CN115403397B - 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法 - Google Patents

核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法 Download PDF

Info

Publication number
CN115403397B
CN115403397B CN202210958670.9A CN202210958670A CN115403397B CN 115403397 B CN115403397 B CN 115403397B CN 202210958670 A CN202210958670 A CN 202210958670A CN 115403397 B CN115403397 B CN 115403397B
Authority
CN
China
Prior art keywords
coating
deposition furnace
temperature ceramic
solid solution
pyc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210958670.9A
Other languages
English (en)
Other versions
CN115403397A (zh
Inventor
张雨雷
陈慧
朱肖飞
张建华
孙星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210958670.9A priority Critical patent/CN115403397B/zh
Publication of CN115403397A publication Critical patent/CN115403397A/zh
Application granted granted Critical
Publication of CN115403397B publication Critical patent/CN115403397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法,具体为核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层,目的是开发一种具有超高熔点和良好韧性的超高温陶瓷纳米线,制备成分可控的(Hf,Ta)C超高温陶瓷涂层,通过调控纳米线与超高温陶瓷涂层间的界面来提高涂层的抗烧蚀性能,以实现陶瓷涂层在极端环境下对基体材料的有效防护。(Hf,Ta)C固溶体超高的熔点是陶瓷涂层及增韧相的绝佳选择。此外,本发明有效避免了因多次升/降温导致的涂层内部热应力增大的问题以及多次装/卸前驱体和基体对纳米线、PyC层及涂层结构的破坏。本发明制备工艺简单、操作方便、同时适用于简单形状和复杂形状的多种基体。

