CN110092664B - 一种自分相混合导体三相膜材料及其制备方法与应用 - Google Patents

一种自分相混合导体三相膜材料及其制备方法与应用 Download PDF

Info

Publication number
CN110092664B
CN110092664B CN201810096139.9A CN201810096139A CN110092664B CN 110092664 B CN110092664 B CN 110092664B CN 201810096139 A CN201810096139 A CN 201810096139A CN 110092664 B CN110092664 B CN 110092664B
Authority
CN
China
Prior art keywords
phase
membrane
oxygen
conduction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810096139.9A
Other languages
English (en)
Other versions
CN110092664A (zh
Inventor
江河清
夏校良
贾露建
张艳
胡天淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN201810096139.9A priority Critical patent/CN110092664B/zh
Publication of CN110092664A publication Critical patent/CN110092664A/zh
Application granted granted Critical
Publication of CN110092664B publication Critical patent/CN110092664B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于混合导体膜材料领域,具体涉及一种自分相混合导体三相膜材料及其制备方法与应用。膜材料由以质子导电为主的钙钛矿相、以氧离子导电为主的萤石相和以电子导电为主的钙钛矿相三相组成。本发明自发分相形成的混合导体三相膜材料具有质子、电子和氧离子混合传导的特点和较好的化学相容性和稳定性,该混合导体三相膜材料既可以用于氧气或氢气分离,也可用于质子燃料电池的电极材料以及高温下涉氢或涉氧膜反应器。

Description

一种自分相混合导体三相膜材料及其制备方法与应用
技术领域
本发明属于混合导体膜材料领域,具体涉及一种自分相混合导体三相膜材料及其制备方法与应用。
背景技术
氧离子-电子混合导体透氧膜是一类同时具有氧离子和电子传导能力的致密陶瓷膜材料。当透氧膜两侧存在氧分压梯度时,氧会以氧离子的形式通过氧空穴由高氧分压区向低氧分压区传导,同时电子通过变价金属离子之间的跳跃朝相反的方向传导。因此,此类膜材料不需要外加电路就可实现氧传递过程,理论上对氧的选择性为100%。自从Teraoka课题组对无机透氧膜材料La1-xSrxCo1-yFeyO3-δ(LSCF)(Teraoka et al.,ChemistryLetters,1985,11:1743-1746)进行研究以来,无机透氧膜受到了研究者们的重视。比如,杨维慎课题组开发的Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)材料在850℃下透氧量高达1.16mL·min-1·cm-2。(Yang et al.,Journal of Membrane Science,2000,172:177-188)(中国专利CN99113004.9)。M.Arnold等人研究发现Ba0.5Sr0.5Co0.8Fe0.2O3-δ钙钛矿型混合导体透氧膜,在875℃纯He气氛下,透氧量高达1.9mL·min-1·cm-2,但是当切换至纯CO2气氛下时,透氧量急剧衰减(Arnold et al.,Journal of Membrane Science,2007,293:44-52)。上海大学程红伟课题组开发了一种抗CO2腐蚀的双相膜材料,在CO2气氛下稳定运行,透量稳定在0.29mL·min-1·cm-2(程红伟鲁雄刚王鹏飞王远枝,顾紫琴,一种抗CO2腐蚀的双相混合导体透氧膜材料及其制备方法,专利公开号:CN106431400A)。钙钛矿型透氧膜已经在纯氧制备、轻烃转化制合成气、燃料电池以及化学反应器等方面展现出十分诱人的应用前景。
混合质子-电子导体透氢膜是一类在高温下同时具有质子电导性和电子电导性的致密陶瓷膜材料。理论上对氢气的选择透过性为100%,因此可以从含氢混合气氛中分离氢气。近年来对单相透氢膜的研究较为广泛。比如,Song等人研究SrCe0.95M0.05O3-δ(M=Eu,Sm)的透氢性能(Song et al.,Solid State Ionics.2004,167:99-105),发现850℃透氢量为0.0035mL·min-1·cm-2,Wei等人发现SrCe0.95Tb0.05O3-δ的透氢量在900℃条件下达到了0.016mL·min-1·cm-2(Wei et al.,Journal of Membrane Science 2009,345:201-206.),上述研究说明单相透氢膜的透量较低。随后Rebollo等人开发了BaCe0.65Zr0.2Y0.15O3-δ-Ce0.85Gd0.15O2-δ双相透氢膜,在755℃条件下透氢量为0.27mL·min-1·cm-2(Rebollo et al.,Energy Environmental Science 2015,8:3675-3686.)。最近,王海辉课题组开发了一种新的双相透氢膜材料,在950℃情况下透氢量达到0.9mL·min-1·cm-2(Cheng et al.,Angew.Chem.Int.Ed.2016,55:10895–10898)(王海辉,程顺凡,王艳杰,陈燕,一种同源双钙钛矿的双相陶瓷材料及其制备方法与应用,专利公告号CN 105198424B)。由于混合导体透氢膜不但具有氢分离功能,而且还具有一定的催化性能,既可以用于单纯制备纯氢,也可以与很多涉氢反应进行耦合,减少工艺流程,提高反应转化效率,应用广泛。
然而,截至目前为止,具有氧离子-质子和电子传导的混合导体三相膜材料的制备研究还未见报道,而且在中高温范围内的气体分离膜的应用以及涉氢或涉氧膜反应器方面应用尚属空白。因此如何获得具有稳定的高渗透性能的混合导体三相膜材料成为其工业化应用的主要挑战。
发明内容
为了弥补现有技术领域的空白,本发明的目的在于提供一种自分相混合导体三相膜材料及其制备方法与应用。
为实现上述目的,本发明采用的技术方案为:
一种自分相混合导体三相膜材料,膜材料由以质子导电为主的钙钛矿相、以氧离子导电为主的萤石相和以电子导电为主的钙钛矿相三相组成。
所述以质子导电为主的钙钛矿相为ACe1-xMxO3-δ材料,其中A为Ba、Sr、La中的一种或几种的组合,M选自Fe、Sm、Gd、Y、Yb、Eu、Co、Pr中的一种或几种,0<x≤0.5,0≤δ≤0.5;
所述以电子导电为主的钙钛矿相为AN1-xCexO3-δ材料,其中A为Ba、Sr、La中的一种或几种的组合,N为Pr、Fe或Co,0<x≤0.5,0≤δ≤0.5;
所述以氧离子导电为主的萤石相为Ce1-yLnyO2-δ材料,其中Ln选自Gd、Eu、Sm或Pr,0.1≤y≤0.2。
所述质子导电为主的钙钛矿相、电子导电为主的钙钛矿相和氧离子导电为主的萤石相的重量百分比在1.62:1.5:1—1.28:1.04:1。
一种混合导体三相膜的制备方法:
1)按混合导体三相膜的上述重量百分比称量原料,分别加入到去离子水中,并在磁力搅拌器上加热搅拌直至完全溶解得金属离子的混合液,然后按照金属离子:乙二胺四乙酸:一水合柠檬酸的摩尔比为1:1:1.5~2,将乙二胺四乙酸和一水合柠檬酸添加到上述金属离子的混合溶液中,混合均匀后调节混合溶液的PH值为8-9,调节后将混合溶液蒸发水分得凝胶;
2)将上述凝胶在400-600℃加热燃烧,即得到前驱体;
3)在将前驱体在950-1000℃焙烧5-10h获得膜粉体,将粉体在8-10MPa压力下压成膜片,膜片在1300-1380℃烧结5-10小时,自分相形成混合导体三相膜,即以质子导电为主的钙钛矿相(ACe1-xMxO3-δ材料)、以氧离子导电为主的萤石相(Ce1-yLnyO2-δ材料)和以电子导电为主的钙钛矿相(AN1-xCexO3-δ材料)。
所述原料为混合导体三相膜各相中金属,其中,
质子导电相为主的钙钛矿ACe1-xMxO3-δ材料中各金属离子的重量百分比为44.2:38:2.67—36:34:9.2;电子导电为主的钙钛矿AN1-xCexO3-δ材料中各金属离子的重量百分比为54.1:8.28:18.7—38.9:24.8:14.88;氧离子导电为主的萤石Ce1-yLnyO2-δ材料中各金属离子的重量百分比为73.2:8.28—63.8:17.9。
所述质子导电为主的钙钛矿相、电子导电为主的钙钛矿相和氧离子导电为主的萤石相的重量百分比在1.62:1.5:1—1.28:1.04:1。
所述步骤1)中混合溶液用氨水调节PH值在8-9,调节后将混合溶液在加热搅拌的作用下蒸发水分至凝胶状态,待用。
一种混合导体三相膜的应用,所述混合导体三相膜在含氧或含氢混合气中选择性分离氧气或氢气中的应用。
一种混合导体三相膜的应用,所述混合导体三相膜在低温氧化物燃料电池的电极、涉氧或涉氢膜反应器中的应用。
原理:本发明的混合导体三相膜材料是利用掺杂元素在钙钛矿结构中的固溶度有限,使其在高温下自发分相分别形成质子导电为主的钙钛矿相、氧离子导电为主的萤石相和电子导体为主的钙钛矿相,并且三相材料均达到热力学稳定状态,使得混合导体三相膜材料的化学相容性和稳定性较好,同时在一定的情况具有质子-氧离子-电子混合传导的能力。
本发明具有如下优点:
本发明的混合导体三相膜不仅具有较高的透氢量,同时还具有一定的透氧量,另外由于自发分相形成的三相膜材料均达到热力学稳定状态,因此三相膜材料具有很好的化学相容性和稳定性,避免升温或降温过程中由于热膨胀系数不匹配导致膜破裂或失效,因此稳定的高渗透性能的混合导体三相膜材料具有较好的应用前景;具体为:
(1)本发明的自分相混合导体三相膜具有氧离子、质子和电子混合传导的特点。具体地,氧离子和电子向相反方向传输,从而表现出氧渗透性能,而质子和电子或空穴同向传输,表现出较好的氢渗透性能。因此,自分相三相传输混合导体膜可发挥氧离子、质子和电子混合传导的特点,使得混合导体膜具有好的渗透通量和稳定性。本发明提供的膜材料在不同的测试条件下分别表现出透氧性能和透氢性能,该材料既可用作透氢膜,也可用作透氧膜,还可以用作同时透氢透氧的三透膜,是一种多功能膜材料,如附图1所示,从而有利于其在氢气分离、氧气分离、膜反应器以及固体氧化物燃料电池电极材料等领域的广泛应用。
(2)本发明的制备方法(一步法)工艺简单、成本低廉,实用性强,易于大规模生产。
附图说明
图1为本发明提供的混合导体三相膜的渗透示意图。
图2为本发明实施例1提供的BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜的x射线衍射图。
图3为本发明实施例1提供的BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜在不同温度下的氧渗透通量图。
图4为本发明实施例4提供的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜的x射线衍射图。
图5为本发明实施例4提供的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜在不同测试条件下的氧渗透通量图。
图6为本发明实施例4提供的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜在不同温度下氢渗透通量图。
图7为本发明实施例4提供的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜在不同氢气浓度下的氢渗透通量图。
具体实施方式
以下结合实例对本发明做进一步说明,但是本发明要求保护的范围并不局限于实例中的材料,所涉及混合导体三相膜的应用领域包含但并不局限于以下实例中的应用领域。
本发明膜材料由以质子导电为主的钙钛矿相、以氧离子导电为主的萤石相和以电子导电为主的钙钛矿相三相组成;其制备方法为柠檬酸和乙二胺四乙酸联合络合法,即分别将一定量的硝酸盐溶于去离子水中,并与乙二胺四乙酸和柠檬酸的溶液混合均匀,经氨水调节PH值为8-9后,放到玻璃器皿中水分蒸发,焙烧得到膜粉体。将合成的膜粉体添加少量水混合研磨,压制成型,然后1300-1380℃焙烧5-10h,自发分相形成混合导体三相膜材料。
实施例1:
本实施例BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜的制备方法,具体包括如下步骤:
(1)称取7.84g Ba(NO3)2溶于去离子水中,并在加热温度为60℃磁力搅拌的条件下形成透明溶液,再分别称量6.06gFe(NO3)3·9H2O、13.72gCe(NO3)3·6H2O和1.87gGd(NO3)3·6H2O一并加入到上述透明溶液中,加入后在磁力搅拌的情况下混合均匀;再称取25.45g一水合柠檬酸和23.60g乙二胺四乙酸加入上述所得混合溶液中,再加入适量氨水,调节混合溶液PH值为9,得到澄清溶液后再在80℃下进行搅拌蒸发,得到凝胶。
(2)将凝胶转移至蒸发皿,电炉加热至约600℃至凝胶燃烧去除大部分有机物,得到前驱体粉体;将前驱体粉体再置于高温马弗炉中以2℃/min的升温速率升温至1000℃,并保温10h,然后以2℃/min的速率降至室温,得到膜粉体。
(3)将上述膜粉体加少量水研磨后称取0.85g粉体,置于内径为18mm的不锈钢磨具中,在10MPa压力作用下保持5min,即可得到膜片生坯。将压制完好的膜片生坯置于高温马弗炉中烧结,烧结程序为先由室温以2℃/min升温至1350℃,保温10h,然后以1.5℃/min的速率降至1150度,保温3h退火处理,随后再以2℃/min降温到室温,即可得到本发明的自分相形成的三相传输混合导体膜材料。本实施例所得三相材料的物相结构参见图2,可以看出,混合导体三相膜的x射线衍射图表明形成了BaCe0.85Fe0.15O3-δ钙钛矿相、BaCe0.15Fe0.85O3-δ钙钛矿相和Ce0.8Gd0.2O2-δ萤石相,没有发现其他杂相,表明混合导体三相膜具有较好的化学相容性和稳定性。
实施例2:
本实施例的BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜的氧渗透通量测试。
(1)将实施例1致密的BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜首先采用180目的碳化硅砂纸打磨,打磨至0.6mm的厚度后,进行超声清洗,将超声清洗后的片状膜用银环密封在Φ16mm的刚玉管一端,并装入膜反应器中。
(2)将膜反应器装置固定于管式高温炉中,以2℃/min速率升温至960℃,保温1h,再以1℃/min速率降温到待测温度,然后在膜的一侧通入空气(Air),空气流速为100mL/min另一侧通入氦气(He),氦气流速为30mL/min,流速通过质量流量计控制,经皂泡确认膜两侧密封良好后,进行膜的氧气分离测试,尾气的流速通过皂泡流量计测定,氦气吹扫侧尾气管线连接到气相色谱,利用气相色谱分析仪(Agilent 7820A)检测吹扫侧氧气浓度。
Figure BDA0001565064470000051
其中,JO2是氧渗透通量,CO2是氧气的浓度,CN2是氮气的浓度,F是吹扫侧尾气的流量,A是膜的有效测试面积。
根据上述公式计算获得膜的氧渗透通量(参见图3)。从图中可以看出,随温度升高氧渗透通量逐渐增加,表现出良好的氧渗透性能,另外,在900℃的氧渗透通量为0.26mL·min-1·cm-2
实施例3:
BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜的氢渗透通量测试
将实施例1中所制备的BaCe0.85Fe0.15O3-δ-BaCe0.15Fe0.85O3-δ-Ce0.8Gd0.2O2-δ混合导体三相膜经银环密封,安装到膜反应器并放置到管式炉中,以2℃/min速率升温至960℃活化,保温1h。降温到待测温度,在膜的一侧通入空气(Air),另一侧通入氦气(He),经皂泡确认膜两侧密封良好后,改为膜一侧通入氮气和氢气,其中氢气和氮气总流速为100mL/min,氢气浓度为50%,吹扫侧通入经过饱和水蒸气润湿的氦气(He),总流速为60mL/min,吹扫侧管线出口连接到气相色谱,利用气相色谱分析仪(Agilent 7820A)检测吹扫侧氢气浓度。
Figure BDA0001565064470000061
其中,JH2是氢渗透通量,CH2是氢气的浓度,CN2是氮气的浓度,F是吹扫侧尾气的流量,A是膜的有效测试面积。
根据上述公式计算获得膜的氢渗透通量,发现在920℃时氢渗透通量为0.60mL·min-1·cm-2,表现出较好的氢渗透通量,具有较大的实际工业应用前景。
实施例4:
本实施例的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜的制备方法,具体包括如下步骤:
(1)称取8.89g Sr(NO3)2溶于去离子水中,并在磁力搅拌的条件下形成透明溶液,再分别称量8.48gFe(NO3)3·9H2O、16.15gCe(NO3)3·6H2O和0.81g Gd(NO3)3·6H2O并加入到上述形成的透明溶液中,将上述溶液在磁力搅拌的情况下混合均匀;再称取32.16g一水合柠檬酸和29.82g乙二胺四乙酸加入上述所得混合溶液中,再加入氨水,调节混合溶液pH值为8,得到澄清溶液后再在80℃下进行搅拌蒸发,得到凝胶。
(2)将凝胶转移至蒸发皿,电炉加热至600℃至凝胶燃烧去除大部分有机物,得到前驱体粉体;将前驱体粉体再置于高温马弗炉中以2℃/min的升温速率升温至950℃,并保温5h,然后以2℃/min的速率降至室温,得到膜粉体。
(3)将上述膜粉体加少量水研磨后称取0.8g粉体,置于内径为18mm的不锈钢磨具中,在10MPa压力作用下保持5min,即可得到膜片生坯。将压制完好的膜片生坯置于高温马弗炉中烧结,烧结程序为先由室温以2℃/min升温至1380℃,保温10h,然后以2℃/min降温到室温,即可得到本发明的自分相形成的三相传输混合导体膜材料。本实施例所得材料的物相结构参见图4,可以看出,混合导体膜的x射线衍射图表明形成了富铈SrCeO3-δ和富铁SrFeO3-δ钙钛矿相以及Ce0.9Gd0.1O2-δ萤石相,没有发现其他杂相生成,表明三相膜材料具有较好的化学相容性和稳定性。
实施例5:
对上述获得SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜的氧渗透通量测试
(1)将实施例4致密的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜采用180目的碳化硅砂纸打磨,打磨至0.6mm的厚度后,在无水乙醇中进行超声清洗,将超声清洗后的片状膜用玻璃环密封在Φ16mm的刚玉管一端,一个在膜片不涂覆多孔涂层,另一个在膜片上涂覆与膜本体材料相同的多孔涂层,装入膜反应器中。
(2)将膜反应器装置固定于管式高温炉中;以2℃/min速率升温至1050℃活化,保温1h。随后以1℃/min速率降温到待测温度,待稳定2h后在膜的一侧通入空气(Air),空气流速为100mL/min另一侧通入氦气(He),氦气流速为30mL/min,流速通过质量流量计控制,经皂泡确认膜两侧密封良好后,氦气吹扫侧尾气管线连接到气相色谱进行氧气含量分析,尾气的流速通过皂泡流量计进行测定,检测无多孔涂层、构筑多孔涂层以及不同吹扫气(氦气和甲烷)三种测试条件下膜的氧渗透通量(参见图5)。
由图5氧渗透通量的温度曲线图可以看出,随温度升高,无多孔涂层的氧渗透通量逐渐增加,与无多孔涂层的膜材料相比,在膜表面构筑多孔涂层后,相同条件下的氧渗透通量显著增加,说明多孔涂层增加了表面交换能力,对渗透通量提高是有利的,另外,甲烷吹扫条件下,甲烷在膜表面发生部分氧化反应,使得膜两侧氧分压梯度增大,甲烷吹扫条件下的氧渗透通量是氦气吹扫条件下的10倍左右,说明增加膜两侧的氧分压梯度,可以显著提高膜材料的氧渗透通量。
实施例6:
对SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜的氢渗透通量测试
将实施例4中所制备的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜经玻璃环密封,安装到膜反应器并放置到管式炉中,以2℃/min速率升温至1050℃活化,保温1h。降温到待测温度,在膜的一侧通入空气(Air),另一侧通入氦气(He),经皂泡确认膜两侧密封良好后,改为膜一侧通入氮气和氢气,其中氢气和氮气总流速为60mL/min,氢气浓度为60%,吹扫侧通入经过饱和水蒸气润湿的氩气(Ar),总流速为60ml/min,吹扫侧管线出口连接到气相色谱,利用气相色谱仪检测渗透侧氢气浓度,
Figure BDA0001565064470000071
其中,JH2是氢渗透通量,CH2是氢气的浓度,CN2是氮气的浓度,F是吹扫侧尾气的流量,A是膜的有效测试面积。
根据上述公式计算获得膜的氢渗透通量,测试的温度区间为860-940℃,不同温度下氢渗透通量如图6所示。从图中可以看出,在860-940℃温度区间内的氢渗透通量从0.75mL·min-1·cm-2增加到1.08mL·min-1·cm-2,表现出较好的氢渗透通量,具有较大的实际工业应用前景。
实施例7:SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜在不同氢分压梯度下的氢渗透通量测试
将实施例4中所制备的SrCeO3-δ-SrFeO3-δ-Ce0.9Gd0.1O2-δ混合导体三相膜经玻璃环密封,安装到膜反应器并放置到管式炉中,以2℃/min速率升温至1050℃活化,保温1h。降温到待测温度,在膜的一侧通入空气(Air),另一侧通入氦气(He),经皂泡确认膜两侧密封良好后,改为喂料侧通入氮气和氢气,吹扫侧通入经过饱和水蒸气润湿的氩气(Ar),吹扫侧管线出口连接到气相色谱,利用气相色谱分析仪(Agilent 7820A)测试渗透侧氢气浓度。
Figure BDA0001565064470000081
其中,JH2是氢渗透通量,CH2是吹扫侧氢气的浓度,CN2是吹扫侧氮气的浓度,FH2和FN2是喂料侧氢气和氮气的流速(mL/min),F是吹扫侧尾气的流量,A是膜的有效测试面积。
根据上述公式计算不同氢气浓度下膜的氢渗透通量,其中,测试温度900℃,测试条件为:氢气和氮气总流速为60mL/min,通过调整氢气浓度来改变喂料侧氢分压,氢气浓度变化范围为10%-60%,吹扫侧通入经过饱和水蒸气润湿的氩气(Ar),总流速为60mL/min,不同氢分压梯度下的氢渗透通量如图7所示。从图中可以看出,当氢气浓度从10%增加到60%时,氢渗透通量从0.26mL·min-1·cm-2增加到0.86mL·min-1·cm-2,说明通过调整氢分压可以显著提高氢渗透通量。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种自分相混合导体三相膜材料,其特征在于:膜材料由以质子导电为主的钙钛矿相、以氧离子导电为主的萤石相和以电子导电为主的钙钛矿相三相组成;
所述以质子导电为主的钙钛矿相为SrCeO3−δ材料,其中, 0 ≤ δ ≤0.5;
所述以电子导电为主的钙钛矿相为SrNO3−δ材料,其中N为Pr、Fe或Co, 0 ≤ δ ≤0.5;
所述以氧离子导电为主的萤石相为Ce1−yLnyO2−δ材料,其中Ln选自Gd,0.1≤ y ≤ 0.2;
所述质子导电为主的钙钛矿相、电子导电为主的钙钛矿相和氧离子导电为主的萤石相的重量比在1.62:1.5:1—1.28:1.04:1。
2.一种权利要求 1 所述的自分相混合导体三相膜材料的制备方法,其特征在于:
1)称量硝酸盐原料,分别加入到去离子水中,并在磁力搅拌器上加热搅拌直至完全溶解得金属离子的混合液,然后按照金属离子:乙二胺四乙酸 :一水合柠檬酸的摩尔比为1:1:1.5~2,将乙二胺四乙酸和一水合柠檬酸添加到金属离子的混合溶液中,混合均匀后调节混合溶液的pH值为8-9,调节后将混合溶液蒸发水分得凝胶;
2)将上述凝胶在400-600oC加热燃烧,即得到前驱体;
3)在将前驱体在950-1000oC焙烧5-10h获得膜粉体,将粉体在8-10MPa压力下压成膜片,膜片在1300-1380oC烧结5-10小时,自分相形成混合导体三相膜,即以质子导电为主的钙钛矿相SrCeO3-δ材料、以氧离子导电为主的萤石相Ce1-yLnyO2-δ材料和以电子导电为主的钙钛矿相SrNO3-δ材料。
3.按权利要求2所述的自分相混合导体三相膜材料的制备方法,其特征在于:所述步骤1)中混合溶液用氨水调节pH值在8-9,调节后将混合溶液在加热搅拌的作用下蒸发水分至凝胶状态,待用。
4.一种权利要求1所述的自分相混合导体三相膜材料的应用,其特征在于:所述混合导体三相膜在含氧或含氢混合气中选择性分离氧气或氢气中的应用。
5.一种权利要求1所述的自分相混合导体三相膜材料的应用,其特征在于:所述混合导体三相膜在低温氧化物燃料电池的电极、涉氧或涉氢膜反应器中的应用。
CN201810096139.9A 2018-01-31 2018-01-31 一种自分相混合导体三相膜材料及其制备方法与应用 Expired - Fee Related CN110092664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810096139.9A CN110092664B (zh) 2018-01-31 2018-01-31 一种自分相混合导体三相膜材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810096139.9A CN110092664B (zh) 2018-01-31 2018-01-31 一种自分相混合导体三相膜材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110092664A CN110092664A (zh) 2019-08-06
CN110092664B true CN110092664B (zh) 2022-05-31

Family

ID=67442030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810096139.9A Expired - Fee Related CN110092664B (zh) 2018-01-31 2018-01-31 一种自分相混合导体三相膜材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110092664B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514549B (zh) * 2023-05-05 2024-08-23 上海大学 一种三相混合导体透氧膜材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726609B1 (en) * 1995-02-09 1998-11-04 Tokyo Yogyo Kabushiki Kaisha Solid electrolyte for a fuel cell and its manufacturing method
US10014529B2 (en) * 2015-01-08 2018-07-03 Colorado School Of Mines Triple conducting cathode material for intermediate temperature protonic ceramic electrochemical devices
CN104860667B (zh) * 2015-01-26 2017-04-12 中国科学院青岛生物能源与过程研究所 一种双金属掺杂的混合导体透氧膜及其制备方法和应用
CN106505211A (zh) * 2016-11-18 2017-03-15 安徽工业大学 一种降低CeO2基固体氧化物燃料电池电子电导的阳极材料及其制备方法

Also Published As

Publication number Publication date
CN110092664A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Luo et al. Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas
Zhu et al. Structural stability and oxygen permeability of cerium lightly doped BaFeO3− δ ceramic membranes
Zhu et al. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors
US6468499B1 (en) Method of generating hydrogen by catalytic decomposition of water
Zhu et al. Relationship between homogeneity and oxygen permeability of composite membranes
WO2003089117A1 (en) Hydrogen separation using oxygen ion-electron mixed conducting membranes
Li et al. Effects of membrane thickness and structural type on the hydrogen separation performance of oxygen-permeable membrane reactors
Li et al. Oxygen permeability and stability of BaCe0. 1Co0. 4Fe0. 5O3− δ oxygen permeable membrane
Zhan et al. Preparation and hydrogen permeation of SrCe0. 95Y0. 05O3− δ asymmetrical membranes
Song et al. Surface-modified proton conducting perovskite hollow fibre membranes by Pd-coating for enhanced hydrogen permeation
Wang et al. High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes
CN106925136A (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
CN101302121B (zh) 一种表面纳米包覆改性陶瓷透氧膜及其制法
CN114349508A (zh) 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
Wei et al. Partial oxidation of methane in hollow‐fiber membrane reactors based on alkaline‐earth metal‐free CO2‐tolerant oxide
JP4783435B2 (ja) 水蒸気浸透性混合イオン伝導メンブレンを用いた水蒸気の回復
Sun et al. Considerable hydrogen permeation behavior through a dense Ce0. 8Sm0. 2O2-δ (SDC) asymmetric thick film
CN101479021A (zh) 氧气分离膜
JP2001093325A (ja) LaGaO3系電子−酸素イオン混合伝導体及びそれを用いた酸素透過膜
He et al. Tailoring of surface modified ultrathin membranes with CO 2 tolerance and high oxygen permeability
Wei et al. Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications
Liu et al. Investigation on different valence B-site ions doped Pr0. 6Sr0. 4FeO3-δ ceramic membrane for hydrogen production from water splitting
CN109734438B (zh) 一种不含钴和铁的钛基钙钛矿型陶瓷透氧膜及其制备方法和应用
Xie et al. Phase-inversion synthesize of asymmetric-structured La5. 5W0. 6Mo0. 4O11. 25-δ membranes with enhanced hydrogen permeation flux
CN110092664B (zh) 一种自分相混合导体三相膜材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220531