CN114507078B - 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法 - Google Patents

相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法 Download PDF

Info

Publication number
CN114507078B
CN114507078B CN202210156708.0A CN202210156708A CN114507078B CN 114507078 B CN114507078 B CN 114507078B CN 202210156708 A CN202210156708 A CN 202210156708A CN 114507078 B CN114507078 B CN 114507078B
Authority
CN
China
Prior art keywords
carbon fiber
cavity
loaded
heating
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210156708.0A
Other languages
English (en)
Other versions
CN114507078A (zh
Inventor
侯振华
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Xinda Hangke New Material Technology Co ltd
Original Assignee
Jiangxi Xinda Hangke New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Xinda Hangke New Material Technology Co ltd filed Critical Jiangxi Xinda Hangke New Material Technology Co ltd
Priority to CN202210156708.0A priority Critical patent/CN114507078B/zh
Publication of CN114507078A publication Critical patent/CN114507078A/zh
Application granted granted Critical
Publication of CN114507078B publication Critical patent/CN114507078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:表面负载碳纤维的制备、前驱体溶液制备、将表面负载碳纤维浸渍于前驱体溶液、将中间体置于立式化学气相渗透炉中恒温反应,即得相变材料改性碳纤维增强碳化铪陶瓷材料。本发明提供的相变材料改性碳纤维增强碳化铪陶瓷材料,通过在碳化铪内部分散碳纤维,大大提高了碳化铪陶瓷的韧性,同时在碳纤维表面负载相变材料可以减缓温度的急剧变化对碳纤维的破坏,从而在表面负载氧化铝层,形成一层致密的氧化铝层可起到对碳纤维的保护作用,避免被氧化。

Description

相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法
技术领域
本发明属于新材料领域,特别涉及一种相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法及制得的相变材料改性碳纤维增强碳化铪陶瓷材料。
背景技术
陶瓷材料所具有的诸多优点是其他材料所不能比拟的,但是它的脆性也是不可避免的致命缺点,陶瓷材料的脆性在很大程度上影响了材料性能的可靠性和一致性。陶瓷材料都是由离子键或共价键所组成的多晶结构,它缺乏能促使材料变形的滑移系统,材料一旦受到外加的负荷,再加上陶瓷工艺所很难避免的在材料表面所构成的微缺陷的存在,它们都有可能构成裂纹源,应力就会在这些裂纹的尖端集中,在陶瓷材料中又没有其他可以消耗外来能量的系统,只有以新的自由能予以交换,所谓新的自由能就是裂纹尖端的扩展所形成的新的表面所吸收的能量,这样的结果就造成裂纹的快速扩展而表现为所谓脆性断裂。由此可知,陶瓷材料的脆性是物质的化学键合性质和它的显微结构所决定的。因此要使碳化硅发挥其优异的耐磨性能,首先应该克服其脆性,即提高碳化硅陶瓷的韧性。
HfC陶瓷是目前熔点最高的超高温陶瓷之一,其熔点高达3930℃,热膨胀系数为6.7×10-6/K-1,对应其氧化物(HfO2)的熔点为2700℃,CTE为5.6×10-6/K-1。HfC晶体属于面心立方结构(FCC),空间群是Fm3m,碳原子占据密排Hf原子立方晶格的八面体间隙位置,所以其成键方式包含共价键、金属键以及离子键,导致其具有优异的力学性能。与其他碳化物相比,HfC具有较高的弹性模量,硬度以及强度。因此,HfC被广泛应用于工业切削刀具、航空航天器的热结构部件及高超声速飞行器及推进系统(例如导弹)、第四代核反应堆的包壳材料等。除此之外,由于HfC陶瓷中存在金属键,因此具有较高的电导率和热导率,在电催化产氢、高温电极材料、高温太阳能吸收剂及储能材料等领域也具有很好的应用前景。
然而,HfC陶瓷本身固有的极强的共价键和较低的自扩散系数,导致其存在难以烧结致密化和断裂韧性较低这两大缺点。再者,HfC在温度超过500℃的有氧环境中极易氧化生成HfO2,而且在超高温极端服役环境下抗烧蚀性能差,烧蚀后的氧化层结构疏松易被机械冲刷、剥离,导致该材料在氧化烧蚀后力学性能大幅度降低,限制了其作为高温结构材料在极端环境下应用因此,解决HfC陶瓷烧结问题、提高HfC陶瓷断裂韧性以及抗氧化、烧蚀性能成为其作为高温结构材料应用于极端环境下的关键。
纤维增强陶瓷基复合材料的概念最早出现在20世纪70年代初,是由J.Aveston在纤维增强聚合物基复合材料和纤维增强金属基复合材料研究的基础上提出的。它的出现为高性能陶瓷材料的研究与开发开辟了一个崭新的领域。在纤维增强陶瓷基复合材料的诸多增强相中,碳纤维具有高比模量、高比强度、耐腐蚀、耐疲劳、抗蠕变、导电性好、高热导和低膨胀,以及在非氧化介质条件下高温性能优异等一系列优点。作为增强相,碳纤维能够赋予复合材料韧性和抗冲击能力,改善陶瓷基体固有的脆性弱点,同时保留其良好的机械性能。连续碳纤维可以提供有效的增韧效果,通过纤维脱粘、拔出以及对裂纹桥联、偏转具有巨大的贡献。但是超高温陶瓷有机先驱体难以获得且成本高,制备工艺较为复杂,并且碳纤维增强HfC基陶瓷在温度超过450℃的有氧环境下碳纤维会迅速氧化。
发明内容
技术问题:为了解决现有技术的缺陷,本发明提供了一种相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法及制得的相变材料改性碳纤维增强碳化铪陶瓷材料。
技术方案:本发明提供相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮50-60℃下反应1-2h,再加入对苯二酚继续反应1-3h,得到前驱体溶液中;
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在80-100℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至550-580℃在惰性气体保护下保温反应2-3h;升温至1500-1700℃在惰性气体保护下保温反应2-3h,冷却,得中间体;
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1400~1500℃,通入甲烷、氢气和氩气恒温反应6-10h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料。
步骤(1)中,第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至5-7KPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维。
步骤(1)中,第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至800℃-1100℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维。
所述铝源为金属铝,所述运输气体为氮气或氩气,所述氧源为氧气;升温前,运输气体调整腔体内压强至100-760Torr,运输气体的气流量为400-1000sccm,升温后,运输气体调整腔体内压强至0.1-10Torr,运输气体的气流量为10-100sccm;氧气的气流量为10-100sccm。
步骤(2)中,四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:(2-4):(1-2)。
步骤(3)中,升温速率为3-5℃/min。
步骤(4)中,升温速率为6~10℃/min。
步骤(4)中,甲烷流量为30~100ml/min,氢气流量为400~800ml/min,氩气流量为100~200ml/min,真空度为1~3kPa。
本发明还提供了上述方法制得的相变材料改性碳纤维增强碳化铪陶瓷材料。
本发明还提供了相变材料改性碳纤维增强碳化铪陶瓷材料,包括碳化铪陶瓷以及分散于碳化铪陶瓷内部的表面负载SexSbyTez层和氧化铝层的碳纤维。
有益效果:本发明提供的相变材料改性碳纤维增强碳化铪陶瓷材料,通过在碳化铪内部分散碳纤维,大大提高了碳化铪陶瓷的韧性,同时在碳纤维表面负载相变材料可以减缓温度的急剧变化对碳纤维的破坏,从而在表面负载氧化铝层,形成一层致密的氧化铝层可起到对碳纤维的保护作用,避免被氧化。
具体实施方式
下面对本发明作出进一步说明。
实施例1
相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至6KPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维。
第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至1000℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维。