Description

核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备 方法
技术领域
本发明属于材料防护领域,涉及一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法,具体涉及一种核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层及一步制备法。
背景技术
超高温陶瓷材料(UHTCs)是一类可以在2000℃以上的超高温有氧环境下依然能够保持化学和物理稳定性的热防护结构材料。由于UHTCs具有高熔点(>3000℃)、高硬度、良好的化学稳定性、较高的氧化防护能力等众多优异高温物理性能,其可应用到极端环境中,因此是一种非常有前途的高温结构材料。UHTCs主要包括过渡族金属Hf、Ta和Zr的碳化物、硼化物及氮化物等,ⅥB和ⅤB组成的过渡金属单相碳化物是岩盐晶体结构,这些材料的结合是共价键、离子键及金属键的混合,因此具有高硬度,良好的导热性和更高的熔点。以上化合物中TaC的熔点最高(3950℃),HfC熔点(3928℃)和ZrC熔点(3420℃)次之。此外,TaC具有最低的热膨胀系数(6.3×10-6/℃)。因此,HfC和TaC具有绝佳的综合性能(熔点、弹性模量、强度、硬度、热膨胀系数、导热系数),是最有潜力的超高温陶瓷碳化物。为探索出高温性能更好的陶瓷材料,研究人员尝试在单组元碳化物的基础上增加过渡金属元素,在多种组合的二元碳化物中,HfC和TaC在887℃及以上便可在整个组成范围内形成固溶体,学者研究表明(Hf,Ta)C固溶体不仅具有超高的熔点和较好的塑性,其在抗烧蚀/氧化领域也具有较大的潜力,是抗烧蚀涂层的绝佳候选材料。此外,(Hf,Ta)C固溶体纳米线兼具一维材料大长径比、高比表面积、良好韧性和块状固溶体陶瓷的高熔点和良好的塑性,可以作为超高温陶瓷的增韧相有效提高材料的抗烧蚀性能。尽管纳米线对于超高温陶瓷的增韧效果表现良好,但是仍存在以下亟待解决问题:纳米线与陶瓷涂层的界面结合强度过高,制约了纳米线的拉拔、剥落和桥接的韧性机制,降低了纳米线的增韧效果,因此纳米线与陶瓷涂层的界面层引起了研究人员极大的关注。
为了解决这个问题,文献1“Zheng GB,Mizuki H,Sano H,Uchiyama Y.CNT-PyC-SiC/SiC double-layer oxidation-protection coating on C/C composite.Carbon,46(2008)1792-1828.”报道了在C/C复合材料上沉积CNTs-PyC-SiC/SiC涂层,在碳纳米管(CNTs)上沉积热解碳(PyC)层,提高了CNTs与C/C的结合强度,降低了涂层中的热应力,减少涂层裂纹同时使裂纹发生偏转,提高了涂层的抗氧化性能。虽然没有达到完全的抗氧化,但PyC无疑在提高结合强度和缓解应力方面发挥了重要作用。
文献2“Yang B,Zhou XG,Chai YX.Mechanical properties of SiCf/SiCcomposites with PyC and the BN interface.Ceramics International.41(2015)7185-7190.”报道了PyC和BN界面层对SiCf/SiC复合材料力学性能的影响,结果表明引入PyC层对复合材料抗弯强度和韧性的增强效果优于BN层。
文献3“Ren JC,Duan YT,Lv CF,Luo JY,Zhang YL,Fu YQ.Effects of HfC/PyCcore-shell structure nanowires on the microstructure and mechanicalproperties of Hf1-xZrxC coating.Ceramics International.47(2021)7853-7863.”采用三步CVD技术在C/C复合材料上合成了HfCnw/PyC核壳结构增韧Hf1-xZrxC涂层,HfCnw/PyC的掺入抑制了涂层在制备过程中的开裂,使涂层结构由柱状晶变为等距晶状,HfCnw/PyC与涂层基体的结合强度、PyC层的层片状结构和HfCnw/PyC的拔出、脱粘、桥接和裂纹偏转机理更加明显。
然而,相比于现有的HfC纳米线,(Hf,Ta)C纳米线兼具HfC和TaC的优良性能,具有更低的热膨胀系数和更优异的塑性性能;此外,在纳米线与陶瓷涂层间引入PyC层有助于减少涂层中热应力集中,(Hf,Ta)C超高温陶瓷也具有更优异的抗烧蚀性能;传统的化学气相沉积制备的超高温陶瓷纳米线增韧涂层是分步进行,会伴随着升降温导致纳米线出现结构变化以及涂层内产生残余热应力。对于纳米线增韧涂层,随着沉积次数的增加,多次升/降温会导致涂层内部的热应力也随之增大,同时多次装/卸前驱体和基体容易破坏纳米线、PyC层及涂层的结构,这对于涂层在烧蚀环境下的服役是不利的。因此,采用一步法制备核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层能够避免涂层制备过程中由于应力的集中而造成的易开裂和脱落问题,有效提高涂层的抗烧蚀性能。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法,提出一种核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层及一步制备法,采用一步CVD技术在碳/碳复合材料表面制备了均匀致密的核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超过高温陶瓷涂层,其中(Hf,Ta)C相比HfC具有更低的热膨胀系数和塑性性能。发明目的是采用一步法制备(Hf,Ta)C纳米线增韧(Hf,Ta)C超高温陶瓷涂层,并在纳米线与涂层界面处引入PyC以提高纳米线和涂层的结合强度,一步法可有效避免因多次升降温引起的热应力集中,有助于提高涂层的抗烧蚀性能。
技术方案
一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层,其特征在于:成分为可控的(Hf,Ta)C超高温陶瓷涂层,采用HfCl4和TaCl5粉料共沉积形成(Hf,Ta)C超高温陶瓷纳米线为固溶体结构,在(Hf,Ta)C超高温陶瓷固溶体纳米线表面有PyC层,在PyC层上有(Hf,Ta)C固溶体涂层。
所述HfCl4和TaCl5粉料的重量比为4﹕1~1﹕4。
所述PyC层厚度为50-150nm。
一种所述核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层的一步制备方法,其特征在于步骤如下:
步骤1:将HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,然后将送粉器与化学气相沉积炉进气口相连;
所述HfCl4和TaCl5粉料的重量比为4﹕1~1﹕4;
步骤2:将预处理的C/C复合材料用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;
步骤3:将沉积炉抽真空至2-6KPa,通入流量为30-50ml/min的H2并以4-8℃/min的升温速率将沉积炉升温;
步骤4:将沉积炉升温至1050-1150℃,通入流量分别为600-1000ml/min和80-100ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为200-800r/min,保温1-2h获得(Hf,Ta)Cnws;
步骤5:关闭送粉器,然后将H2和CH4的流量分别调至300-500ml/min和150-250ml/min,沉积炉在1050-1150℃保温1-3h获得核壳结构(Hf,Ta)Cnws/PyC;
步骤6:将H2和CH4的流量分别调至600-800ml/min和100-300ml/min,同时通入流量为200-400ml/min的N2,然后将沉积炉升温至1200-1300℃,打开送粉器将转速设置为200-1200r/min,保温4-12h;
步骤7:关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C固溶体超高温陶瓷涂层。
所述C/C复合材料预处理:将烘干后的C/C复合材料浸入Ni(NO3)2/乙醇溶液中浸泡6-10h后烘干。
所述Ni(NO3)2/乙醇溶液的浓度为0.5-1.5mol/L。
所述C/C复合材料由碳布、碳毡、石墨及超高温陶瓷取代。
所述CH4由C3H6取代。
所述N2由Ar取代。
有益效果
本发明提出的一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法,具体为核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层,目的是开发一种具有超高熔点和良好韧性的超高温陶瓷纳米线,制备成分可控的(Hf,Ta)C超高温陶瓷涂层,通过调控纳米线与超高温陶瓷涂层间的界面来提高涂层的抗烧蚀性能,以实现陶瓷涂层在极端环境下对基体材料的有效防护。(Hf,Ta)C固溶体超高的熔点是陶瓷涂层及增韧相的绝佳选择。此外,本发明有效避免了因多次升/降温导致的涂层内部热应力增大的问题以及多次装/卸前驱体和基体对纳米线、PyC层及涂层结构的破坏。本发明制备工艺简单、操作方便、同时适用于简单形状和复杂形状的多种基体。
有益效果具体为:
1)本发明采用HfCl4和TaCl5粉料共沉积,制备的(Hf,Ta)C超高温陶瓷纳米线为固溶体结构,比HfC纳米线具有更高的熔点和更优异的塑性性能,且本发明制备的纳米线产量及形貌可控,可实现在极端环境下对超高温陶瓷的可控增韧;
2)本发明采用一步法在(Hf,Ta)C超高温陶瓷固溶体纳米线表面制备了均匀且厚度可控的PyC层,可有效降低纳米线和涂层的结合强度,根据纤维束强迫复合材料的界面理论,弱界面结合有利于界面剥离、裂纹挠曲和分支,有利于提高材料的韧性。本发明通过在纳米线表面制备界面层,可以调节界面结合强度,以达到提高纳米线增韧涂层效果的目的;
3)(Hf,Ta)C固溶体经烧蚀后形成的氧化物是其具有良好抗烧蚀性能的关键所在,本发明采用HfCl4和TaCl5粉料共沉积制备(Hf,Ta)C超高温陶瓷涂层,可以通过控制粉料比例来控制((Hf,Ta)C固溶体中的Hf/Ta比例,最终达到控制产物中氧化物的目的,为纳米线对陶瓷涂层的可控增韧奠定基础;
4)本发明采用一步CVD技术制备(Hf,Ta)Cnws/PyC增韧超高温陶瓷涂层,有效避免了因多次升/降温导致的涂层内部热应力增大的问题,同时避免了多次装卸前驱体和基体造成的纳米线、PyC层及涂层结构结构破坏问题,这对于涂层在烧蚀环境下的服役至关重要;
5)本发明能够避免涂层制备过程中由于应力的集中而造成的易开裂和脱落问题,有效提高涂层的抗烧蚀性能;
6)本发明制备工艺简单、操作方便、产物结构形貌可控、同时适用于简单形状和复杂形状的多种材质的基体。
附图说明
图1为本发明制备的(Hf,Ta)Cnws的SEM图;
图2为本发明制备的(Hf,Ta)Cnws/PyC的SEM图;
图3为本发明制备的(Hf,Ta)Cws/PyC的TEM图
图4为本发明制备的(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层的表面XRD图;
图5为本发明制备的(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层的表面SEM图;
图6为本发明制备的(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层的截面SEM;
图7为本发明实施反例1制备的涂层表面SEM图;
图8为本发明实施反例2制备的涂层表面SEM图;
图9为本发明实施反例2制备的涂层表面XRD图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和显示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将C/C复合材料切割成10×10×10mm3的块状样,经碳化硅砂纸打磨后用无水乙醇超声清洗,随后置于70℃烘箱中烘干。将烘干后的C/C复合材料浸入浓度为0.5mol/L的Ni(NO3)2/乙醇溶液中浸泡10h,随后烘干用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;分别称取100g的HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,其中HfCl4和TaCl5前驱体粉料的比例4﹕1;
然后将送粉器与化学气相沉积炉进气口相连;将沉积炉抽真空至2KPa,检查其气密性良好后,通入流量为30ml/min的H2并以4℃/min的升温速率将沉积炉升温至1050℃,通入流量分别为600ml/min和80ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为200r/min,保温1h获得(Hf,Ta)Cnws如图1所示,纳米线分布均匀,有较大的长径比;随后关闭送粉器,将沉积炉升温至1050℃,然后将H2和CH4的流量分别调至300ml/min和150ml/min,保温3h获得核壳结构(Hf,Ta)Cnws/PyC,如图2、3所示为(Hf,Ta)Cnws/PyC的SEM图和TEM图,图中PyC层包裹(Hf,Ta)Cnws,形成核壳结构,有利于降低纳米线和涂层之间的结合强度;然后将H2和CH4的流量分别调至600ml/min和100ml/min,同时通入流量为200ml/min的N2,然后将沉积炉升温至1200℃,打开送粉器将转速设置为200r/min,保温4h;沉积结束后关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层。
实施例2
将C/C复合材料切割成10×10×10mm3的块状样,经碳化硅砂纸打磨后用无水乙醇超声清洗,随后置于70℃烘箱中烘干。将烘干后的C/C复合材料浸入浓度为1mol/L的Ni(NO3)2/乙醇溶液中浸泡8h,随后烘干用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;分别称取200g的HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,其中HfCl4和TaCl5前驱体粉料的比例1﹕1;
然后将送粉器与化学气相沉积炉进气口相连;将沉积炉抽真空至4KPa,检查其气密性良好后,通入流量为40ml/min的H2并以6℃/min的升温速率将沉积炉升温至1100℃,通入流量分别为800ml/min和90ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为500r/min,保温1.5h获得(Hf,Ta)Cnws;随后关闭送粉器,将沉积炉升温至1100℃,然后将H2和CH4的流量分别调至400ml/min和200ml/min,保温2h获得核壳结构(Hf,Ta)Cnws/PyC;然后将H2和CH4的流量分别调至700ml/min和200ml/min,同时通入流量为300ml/min的N2,然后将沉积炉升温至1250℃,打开送粉器将转速设置为700r/min,保温8h;沉积结束后关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层。图4为涂层的XRD图谱,由图可知,衍射峰峰型尖锐,对称性好,说明涂层具有很好的结晶度,而且,衍射峰相对于HfC峰向更高角度产生了偏移,表明涂层为(Hf,Ta)C固溶体涂层;如图5所示,涂层表面均匀致密,无裂纹的存在,且涂层表面点扫可知涂层中包含Hf,Ta及C元素;(Hf,Ta)Cnws/PyC有助于抑制(Hf,Ta)C超高温陶瓷涂层中裂纹的形成和扩展,可有效提高涂层的抗烧蚀性能。
实施例3
将C/C复合材料切割成10×10×10mm3的块状样,经碳化硅砂纸打磨后用无水乙醇超声清洗,随后置于70℃烘箱中烘干。将烘干后的C/C复合材料浸入浓度为1.5mol/L的Ni(NO3)2/乙醇溶液中浸泡6h,随后烘干用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;分别称取300g的HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,其中HfCl4和TaCl5前驱体粉料的比例1﹕4;
然后将送粉器与化学气相沉积炉进气口相连;将沉积炉抽真空至6KPa,检查其气密性良好后,通入流量为50ml/min的H2并以8℃/min的升温速率将沉积炉升温至1150℃,通入流量分别为1000ml/min和100ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为800r/min,保温2h获得(Hf,Ta)Cnws;随后关闭送粉器,将沉积炉升温至1150℃,然后将H2和CH4的流量分别调至500ml/min和250ml/min,保温1h获得核壳结构(Hf,Ta)Cnws/PyC;然后将H2和CH4的流量分别调至800ml/min和300ml/min,同时通入流量为400ml/min的N2,然后将沉积炉升温至1300℃,打开送粉器将转速设置为1200r/min,保温12h;沉积结束后关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层。
图6为本发明制备涂层的截面SEM图,从图中可以看到涂层较为致密,涂层中可以观察到较多核壳结构的(Hf,Ta)Cnws/PyC,该涂层中PyC层可以有效降低纳米线和涂层的结合强度,以达到提高纳米线增韧涂层效果的目的。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何的简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。
实施反例1
将C/C复合材料切割成10×10×10mm3的块状样,经碳化硅砂纸打磨后用无水乙醇超声清洗,随后置于70℃烘箱中烘干。将烘干后的C/C复合材料浸入浓度为1mol/L的Ni(NO3)2/乙醇溶液中浸泡8h,随后烘干用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;分别称取200g的HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,然后将送粉器与化学气相沉积炉进气口相连;将沉积炉抽真空至4KPa,检查其气密性良好后,通入流量为40ml/min的H2并以6℃/min的升温速率将沉积炉升温至1100℃,通入流量分别为800ml/min和90ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为500r/min,保温1.5h获得(Hf,Ta)Cnws;随后将H2和CH4的流量分别调至700ml/min和200ml/min,同时通入流量为300ml/min的N2,然后将沉积炉升温至1250℃,打开送粉器将转速设置为700r/min,保温8h;沉积结束后关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层。图所示为本实施反例制备的涂层,由图可知涂层中存在较宽的裂纹,在烧蚀过程中会形成氧扩散的通道,不利于其抗烧蚀性能。
实施反例2
将C/C复合材料切割成10×10×10mm3的块状样,经碳化硅砂纸打磨后用无水乙醇超声清洗,随后置于70℃烘箱中烘干。将烘干后的C/C复合材料浸入浓度为1mol/L的Ni(NO3)2/乙醇溶液中浸泡8h,随后烘干用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;分别称取40g的HfCl4和TaCl5前驱体粉料分别放置在两个坩埚中,将沉积炉抽真空至4KPa,检查其气密性良好后,通入流量为40ml/min的H2并以6℃/min的升温速率将沉积炉升温至1100℃,通入流量分别为800ml/min和90ml/min的H2和CH4,保温1.5h获得(Hf,Ta)Cnws;待沉积炉自然降至室温后,取出坩埚分别重新加入40g的HfCl4和TaCl5前驱体粉料,然后将沉积炉升温至1150℃,将H2和CH4的流量分别调至500ml/min和250ml/min,保温3h获得核壳结构(Hf,Ta)Cnws/PyC;待沉积炉自然降至室温后,取出坩埚分别重新加入120g的HfCl4和TaCl5前驱体粉料,然后将沉积炉升温至1250℃,将H2和CH4的流量分别调至700ml/min和200ml/min,同时通入流量为300ml/min的N2,保温8h;沉积结束后关闭加热程序,停止通入H2和CH4,将N2调至100ml/min等待沉积炉自然降至室温,获得(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C超高温陶瓷涂层。图8所示为本实施反例制备的涂层,由图可知,所制备的涂层不致密,涂层表面有许多陶瓷颗粒,不致密的涂层会导致烧蚀过程中涂层容易被破坏;图9为该涂层的XRD图,从图中可知,衍射峰对称性较差且有明显肩峰,说明涂层为HfC-TaC复相涂层而不是(Hf,Ta)C固溶涂层,衍射峰中有明显的C峰,说明涂层均匀性较差,无法完全覆盖基体。
从图8中可知,衍射峰对称性较差且有明显肩峰,说明涂层为HfC-TaC复相涂层而不是(Hf,Ta)C固溶涂层,衍射峰中有明显的C峰,说明涂层均匀性较差,无法完全覆盖基体,对基体的烧蚀防护较弱。图4为采用该专利制备的涂层的XRD图谱,由图可知,衍射峰峰型尖锐,对称性好,说明涂层具有很好的结晶度,而且,衍射峰相对于HfC峰向更高角度产生了偏移,表明涂层为(Hf,Ta)C固溶体涂层,涂层完全覆盖基体,能更有效的对基体进行烧蚀防护。

Claims (8)

1.一种核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层,其特征在于:成分为可控的(Hf,Ta)C超高温陶瓷涂层,采用HfCl4和TaCl5粉料共沉积形成(Hf,Ta)C超高温陶瓷纳米线为固溶体结构,在(Hf,Ta)C超高温陶瓷固溶体纳米线表面有PyC层,在PyC层上有(Hf,Ta)C固溶体涂层;
所述核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层是按照以下步骤制得:
步骤1:将HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,然后将送粉器与化学气相沉积炉进气口相连;
所述HfCl4和TaCl5粉料的重量比为4﹕1~1﹕4;
步骤2:将预处理的C/C复合材料用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;
步骤3:将沉积炉抽真空至2-6KPa,通入流量为30-50ml/min的H2并以4-8℃/min的升温速率将沉积炉升温;
步骤4:将沉积炉升温至1050-1150℃,通入流量分别为600-1000ml/min和80-100ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为200-800r/min,保温1-2h获得(Hf,Ta)Cnws;
步骤5:关闭送粉器,然后将H2和CH4的流量分别调至300-500ml/min和150-250ml/min,沉积炉在1050-1150℃保温1-3h获得核壳结构(Hf,Ta)Cnws/PyC;
步骤6:将H2和CH4的流量分别调至600-800ml/min和100-300ml/min,同时通入流量为200-400ml/min的N2,然后将沉积炉升温至1200-1300℃,打开送粉器将转速设置为200-1200r/min,保温4-12h;
步骤7:关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C固溶体超高温陶瓷涂层。
2.根据权利要求1所述的核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层,其特征在于:所述PyC层厚度为50-150nm。
3.一种权利要求1~2任一项所述核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层的一步制备方法,其特征在于步骤如下:
步骤1:将HfCl4和TaCl5前驱体粉料混合均匀后装入已烘干的送粉器中,然后将送粉器与化学气相沉积炉进气口相连;
所述HfCl4和TaCl5粉料的重量比为4﹕1~1﹕4;
步骤2:将预处理的C/C复合材料用钼丝悬挂于沉积模具中并置于化学气相沉积炉高温沉积区;
步骤3:将沉积炉抽真空至2-6KPa,通入流量为30-50ml/min的H2并以4-8℃/min的升温速率将沉积炉升温;
步骤4:将沉积炉升温至1050-1150℃,通入流量分别为600-1000ml/min和80-100ml/min的H2和CH4,同时打开装有HfCl4和TaCl5前驱体混合粉料的送粉器,将转速设置为200-800r/min,保温1-2h获得(Hf,Ta)Cnws;
步骤5:关闭送粉器,然后将H2和CH4的流量分别调至300-500ml/min和150-250ml/min,沉积炉在1050-1150℃保温1-3h获得核壳结构(Hf,Ta)Cnws/PyC;
步骤6:将H2和CH4的流量分别调至600-800ml/min和100-300ml/min,同时通入流量为200-400ml/min的N2,然后将沉积炉升温至1200-1300℃,打开送粉器将转速设置为200-1200r/min,保温4-12h;
步骤7:关闭加热程序,停止通入H2和CH4,将N2流量调至100ml/min等待沉积炉自然降至室温,获得核壳结构(Hf,Ta)Cnws/PyC增韧(Hf,Ta)C固溶体超高温陶瓷涂层。
4.根据权利要求3所述的方法,其特征在于:所述C/C复合材料预处理:将烘干后的C/C复合材料浸入Ni(NO3)2/乙醇溶液中浸泡6-10h后烘干。
5.根据权利要求4所述的方法,其特征在于:所述Ni(NO3)2/乙醇溶液的浓度为0.5-1.5mol/L。
6.根据权利要求3所述的方法,其特征在于:所述C/C复合材料由碳布、碳毡、石墨及超高温陶瓷取代。
7.根据权利要求3所述的方法,其特征在于:所述CH4由C3H6取代。
8.根据权利要求3所述的方法,其特征在于:所述N2由Ar取代。
CN202210958670.9A 2022-08-09 2022-08-09 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法 Active CN115403397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210958670.9A CN115403397B (zh) 2022-08-09 2022-08-09 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210958670.9A CN115403397B (zh) 2022-08-09 2022-08-09 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法

Publications (2)

Publication Number Publication Date
CN115403397A CN115403397A (zh) 2022-11-29
CN115403397B true CN115403397B (zh) 2023-10-24

Family

ID=84160551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210958670.9A Active CN115403397B (zh) 2022-08-09 2022-08-09 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法

Country Status (1)

Country Link
CN (1) CN115403397B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397901A (en) * 1979-07-31 1983-08-09 Warren James W Composite article and method of making same
FR2607130A1 (fr) * 1986-11-26 1988-05-27 Norton Co Ceramiques composites de nitrure de silicium a renforcement fibreux
US4863773A (en) * 1987-02-25 1989-09-05 Aerospatiale Societe Nationale Industrielle Composite material with matrix and reinforcing fibers of carbon
EP0334577A1 (en) * 1988-03-21 1989-09-27 Hoechst Celanese Corporation Carbon-coated silicon carbide whiskers for controlling the formation of an oxide coating
JPH06272167A (ja) * 1993-03-16 1994-09-27 Toshiba Corp 複合材料用繊維
CN103332945A (zh) * 2013-06-17 2013-10-02 中南大学 一种无裂纹涂层纤维的制备方法
CN103396169A (zh) * 2013-03-29 2013-11-20 西北工业大学 一种珠串状纳米线增韧增强陶瓷涂层的制备方法
CN105272325A (zh) * 2015-11-13 2016-01-27 中航复合材料有限责任公司 一种连续氧化物纤维织物表面涂层的制备方法
CN105541412A (zh) * 2016-01-27 2016-05-04 南京工程学院 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN106673710A (zh) * 2016-12-02 2017-05-17 西北工业大学 碳/碳复合材料表面HfC纳米线增韧抗烧蚀陶瓷涂层及制备方法
CN110357647A (zh) * 2018-10-08 2019-10-22 湖南德智新材料有限公司 一种碳化硅纳米线增强的陶瓷基复合材料及其制备方法
CN113402303A (zh) * 2021-06-30 2021-09-17 西北工业大学 基于梯度蒸发模具的CVD-TaxHf1-xC固溶体涂层的制备方法
CN114671710A (zh) * 2022-03-10 2022-06-28 西北工业大学 一种双周期多层TaC/HfC超高温陶瓷抗烧蚀涂层及制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397901A (en) * 1979-07-31 1983-08-09 Warren James W Composite article and method of making same
FR2607130A1 (fr) * 1986-11-26 1988-05-27 Norton Co Ceramiques composites de nitrure de silicium a renforcement fibreux
US4863773A (en) * 1987-02-25 1989-09-05 Aerospatiale Societe Nationale Industrielle Composite material with matrix and reinforcing fibers of carbon
EP0334577A1 (en) * 1988-03-21 1989-09-27 Hoechst Celanese Corporation Carbon-coated silicon carbide whiskers for controlling the formation of an oxide coating
JPH06272167A (ja) * 1993-03-16 1994-09-27 Toshiba Corp 複合材料用繊維
CN103396169A (zh) * 2013-03-29 2013-11-20 西北工业大学 一种珠串状纳米线增韧增强陶瓷涂层的制备方法
CN103332945A (zh) * 2013-06-17 2013-10-02 中南大学 一种无裂纹涂层纤维的制备方法
CN105272325A (zh) * 2015-11-13 2016-01-27 中航复合材料有限责任公司 一种连续氧化物纤维织物表面涂层的制备方法
CN105541412A (zh) * 2016-01-27 2016-05-04 南京工程学院 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN106673710A (zh) * 2016-12-02 2017-05-17 西北工业大学 碳/碳复合材料表面HfC纳米线增韧抗烧蚀陶瓷涂层及制备方法
CN110357647A (zh) * 2018-10-08 2019-10-22 湖南德智新材料有限公司 一种碳化硅纳米线增强的陶瓷基复合材料及其制备方法
CN113402303A (zh) * 2021-06-30 2021-09-17 西北工业大学 基于梯度蒸发模具的CVD-TaxHf1-xC固溶体涂层的制备方法
CN114671710A (zh) * 2022-03-10 2022-06-28 西北工业大学 一种双周期多层TaC/HfC超高温陶瓷抗烧蚀涂层及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Microstructure and ablation performance of HfC/PyC core-shell structure nanowire-reinforced Hf1-xZrxC coating";Ren, Jincui;《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》;第41卷(第15期);第7450-7463页 *
(美)F.C.坎贝尔著.《结构复合材料》.上海交通大学出版社,2019,第622页. *
化学气相沉积HfC纳米线增韧HfC基抗烧蚀涂层研究;任金翠;《中国博士学位论文全文数据库 工程科技Ⅰ辑》(第02期);全文 *
碳基材料表面TaC涂层的研究进展;沈小松;王松;李伟;蒋进明;;人工晶体学报(06);全文 *

Also Published As

Publication number Publication date
CN115403397A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN103193497B (zh) 一种抗硅侵蚀粘连的碳/碳复合材料制品及其制备方法
CN108395279B (zh) 化学气相共沉积法制备HfC-SiC复相梯度涂层的方法
CN101875562B (zh) 一种炭纤维增强炭和六方氮化硼双基体摩擦材料的制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
CN114044679A (zh) 一种高强韧超高温陶瓷基复合材料及其制备方法
CN109485423B (zh) SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
CN113024281B (zh) 一种碳化硅/石墨烯仿生层叠涂层及制备方法
CN111485220A (zh) 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN115108852B (zh) 一种石墨复合材料及其制备方法和应用
CN102330328A (zh) 一种三维纤维/碳纳米管多级增强体及其制备方法
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN115259900B (zh) 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法
JPH0360413A (ja) 炭素材料の製造法
CN113321522B (zh) 一种原位生长SiC纳米线改性SiCf/SiC陶瓷基复合材料的制备方法和应用
CN107265416A (zh) 热解氮化硼材料的制备方法
CN115403397B (zh) 核壳结构增韧(Hf,Ta)C固溶体超高温陶瓷涂层及一步制备方法
Gai et al. HfB2 coating on C/C composites prepared by chemical vapor deposition: Thermodynamics and experimental investigation
Liu et al. Research progress on tantalum carbide coatings oncarbon materials
Dong et al. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts
CN115894085A (zh) 一种复合陶瓷涂层材料及其制备方法和应用
CN111850498B (zh) 一种碳纳米纤维增强镍基复合涂层及其制备方法
CN109825901B (zh) 铝、锆共掺杂的碳化硅/氮化硼纤维及其制备方法
CN116003164B (zh) 一种提高C/C复合材料基体与SiC涂层结合力的方法
Wang et al. Boron nitride microribbons strengthened and toughened alumina composite ceramics with excellent mechanical, dielectric, and thermal conductivity properties.
CN114507078B (zh) 相变材料改性碳纤维增强碳化铪陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant