性能,可以用于空气中的氧分离、膜反应器、富氧燃烧及燃料电池的电极材料。

Description

一种高透氧率双相致密透氧材料的制备方法
技术领域
本发明属致密陶瓷透氧膜材料领域,具体涉及一种高透氧率Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜材料的制备方法。
背景技术
21世纪的今天,随着社会经济的快速发展和人口的急剧增长,资源和能源短缺,生态环境日益恶化,寻找洁净和可再生能源已迫在眉睫。氢能是一种高效清洁易存储的二次能源,燃烧放热量是汽油的3倍,是煤的5倍。混合导体透氧膜由于在高温下具有氧离子导电特性,可以作气体分离膜从含氧气体中分离制取氧气,进而用于甲烷部分氧化制氢。同时混合导体透氧膜在纯氧制备、甲烷氧化偶联制烃、富氧燃烧等过程中也显示了广阔的应用前景。按照材料的相组成不同,混合导体透氧膜可以分为单相混合导体透氧膜和双相混合导体透氧膜。以La1-xSrxCo1-yFeyO3-δ为代表的单相混合导体透氧膜由于氧空位浓度高,因此具有很高的氧渗透率。但由于晶格中的铁和钴易被还原、热膨胀系数较大,因而材料的结构稳定性和机械性能较差,不适于实际生产应用。使用双相混合导体透氧膜能够有效解决上述问题,双相混合导体由电子相和离子相构成,氧离子和电子在不同的材料中进行传导,氧离子相通常采用具有高离子电导率和结构稳定性的固体电解质材料,电子相可以为贵金属材料或陶瓷导电材料。双相材料一般具有高稳定性和较低的热膨胀系数。因此,是一种很有发展潜力的氧分离膜材料。
      优异的双相透氧材料需要满足以下要求:(1) 具有较高的离子和电子电导率;(2) 在还原气氛及高氧浓差梯度下有较好的结构稳定性;(3)两相之间具有良好的化学相容性并且两相的热膨胀系数相匹配。研究进一步表明:在双相混合导体透氧膜中使用金属氧化物作为电子导体不仅可以传导氧渗透过程所必须的电子,同时还可以传导氧离子,进而提高双相混合导体的氧离子渗透率 (X.F. Zhu, W.S. Yang. Composite membrane based on ionic conductor and mixed conductor for oxygen permeation. AIChE J 54 (2008):665-672.)。英国《材料化学杂志》(G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A.Mims. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem 17 (2007) 2500-2505.)报道了双钙钛矿结构的PrBaCo2O5+δ材料与同结构的材料相比具有较快的氧离子扩散 (10-5 cm s-1)及表面交换 (10-3 cm s-1),并且具有很高的电子电导率(900 S cm-1,500℃)。在该类材料中,氧空位局限在LnO层,氧离子只能在二维路径进行传输,因此多晶致密PrBaCo2O5+δ材料中,氧离子传输路径曲折、材料的透氧率低下 (K Zhang, Ge L, Ran R, Shao ZP, Liu SM. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 56 (2008)4876-4889.)。Ce0.8Sm0.2O2-δ是一种常用的固体电解质,具有较高的离子电导率(0.1 S cm-1,900℃),在很宽的氧分压范围内具有良好的结构稳定性。因此将Ce0.8Sm0.2O2-δ和PrBaCo2O5+δ分别作为离子相和电子相可以得到一种透氧率较高的双相混合导体透氧膜。
      对于双相透氧膜材料,其中的电子导电相和离子导电相应能分别形成连续的导电网络(渗流系统),以保证透氧过程的顺利进行。《固态离子》杂志(Z.L. Wu, M.L. Liu, Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors, Solid State Ionics 93 (1996) 65-84.)报道采用电阻网络分析预测能够得出以下结论:晶粒大小相近的双相混合导体中一相所占的体积分数为1/3时为渗透起始点,体积分数在1/3~2/3范围内两相均为连续相。在保证双相形成连通的基础上,降低电子相的比例能够提高双相混合导体材料的氧渗透率。美国《化学工程及工业研究》(J. Kim, Y. S. Lin, Palladium-Modified Yttria-Stabilized Zirconia Membranes, Ind Eng Chem Res 39 (2000) 2124-2126.)报道了一种新型的双相透氧膜,将电子相Pt注入了多孔YSZ离子导体的骨架中,但由于电子相不能形成连通以及膜体本身不能致密,材料的透氧能力较低。《膜科学》杂志(H.H. Wang, W.S. Yang, Y. Cong, X.F. Zhu, Y.S. Lin, Structure and oxygen permeability of a dual-phase membrane, J Membr Sci 224 (2003) 107-115.)报道了根据双相熔点不同,使用固相法得到一种由氧离子相La0.15Sr0.85Ga0.3Fe0.7O3-δ为骨架,电子相Ba0.5Sr0.5Fe0.2Co0.8O3-δ贯穿其中的双相膜,所得材料具有较高的透氧率及优异的结构稳定性,但由于双相均为钙钛矿结构,因此阳离子扩散问题难以避免(A. L. Shaula, V. V. Kharton, F. M. B. Marques, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction, J Solid State Electrochem 10 (2006) 28-40.)。
发明内容
本发明的目的在于,首先通过液相包覆法,在离子导电相颗粒表面形成电子导电相薄膜,经过固相烧结后,电子相形成贯穿材料内部的纤维状连续相,在保证材料电子导电相的连续的同时,实现了离子导电相在材料中所占比例的最大化,大幅度提高了双相材料的透氧率。
本发明的双相混合导体透氧膜,由离子导电相和电子导电相组成,其特征在于离子导电相为萤石型金属氧化物Ce0.8Sm0.2O2-δ,电子导电相为双钙钛矿型金属氧化物PrBaCo2O5+δ,δ为氧缺陷值;烧结前为电子相纳米粉体颗粒包覆在离子相粉体上的双相混合物;烧结致密后所述双相膜为Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ,其中氧离子导体与电子导体的体积比范围为7:3到9:1,双相相互交织、缠绕并各自形成连续导通的通道。该双相混合导体透氧膜表现出优异的透氧能力。
所述Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相混合导体透氧膜材料制备方法的具体步骤如下: 
a、采用固相法或液相法合成Ce0.8Sm0.2O2-δ粉体;
b、以柠檬酸-EDTA(乙二胺四乙酸)络合法得到电子导电相,并借助旋转蒸发仪通过液相包覆法将其包覆在离子导电相表面,即:将Pr2O5用稀硝酸溶解,同时将化学计量比的Ba(NO3)2和Co(NO3)2溶于去离子水,将两溶液混合均匀,以摩尔比为金属离子:柠檬酸:EDTA=1:1:1的比例加入柠檬酸和EDTA,随后将Ce0.8Sm0.2O2-δ粉体超声分散于PrBaCo2O5+δ前躯体溶液中,使用旋转蒸发仪将溶液缓慢蒸发,将凝胶在800~1100℃焙烧4~10小时即得到电子导电相包覆离子导电相的混合物。
c、采用干压法或流延法或注浆法,制备陶瓷膜片。将烘干的膜片,在空气气氛中以每分钟2~5℃升温至1050~1200℃保温6~10小时进行烧结致密,然后再以每分钟2~10℃降至室温。
本发明是采用液相包覆法将电子电导率较高的电子相PrBaCo2O5+δ包覆在离子相Ce0.8Sm0.2O2-δ颗粒表面,两种金属氧化物的化学兼容性好。由于该法制备出的电子相颗粒细小,高温烧结后两相分布均匀且各自形成连续导通的通道,大大减少了电子相的使用量,使得材料的离子相的体积比例增多。同时,由于离子相Ce0.8Sm0.2O2-δ具有三维氧离子传输路径,它的加入使得具有二维氧离子传输路径的混合导体电子相PrBaCo2O5+δ的传输路径变短,提高了膜材料的透氧率。此外,离子相Ce0.8Sm0.2O2-δ作为一种常用电解质,在宽氧分压范围内及苛刻气氛中都具有极好的化学稳定性,PrBaCo2O5+δ材料具有较高的表面交换系数,两相的热膨胀系数相近。因此本发明的双相混合导体透氧膜可以用于从含氧混合气体中选择分离氧气、富氧燃烧、甲烷部分氧化制合成气等过程,还可以用于固体氧化物燃料电池的电极材料。
附图说明
图1为本发明用包覆法制备的体积比为8:2的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的XRD图,合成条件为空气气氛1175℃,保温6小时。
图2为本发明用包覆法制备的体积比为8:2的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的SEM图。
图3为本发明用包覆法制备的体积比为8:2的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜在空气/氦气条件下的透氧率随温度变化的曲线。作为对比,直接固相混合、烧结制备的7:3的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的透氧率性能也列于图中。
具体实施方式
实施例1
用包覆法制备的体积比为8:2的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜。
本实施例中所用的萤石型氧离子导体Ce0.8Sm0.2O2-δ采用表面活性剂调制合成法制备:将CTAB(CH3(CH2)15N+(CH3)3Br)作为有机模板剂溶解在去离子水里,搅拌使其完全溶解形成溶液(0.08 M),随后滴入一定量的氨水。同时按物质的量比例Ce3+:Sm3+=8:2进行配料,溶于去离子水中搅拌均匀(1 mM),随后缓慢滴入CTAB溶液中搅拌2小时得到沉淀。将沉淀在室温下陈化24小时,随后离心洗涤,60℃干燥。所得沉淀分两步烧结:升温至250 ℃保温2 小时,以去除有机物;然后升温至600 ℃保温4小时得到粉体。
本实施例中所用的双钙钛矿结构PrBaCo2O5+δ粉末采用柠檬酸-EDTA络合法制备:将Pr2O5用稀硝酸HNO3(35%)加热至溶解至澄清,同时将化学计量比的Ba(NO3)2和Co(NO3)2用去离子水溶解(1 M),随后将两溶液混合均匀,加入柠檬酸和EDTA,摩尔比为金属离子:柠檬酸:EDTA=1:1:1,随后用氨水调pH值至8,搅拌2小时形成溶胶,随后将Ce0.8Sm0.2O2-δ:PrBaCo2O5+δ体积比为8:2的Ce0.8Sm0.2O2-δ粉体超声分散于PrBaCo2O5+δ溶液中,使用旋转蒸发仪将溶液80℃水浴形成紫色凝胶,850℃下焙烧6小时,随炉冷却即可得到电子导电相包覆离子导电相的混合物。
将所得混合物在研钵中研磨至均匀,加入(粘结剂)聚乙烯醇,然后在不锈钢模具中以单轴加压135 MPa干压成圆片(直径17 mm),随后在1175℃下烧结6小时。
通过XRD检测Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的相组成,如图1中所示。可以看出双相膜中只有萤石结构的Ce0.8Sm0.2O2-δ和双钙钛矿结构的PrBaCo2O5+δ的衍射峰,不含其他杂质峰,表明两相之间具有良好的化学相容性。1175℃烧结后所得双相膜表面的SEM照片(图2)可以清楚的看到双相均形成连续,其中少量的长纤维状电子导电相贯穿在离子相中,为离子相所占比例最大化、提高材料透氧率提供了基础。
采用四端引线法在空气气氛下,200~900℃温度范围内测定Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的电导率。电导率随温度升高而增大,实验测得的电导率在900℃下达到5.89 S cm-1,表明双相尤其是所占比例低的电子导电相是连续导通的,因为通常Ce0.8Sm0.2O2-δ和PrBaCo2O5+δ的离子电导率要比PrBaCo2O5+δ电子电导率低几个数量级,电子相不连续导通将导致样品的电导率非常低。材料的透氧率通过高温透氧测试系统测试得到。在膜体贫氧端和富氧端分别吹入高纯氦气与合成空气,流速分别为65.8和150 ml min-1的条件下,实验测得体积比为8:2的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相膜的透氧率,在940℃下达到3.81×10-7 mol cm-2 s-1,远高于直接固相混合的双相透氧膜材料。
实施例2
本实施例与上述实施例1的制备方法与制备条件相同,其区别在于采用液相包覆法制备体积比为7:3的Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜。按照Ce0.8Sm0.2O2-δ:PrBaCo2O5+δ体积比为7:3配制,将Ce0.8Sm0.2O2-δ粉体超声分散在实施例1中所述PrBaCo2O5+δ前躯体溶液中。
采用四端引线法在空气气氛下,200~900℃温度范围内测定Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的电导率。实验测得的电导率在900℃下达到6.67 S cm-1。材料的透氧率通过高温透氧测试系统测试得到。膜体贫氧端和富氧端分别吹入高纯氦气与合成空气,流速分别为65.8和150 ml min-1。通过色谱仪分析透过氦气侧的氧气含量,实验测得的透氧率在940℃下达到2.42×10-7 mol cm-2 s-1
实施例3
采用固相法制备颗粒度为10 mm左右的Ce0.8Sm0.2O2-δ离子导电相粉体,按照Ce0.8Sm0.2O2-δ:PrBaCo2O5+δ体积比为8:2配制,将Ce0.8Sm0.2O2-δ超声分散在实施例1中所述PrBaCo2O5+δ前躯体溶液中。使用旋转蒸发仪在回流的条件下90℃干燥、形成凝胶,950℃下焙烧8小时,随炉冷却即可得到电子导电相包覆离子导电相的混合物。
将所得混合物在研钵中研磨至均匀,加入(粘结剂)聚乙烯醇,然后在不锈钢模具中以单轴加压110 MPa干压成圆片,随后在1193 ℃下烧结10小时。
采用四端引线法在空气气氛下,温度为200~900℃测定Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ双相致密透氧膜的电导率。实验测得的电导率在900℃下达到4.25 S cm-1。材料的透氧率通过高温透氧测试系统测试得到。膜体贫氧端和富氧端分别吹入高纯氦气与合成空气,流速分别为65.8和150 ml min-1。通过色谱仪分析透过氦气侧的氧气含量,测试温度为825~950℃,膜体贫氧端和富氧端的氦气与空气流速分别为65.8和150 ml min-1。实验测得的透氧率在940℃下达到3.22×10-7 mol cm-2 s-1

Claims (2)

1. 一种高透氧率双相致密导体膜材料的制备方法,其特征在于,其特征在于离子导电相为萤石型金属氧化物Ce0.8Sm0.2O2-δ,电子导电相为双钙钛矿型金属氧化物PrBaCo2O5+δ,δ为氧缺陷值;烧结前为电子相纳米粉体颗粒包覆在离子相粉体上的双相混合物;烧结致密后所述双相膜为Ce0.8Sm0.2O2-δ–PrBaCo2O5+δ,其中氧离子导体与电子导体的体积比范围为7:3到9:1,双相相互交织、缠绕并各自形成连续导通的通道;该双相混合导体透氧膜表现出优异的透氧能力;制备步骤为:
a、采用固相法或液相法合成离子导电相Ce0.8Sm0.2O2-δ粉体;
b、以柠檬酸-硝酸盐法制备电子导电相、并通过液相包覆法得到电子导电相包覆在离子导电相颗粒表面的复合粉体;即:将Pr2O5用稀硝酸溶解,同时将化学计量比的Ba(NO3)2和Co(NO3)2溶于去离子水,将两溶液混合均匀,以摩尔比为金属离子:柠檬酸:EDTA=1:1:1的比例加入柠檬酸和EDTA,随后将Ce0.8Sm0.2O2-δ粉体超声分散于PrBaCo2O5+δ前躯体溶液中,使用旋转蒸发仪将溶液缓慢蒸发,将凝胶在800~1100℃焙烧4~10小时即得到电子导电相包覆离子导电相的混合物;
c、采用干压法或流延法或注浆法制备双相陶瓷膜片,在空气气氛中以每分钟2~5℃升温至1050~1200℃保温6~10小时进行烧结致密,然后再以每分钟2~10℃降至室温得到双相致密膜材料。
2.根据权利要求1所述的高透氧率双相致密导体膜材料的制备方法,其特征在于:
所述步骤b中,PrBaCo2O5+δ包覆Ce0.8Sm0.2O2-δ粉末颗粒的焙烧温度为850℃,保温时间为6小时;
所述步骤c中,烧结温度为1175℃,烧结时间为6小时。
CN2012100760960A 2012-03-21 2012-03-21 一种高透氧率双相致密透氧材料的制备方法 Expired - Fee Related CN102603298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100760960A CN102603298B (zh) 2012-03-21 2012-03-21 一种高透氧率双相致密透氧材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100760960A CN102603298B (zh) 2012-03-21 2012-03-21 一种高透氧率双相致密透氧材料的制备方法

Publications (2)

Publication Number Publication Date
CN102603298A CN102603298A (zh) 2012-07-25
CN102603298B true CN102603298B (zh) 2013-09-11

Family

ID=46521157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100760960A Expired - Fee Related CN102603298B (zh) 2012-03-21 2012-03-21 一种高透氧率双相致密透氧材料的制备方法

Country Status (1)

Country Link
CN (1) CN102603298B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601496B (zh) * 2013-11-18 2016-02-17 上海大学 一种双相混合导体透氧膜材料及其制备方法
CN103613410B (zh) * 2013-11-20 2015-10-07 上海大学 透氧膜表面涂敷改性材料及制备复合透氧膜片的方法
CN111389242B (zh) * 2020-03-19 2022-08-05 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
CN114311225B (zh) * 2022-01-18 2023-11-03 重庆兀盾纳米科技有限公司 碟式陶瓷膜及其高压注浆成型方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597162B (zh) * 2009-07-03 2011-11-16 北京工业大学 一种Gd掺杂CeO2过渡层薄膜及其制备方法
CN102070335B (zh) * 2009-11-25 2013-09-18 中国科学院上海硅酸盐研究所 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
CN102173801B (zh) * 2011-01-20 2012-10-31 北京工业大学 一种Ta掺杂的CeO2过渡层薄膜及其制备方法

Also Published As

Publication number Publication date
CN102603298A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
Zhu et al. Synthesis and hydrogen permeation of Ni–Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ metal–ceramic asymmetric membranes
Dong et al. CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes
Tan et al. Preparation and characterization of BaCe0. 95Tb0. 05O3− α hollow fibre membranes for hydrogen permeation
Cheng et al. Hydrogen production by catalytic partial oxidation of coke oven gas in BaCo0. 7Fe0. 2Nb0. 1O3− δ membranes with surface modification
Cheng et al. High-performance microchanneled asymmetric Gd0. 1Ce0. 9O1. 95− δ–La0. 6Sr0. 4FeO3− δ-based membranes for oxygen separation
CN114349508B (zh) 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
CN102603298B (zh) 一种高透氧率双相致密透氧材料的制备方法
CN106925136A (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
Gao et al. Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0. 5Sr0. 5Co0. 5Fe0. 5O3− δ membranes
Tan et al. Insights on perovskite-type proton conductive membranes for hydrogen permeation
Zhang et al. Oxygen permeation behavior through Ce 0.9 Gd 0.1 O 2− δ membranes electronically short-circuited by dual-phase Ce 0.9 Gd 0.1 O 2− δ–Ag decoration
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
Osinkin et al. Understanding the oxygen reduction kinetics on Sr2-xFe1. 5Mo0. 5O6-δ: Influence of strontium deficiency and correlation with the oxygen isotopic exchange data
Kim et al. Synthesis and oxygen‐permeation properties of thin YSZ/Pd composite membranes
Choi et al. Oxygen permeation properties of BSCF5582 tubular membrane fabricated by the slip casting method
Gui et al. A comparison of oxygen permeation and CO2 tolerance of La0. 6Sr0. 4Co0. 2Fe0. 6Nb0. 2O3− δ and La0. 6Sr0. 4Fe0. 8Nb0. 2O3− δ ceramic membranes
Watanabe et al. Microstructure effect on the oxygen permeation through Ba0. 95La0. 05FeO3− δ membranes fabricated by different methods
CN106966728A (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
EP1598325A1 (en) Proton-conductive and electron-conductive ceramic
CN103586014B (zh) 低温高选择性电催化降解尾气氮氧化物的膜及其制备方法
Zhu et al. Critical factors affecting oxygen permeation through dual-phase membranes
CN101612531A (zh) 含锆、铥系列钙钛矿混合导体透氢膜及其制备方法和应用
CN110092664B (zh) 一种自分相混合导体三相膜材料及其制备方法与应用
CN101265080B (zh) 含锌系列钙钛矿混合导体透氧膜及其制备方法和应用
CN111389242B (zh) 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911