所述铝源为金属铝,所述运输气体为氮气,所述氧源为氧气;升温前,运输气体调整腔体内压强至450Torr,运输气体的气流量为700sccm,升温后,运输气体调整腔体内压强至5Torr,运输气体的气流量为50sccm;氧气的气流量为50sccm。
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮55℃下反应1.5h,再加入对苯二酚继续反应2h,得到前驱体溶液中;四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:3:1.5。
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在90℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至570℃在惰性气体保护下保温反应2.5h;升温至1600℃在惰性气体保护下保温反应2.5h,冷却,得中间体;升温速率为4℃/min。
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1450℃,通入甲烷、氢气和氩气恒温反应8h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料。升温速率为8℃/min;甲烷流量为60ml/min,氢气流量为600ml/min,氩气流量为150ml/min,真空度为2kPa。
实施例2
相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至5-7KPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维。
第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至800℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维。
所述铝源为金属铝,所述运输气体为氮气,所述氧源为氧气;升温前,运输气体调整腔体内压强至100Torr,运输气体的气流量为400sccm,升温后,运输气体调整腔体内压强至0.1Torr,运输气体的气流量为10sccm;氧气的气流量为10sccm。
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮50℃下反应2h,再加入对苯二酚继续反应3h,得到前驱体溶液中;四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:2:2。
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在80℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至550℃在惰性气体保护下保温反应3h;升温至1500℃在惰性气体保护下保温反应3h,冷却,得中间体;升温速率为3℃/min。
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1400℃,通入甲烷、氢气和氩气恒温反应10h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料。升温速率为6℃/min;甲烷流量为30ml/min,氢气流量为400ml/min,氩气流量为100ml/min,真空度为1kPa。
实施例3
相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至5-7KPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维。
第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至1100℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维。
所述铝源为金属铝,所述运输气体为氩气,所述氧源为氧气;升温前,运输气体调整腔体内压强至760Torr,运输气体的气流量为1000sccm,升温后,运输气体调整腔体内压强至10Torr,运输气体的气流量为100sccm;氧气的气流量为100sccm。
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮60℃下反应1h,再加入对苯二酚继续反应1h,得到前驱体溶液中;四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:4:1。
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在100℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至580℃在惰性气体保护下保温反应2h;升温至1700℃在惰性气体保护下保温反应2h,冷却,得中间体;升温速率为5℃/min。
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1500℃,通入甲烷、氢气和氩气恒温反应6h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料。升温速率为10℃/min;甲烷流量为100ml/min,氢气流量为800ml/min,氩气流量为200ml/min,真空度为3kPa。
对比例1
碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮55℃下反应1.5h,再加入对苯二酚继续反应2h,得到前驱体溶液中;四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:3:1.5。
(2)将碳纤维浸渍于前驱体溶液中,在90℃热处理炉中干燥,重复至碳纤维质量不再增加,升温至570℃在惰性气体保护下保温反应2.5h;升温至1600℃在惰性气体保护下保温反应2.5h,冷却,得中间体;升温速率为4℃/min。
(3)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1450℃,通入甲烷、氢气和氩气恒温反应8h,自然冷却,即得碳纤维增强碳化铪陶瓷材料。升温速率为8℃/min;甲烷流量为60ml/min,氢气流量为600ml/min,氩气流量为150ml/min,真空度为2kPa。
实验例
测试实施例1至3以及对比例1的产品性能。结果如下:
Figure BDA0003512498590000071
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (3)

1.相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,其特征在于:包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮50-60℃下反应1-2h,再加入对苯二酚继续反应1-3h,得到前驱体溶液;
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在80-100℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至550-580℃在惰性气体保护下保温反应2-3h;升温至1500-1700℃在惰性气体保护下保温反应2-3h,冷却,得中间体;
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1400~1500℃,通入甲烷、氢气和氩气恒温反应6-10h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料;
其中,步骤(1)中,第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至5-7kPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维;
其中,步骤(1)中,第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至800℃-1100℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维;
其中,所述铝源为金属铝,所述运输气体为氮气或氩气,所述氧源为氧气;升温前,运输气体调整腔体内压强至100-760Torr,运输气体的气流量为400-1000sccm,升温后,运输气体调整腔体内压强至0.1-10Torr,运输气体的气流量为10-100sccm;
氧气的气流量为10-100sccm;
其中,步骤(2)中,四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:(2-4):(1-2);
其中,步骤(3)中,升温速率为3-5℃/min;
其中,步骤(4)中,升温速率为6~10℃/min;
其中,步骤(4)中,甲烷流量为30~100ml/min,氢气流量为400~800ml/min,氩气流量为100~200ml/min,真空度为1~3kPa。
2.权利要求1所述方法制得的相变材料改性碳纤维增强碳化铪陶瓷材料。
3.相变材料改性碳纤维增强碳化铪陶瓷材料,其特征在于:包括碳化铪陶瓷以及分散于碳化铪陶瓷内部的表面负载SexSbyTez层和氧化铝层的碳纤维;
所述相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法,包括以下步骤:
(1)表面负载碳纤维的制备:采用化学气相沉积法,在碳纤维表面负载多层SexSbyTez层,得负载相变材料的碳纤维;再利用化学气相沉积法在负载相变材料的碳纤维表面负载一层或多层氧化铝层,得表面负载碳纤维;其中,x、y、z均为自然数;
(2)前驱体溶液制备:在惰性气体保护下,四氯化铪和乙酰丙酮50-60℃下反应1-2h,再加入对苯二酚继续反应1-3h,得到前驱体溶液;
(3)将步骤(1)的表面负载碳纤维浸渍于前驱体溶液中,在80-100℃热处理炉中干燥,重复至表面负载碳纤维质量不再增加,升温至550-580℃在惰性气体保护下保温反应2-3h;升温至1500-1700℃在惰性气体保护下保温反应2-3h,冷却,得中间体;
(4)将步骤(3)的中间体置于立式化学气相渗透炉中,从室温升温至1400~1500℃,通入甲烷、氢气和氩气恒温反应6-10h,自然冷却,即得相变材料改性碳纤维增强碳化铪陶瓷材料;
其中,步骤(1)中,第一次化学气相沉积步骤为:S1,将前驱物以及碳纤维按照气流方向分别放置在三温区的高温管式炉中;其中,三温区分别放置Se源,Sb源和Te源,碳纤维;S2,将反应腔的真空度抽至5-7kPa,通入氩气对高温管式炉的反应腔进行清洗;S3,通入氩气和氨气,同时加热三温区的高温管式炉,反应生成SexSbyTez沉积于碳纤维上;S4,自然冷却至室温后同时关闭氩气和氨气,即得到负载相变材料的碳纤维;
其中,步骤(1)中,第二次化学气相沉积步骤为:S5,将铝源和负载相变材料的碳纤维分别放入管式炉腔体内,对腔体抽真空,通入运输气体调整腔体内压强,然后将腔体升温至800℃-1100℃,通过运输气体流量调整腔体内压强,使腔体内压强处于低压状态下,然后通入氧源生长薄膜;S6,保持S5的生长时的温度、腔体内压强、运输气体和氧源流量,原位后退火处理;S7,关闭氧气和热源,调整腔体内压强,在运输气体氛围下自然降温至室温,即得表面负载碳纤维;
其中,所述铝源为金属铝,所述运输气体为氮气或氩气,所述氧源为氧气;升温前,运输气体调整腔体内压强至100-760Torr,运输气体的气流量为400-1000sccm,升温后,运输气体调整腔体内压强至0.1-10Torr,运输气体的气流量为10-100sccm;氧气的气流量为10-100sccm;
其中,步骤(2)中,四氯化铪、乙酰丙酮和对苯二酚的摩尔比1:(2-4):(1-2);
其中,步骤(3)中,升温速率为3-5℃/min;
其中,步骤(4)中,升温速率为6~10℃/min;
其中,步骤(4)中,甲烷流量为30~100ml/min,氢气流量为400~800ml/min,氩气流量为100~200ml/min,真空度为1~3kPa。
CN202210156708.0A 2022-02-21 2022-02-21 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法 Active CN114507078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210156708.0A CN114507078B (zh) 2022-02-21 2022-02-21 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210156708.0A CN114507078B (zh) 2022-02-21 2022-02-21 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN114507078A CN114507078A (zh) 2022-05-17
CN114507078B true CN114507078B (zh) 2023-03-28

Family

ID=81550914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210156708.0A Active CN114507078B (zh) 2022-02-21 2022-02-21 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN114507078B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318239A2 (en) * 1987-11-25 1989-05-31 Sullivan Mining Corporation Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic and metal matrices
CN109265188A (zh) * 2018-10-10 2019-01-25 航天特种材料及工艺技术研究所 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN113845367A (zh) * 2021-10-08 2021-12-28 江西信达航科新材料科技有限公司 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN113896556A (zh) * 2021-11-01 2022-01-07 江西信达航科新材料科技有限公司 一种低介电损耗碳化硅纤维增强陶瓷复合材料的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226862A (ja) * 1986-03-27 1987-10-05 株式会社 香蘭社 繊維強化セラミツク
JPH03199172A (ja) * 1989-12-27 1991-08-30 Sumitomo Electric Ind Ltd 被覆炭素繊維強化複合材料
US6322889B1 (en) * 1998-04-23 2001-11-27 The United States Of America As Represented By The United States Department Of Energy Oxidation-resistant interfacial coating for fiber-reinforced ceramic
US6979490B2 (en) * 2001-01-16 2005-12-27 Steffier Wayne S Fiber-reinforced ceramic composite material comprising a matrix with a nanolayered microstructure
US6988304B2 (en) * 2001-06-14 2006-01-24 Aircraft Braking Systems Corporation Method of containing a phase change material in a porous carbon material and articles produced thereby
CN108484135A (zh) * 2018-04-17 2018-09-04 苏州宏久航空防热材料科技有限公司 一种原位生长陶瓷增强纤维树脂复合材料
CN111253171B (zh) * 2020-03-18 2022-05-03 西北工业大学 一种纤维增强碳化铪陶瓷基复合材料的致密化制备方法
CN111826965B (zh) * 2020-07-15 2021-09-03 华中科技大学 一种相变温控纤维、纱线和织物及其应用
CN114044679A (zh) * 2021-11-22 2022-02-15 湖南兴晟新材料科技有限公司 一种高强韧超高温陶瓷基复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318239A2 (en) * 1987-11-25 1989-05-31 Sullivan Mining Corporation Non-porous metal-oxide coated carbonaceous fibers and applications in ceramic and metal matrices
CN109265188A (zh) * 2018-10-10 2019-01-25 航天特种材料及工艺技术研究所 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN113845367A (zh) * 2021-10-08 2021-12-28 江西信达航科新材料科技有限公司 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN113896556A (zh) * 2021-11-01 2022-01-07 江西信达航科新材料科技有限公司 一种低介电损耗碳化硅纤维增强陶瓷复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜帅 ; 何敏 ; 刘玉飞 ; 李莉萍 ; 张道海 ; .碳纤维表面改性研究进展.纺织导报.2017,(第06期),第62-65页. *

Also Published As

Publication number Publication date
CN114507078A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6954685B2 (ja) 炭化ケイ素繊維強化炭化ケイ素複合材料
CN109293383B (zh) 一种纤维增强碳-碳化硅陶瓷基复合材料及其制备方法
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
Wang et al. KD-S SiC f/SiC composites with BN interface fabricated by polymer infiltration and pyrolysis process
Chen et al. Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: a review
CN115108852B (zh) 一种石墨复合材料及其制备方法和应用
CN113896556B (zh) 一种低介电损耗碳化硅纤维增强陶瓷复合材料的制备方法
CN115369336B (zh) 一种W-Cu-ZrC-HfC金属陶瓷改性C/C复合材料的制备方法
CN114804895A (zh) 一种高温自愈合BN/SiC纤维界面涂层及制备方法
CN113024281A (zh) 一种碳化硅/石墨烯仿生层叠涂层及制备方法
CN114315395A (zh) SiCf/SiC复合材料的SiC纳米线增韧PyC/SiC复合界面及其制备方法
CN112521156B (zh) 一种混杂基体SiCf/SiC复合材料及其制备方法
CN114105662B (zh) 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN109437975B (zh) 一种耐高温高韧性的SiCf/SiC复合材料预制体复合界面层及其制备方法
CN113105257B (zh) 一种纤维增强陶瓷基复合材料用界面层及其筛选方法
CN114507078B (zh) 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法
CN113173791A (zh) 一种SiC纤维增强复合材料用SiBCN界面涂层及制备方法和应用
CN114380612A (zh) 低损耗高抗氧化碳化硅纤维增强氧化锆-钨酸锆陶瓷复合材料的制备方法
EP1452488B1 (en) Method of producing silicon carbide ceramics from plant precursors
CN115677355B (zh) 一种纤维表面Si3N4纳米网络复合界面相层及其制备方法
Naslain et al. X-CVI (with X= I or P), A unique process for the engineering and infiltration of the interphase in SiC-matrix composites: an overview
CN116606151B (zh) 一种夹层闭孔隔热界面相及其制备方法和应用
Zhang et al. High performance SiC/SiOC composites with in situ carbon interface
CN115403397B (zh) 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法
Naslain Processing of non-oxide ceramic matrix composites: an overview

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant