CN114455969A - 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚 - Google Patents

一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚 Download PDF

Info

Publication number
CN114455969A
CN114455969A CN202111653464.9A CN202111653464A CN114455969A CN 114455969 A CN114455969 A CN 114455969A CN 202111653464 A CN202111653464 A CN 202111653464A CN 114455969 A CN114455969 A CN 114455969A
Authority
CN
China
Prior art keywords
carbon
crucible
impregnation
alumina coating
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111653464.9A
Other languages
English (en)
Other versions
CN114455969B (zh
Inventor
张永辉
程皓
白鸽
郁荣
候雯菲
康媛媛
程凯峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Chaoma Technology Co ltd
Original Assignee
Xi'an Chaoma Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Chaoma Technology Co ltd filed Critical Xi'an Chaoma Technology Co ltd
Priority to CN202111653464.9A priority Critical patent/CN114455969B/zh
Publication of CN114455969A publication Critical patent/CN114455969A/zh
Application granted granted Critical
Publication of CN114455969B publication Critical patent/CN114455969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种含有氧化铝涂层的高密度C/C‑SiC复合材料坩埚,属于单晶硅拉制炉用热场部件技术领域。所述复合材料坩埚包括坩埚本体以及涂覆在坩埚本体内表面的氧化铝涂层,坩埚本体是通过CVI工艺、树脂浸渍炭化工艺以及PIP工艺依次对炭纤维预制体进行热解炭、树脂炭以及碳化硅增密处理获得的体积密度为1.8g/cm3~2.0g/cm3的C/C‑SiC复合材料,氧化铝涂层的成分以γ‑Al2O3为主;其中,炭纤维预制体的体积密度为0.3g/cm3~0.6g/cm3,热解炭增密至1.0g/cm3~1.2g/cm3,树脂炭增密至1.4g/cm3~1.6g/cm3,碳化硅增密至1.8g/cm3~2.0g/cm3。所述复合材料坩埚既具有支撑作用又可保证熔融硅纯度,而且使用寿命显著提高,有效降低单晶硅拉制成本,解决了现有技术中必须同时使用石英坩埚和炭/炭复合材料坩埚拉制单晶硅所带来的问题。

Description

一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
技术领域
本发明涉及一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,属于单晶硅拉制炉用热场部件技术领域。
背景技术
目前,利用直拉法生产单晶硅过程中,盛装多晶硅的石英坩埚安放在炭/炭复合材料坩埚内(如图1所示),其中石英坩埚用来承载硅料以保证硅料的纯度,炭/炭复合材料坩埚用来承载石英坩埚以提供强度支撑。在拉晶工况下使得石英坩埚与炭/炭复合材料坩埚之间结合很紧密,只能采用敲碎旧石英坩埚并换上新的石英坩埚后方可进行下一炉的拉制,因此,一方面会对炭/炭复合材料坩埚造成机械损伤,降低了炭/炭复合材料坩埚的使用寿命;同时,每炉次将消耗1件石英坩埚。随着坩埚尺寸的不断增加和石英坩埚原材料的逐步减少,炭/炭复合材料坩埚和石英坩埚在单晶硅生产中所占成本将会持续增加,进而造成当前单晶硅拉制炉生产出的单晶硅成本偏高。
专利CN 103102170 A公开了一种新型炭/炭复合材料坩埚,包括涂于炭/炭复合材料坩埚基体上的SiC涂层和Si3N4涂层,使坩埚可利用次数显著上升,寿命明显提高,但Si3N4涂层表面较为粗糙,且对硅有一定的润湿性,在单晶硅的生产过程中有破坏Si3N4涂层的风险;专利CN 102731119 A公开了一种制备工艺简单、耐硅蒸汽侵蚀的碳/碳/碳化硅复合材料坩埚及制备方法,特征在于在预制体表面采用化学气相渗透法进行热解碳和碳化硅交替增密或者混合增密至1.30~2.50g/cm3,大幅度提高了炭/炭坩埚的使用寿命,但不能替换传统的石英坩埚加炭/炭坩埚的生产模式,制备成本较高。
发明内容
针对现有技术中存在的问题,本发明提供一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,所述复合材料坩埚既具有支撑作用又可保证熔融硅纯度,避免了石英坩埚的使用,延长了复合材料坩埚的使用寿命,降低了单晶硅拉制成本,解决了现有技术中必须同时使用石英坩埚和炭/炭复合材料坩埚拉制单晶硅所带来的问题。
本发明的目的是通过以下技术方案实现的。
一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,所述复合材料坩埚包括坩埚本体以及涂覆在坩埚本体内表面的氧化铝涂层;
所述坩埚本体是通过化学气相渗透(CVI)工艺、树脂浸渍炭化工艺以及前驱体浸渍裂解(PIP)工艺依次对炭纤维预制体进行热解炭、树脂炭以及碳化硅增密处理获得的体积密度为1.8g/cm3~2.0g/cm3的C/C-SiC复合材料;其中,炭纤维预制体的体积密度为0.3g/cm3~0.6g/cm3,热解炭增密至1.0g/cm3~1.2g/cm3,树脂炭增密至1.4g/cm3~1.6g/cm3,碳化硅增密至1.8g/cm3~2.0g/cm3
所述氧化铝涂层的成分以γ-Al2O3为主。
进一步地,炭纤维预制体为轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺形成的;其中,优选炭纤维无纬布/炭网胎复合铺层中含有一层炭纤维无纬布和一层炭网胎,炭纤维无纬布/炭网胎复合铺层与一层炭纤维连续缠绕层交替叠加。
进一步地,采用CVI工艺进行热解炭增密过程中,碳源气体采用天然气或丙烯。
进一步地,采用树脂浸渍炭化工艺进行树脂炭增密过程中,先采用糠酮树脂或/和酚醛树脂进行压力浸渍,然后进行固化,再进行炭化,之后循环树脂浸渍固化炭化操作处理直至增密至所需密度;其中,浸渍压力优选1.0MPa~3.0MPa,单次浸渍时间优选0.5h~5h,固化温度优选100℃~300℃,单次固化时间优选1h~10h,炭化温度优选900℃~1100℃,单次炭化时间优选2h~6h。
进一步地,先将热解炭和树脂炭增密处理后获得的炭/炭基体在1600℃~2200℃下高温纯化1h~5h,然后采用前驱体浸渍裂解工艺进行碳化硅增密,此时含硅前驱体选用聚碳硅烷;相应地,PIP工艺优选如下条件:先采用含硅前驱体对热解炭以及树脂炭增密后获得的炭/炭基体进行浸渍处理,然后进行固化处理,再进行炭化处理,之后循环浸渍固化炭化操作处理直至增密至所需密度;其中,浸渍压力为1.0MPa~3.0MPa,单次浸渍时间为1h~5h,固化温度为200℃~400℃,单次固化时间为1h~5h,炭化温度为950℃~1050℃,单次炭化时间为3h~8h。
进一步地,氧化铝涂层的厚度为500μm~700μm。
进一步地,采用等离子喷涂法制备氧化铝涂层,优选等离子喷涂的工艺参数如下:载气(优选氮气)压力为0.2MPa~2.0MPa,辅气(优选氢气)压力为0.1MPa~1.0MPa,电流为200A~400A,电压为30V~50V,喷涂距离为30mm~50mm。
进一步地,等离子喷涂所采用的氧化铝粉体的纯度大于等于99.50%,优选粒径10μm~100μm。
有益效果:
(1)本发明所述复合材料坩埚,在单晶硅拉制过程中,取代了传统的石英坩埚结合炭/炭复合材料坩埚的生产模式,避免了石英坩埚的大量使用,解决了石英坩埚原材料缺乏的现状,具有重要的行业价值;而且避免了对复合材料坩埚的机械损伤,提高了复合材料坩埚的使用寿命,进一步降低了生产成本,具有显著的经济效益。
(2)本发明所述坩埚本体中采用CVI工艺结合树脂浸渍炭化工艺进行热解炭和树脂炭增密,缩短了制备周期,有效降低了生产成本,而且热解炭的存在能够避免炭纤维的损伤,为坩埚本体提供强度支撑;同时,调控炭纤维、热解炭、树脂炭以及碳化硅的含量,能使其形成的炭陶基体致密性高,承载能力强,在1.8g/cm3~2.0g/cm3的体积密度下能够满足坩埚的使用要求。
(3)本发明采用CVI工艺进行碳化硅增密之前进行的高温纯化处理,一方面有利于树脂炭中杂质(例如N、H、O等元素)的逸出,从而保证了基体炭的纯度;另一方面使树脂炭发生晶格结构转变,从无序结构转化为稳定的石墨态结构,进一步提高了材料的热稳定性;同时,高温纯化处理使树脂炭体积收缩,使其开孔率增加,有利于后续PIP工艺的进行,进一步缩短制造周期。
(4)本发明所述复合材料坩埚,在调控热解炭、树脂炭及碳化硅含量的基础上,通过优化的等离子喷涂工艺参数获得了厚度为500μm~700μm氧化铝涂层;氧化铝涂层以γ-Al2O3为主,与PIP工艺获得的非晶型SiC具有良好的适配性,结合强度高,同时,氧化铝涂层在单晶硅拉制过程中不会引入杂质成分,保证了拉制单晶硅过程中熔融硅的纯度,满足单晶硅拉制的需求。
(5)本发明所述复合材料坩埚中,选用轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺形成的炭纤维预制体,相对于其他编织形式的预制体,环向连续纤维的引入,提高了复合材料的环向拉伸强度,进一步提高了复合材料坩埚的使用寿命。
附图说明
图1为现有技术中炭/炭复合材料坩埚与石英坩埚共同作用下拉制单晶硅时的结构示意图。
图2为实施例中制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚的结构示意图。
图3为实施例1中制备的坩埚本体表面的X射线衍射(XRD)谱图。
图4为实施例1中制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚内表面的X射线衍射(XRD)谱图。
其中,1-坩埚本体,2-氧化铝涂层。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径获得。
实施例1
一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,所述复合材料坩埚包括坩埚本体1以及涂覆在坩埚本体1内表面的氧化铝涂层2,如图2所示;所述复合材料坩埚的具体制备步骤如下:
(1)采用轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺的形式制备体积密度为0.30g/cm3的炭纤维预制体;
其中,炭纤维无纬布/炭网胎复合铺层中含有一层炭纤维无纬布和一层炭网胎,炭纤维无纬布/炭网胎复合铺层与一层炭纤维连续缠绕层交替叠加;
(2)先采用化学气相渗透工艺对炭纤维预制体进行热解炭增密处理且增密至1.0g/cm3,然后采用树脂浸渍炭化工艺进行树脂炭增密且增密至1.4g/cm3,之后进行机械加工,即得到炭/炭基体;
化学气相渗透工艺的参数如下:以丙烯为碳源气体,碳源气体的流量为20L/min,沉积温度为900℃,总沉积时间为360h;
树脂浸渍炭化工艺的工艺条件如下:先采用糠酮树脂进行压力浸渍,然后进行固化,再进行炭化,之后循环树脂浸渍固化炭化操作处理;其中,浸渍压力为1.0MPa,单次浸渍时间为5h,固化温度为100℃,单次固化时间为10h,炭化温度为900℃,单次炭化时间为6h,糠酮树脂浸渍固化炭化周期循环处理总共3次;
(3)先将炭/炭基体置于1600℃下高温纯化5h,然后采用前驱体浸渍裂解工艺对炭/炭基体进行碳化硅增密处理,得到体积密度为1.8g/cm3的C/C-SiC基体,即得到坩埚本体1;
前驱体浸渍裂解工艺的工艺条件如下;以聚碳硅烷为含硅前驱体,先对炭/炭基体进行浸渍处理,浸渍压力为1.0MPa,浸渍时间为5h;浸渍完成后进行固化处理,固化温度为200℃,固化时间为5h;固化完成后进行炭化处理,炭化温度为950℃,炭化时间为8h;炭化完成后,即完成1个浸渍固化炭化周期,则浸渍固化炭化周期循环处理总共5次,得到体积密度为1.8g/cm3的C/C-SiC基体,即得到坩埚本体1;
(4)选用粒度为10μm以及质量纯度≥99.50%的氧化铝,载气氮气压力为0.2MPa,辅气氢气压力为0.1MPa,电压为30V,电流为200A,喷涂距离为50mm,通过等离子喷涂将氧化铝粉体喷涂在坩埚本体1的内表面,在其内表面形成一层厚度为500μm的氧化铝涂层2,即得到所述复合材料坩埚。
对步骤(3)制备的坩埚本体1分别进行拉伸强度测试以及XRD测试,测得拉伸强度为80MPa(根据GB/T 33501-2017标准测试);根据图3的XRD图谱可知,采用PIP工艺引入的是非晶型SiC。
对步骤(4)所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚的内表面进行XRD测试,根据图4的测试结果可知,坩埚本体1内表面的涂层成分以γ-Al2O3为主,同时还含有少量的α-Al2O3
实施例2
一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,所述复合材料坩埚包括坩埚本体1以及涂覆在坩埚本体1内表面的氧化铝涂层2,如图2所示;所述复合材料坩埚的具体制备步骤如下:
(1)采用轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺的形式制备体积密度为0.45g/cm3的炭纤维预制体;
其中,炭纤维无纬布/炭网胎复合铺层中含有一层炭纤维无纬布和一层炭网胎,炭纤维无纬布/炭网胎复合铺层与一层炭纤维连续缠绕层交替叠加;
(2)先采用化学气相渗透工艺对炭纤维预制体进行热解炭增密处理且增密至1.1g/cm3,然后采用树脂浸渍炭化工艺进行树脂炭增密且增密至1.5g/cm3,之后进行机械加工,即得到炭/炭基体;
化学气相渗透工艺的参数如下:以丙烯为碳源气体,碳源气体的流量为60L/min,沉积温度为1000℃,总沉积时间为240h;
树脂浸渍炭化工艺的工艺条件如下:先采用糠酮树脂进行压力浸渍,然后进行固化,再进行炭化,之后循环树脂浸渍固化炭化操作处理;其中,浸渍压力为2.0MPa,单次浸渍时间为3h,固化温度为200℃,单次固化时间为5h,炭化温度为1000℃,单次炭化时间为4h,糠酮树脂浸渍固化炭化周期循环处理总共2次;
(3)先将炭/炭基体置于1800℃下高温纯化3h,然后采用前驱体浸渍裂解工艺对炭/炭基体进行碳化硅增密处理,得到体积密度为1.9g/cm3的C/C-SiC基体,即得到坩埚本体1;
前驱体浸渍裂解工艺的工艺条件如下;以聚碳硅烷为含硅前驱体,先对炭/炭基体进行浸渍处理,浸渍压力为2.0MPa,浸渍时间为3h;浸渍完成后进行固化处理,固化温度为300℃,固化时间为3h;固化完成后进行炭化处理,炭化温度为1000℃,炭化时间为5h;炭化完成后,即完成1个浸渍固化炭化周期,则浸渍固化炭化周期循环处理总共3次,得到体积密度为1.90g/cm3的C/C-Si基体,即得到坩埚本体1;
(4)选用粒度为50μm以及质量纯度≥99.50%的氧化铝,载气氮气压力为1.0MPa,辅气氢气压力为0.5MPa,电压为40V,电流为300A,喷涂距离为40mm,通过等离子喷涂将氧化铝粉体喷涂在坩埚本体1的内表面,在其内表面形成一层厚度为600μm的氧化铝涂层2,即得到所述复合材料坩埚。
对步骤(3)制备的坩埚本体1分别进行拉伸强度测试以及XRD测试,测得拉伸强度为85MPa(根据GB/T 33501-2017标准测试);根据XRD的测试结果可知,采用PIP工艺引入的是非晶型SiC。
对步骤(4)所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚的内表面进行XRD测试,根据测试结果可知,C/C-SiC复合材料坩埚本体1内表面的涂层成分以γ-Al2O3为主,同时还含有少量的α-Al2O3
实施例3
一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,所述复合材料坩埚包括坩埚本体1以及涂覆在坩埚本体1内表面的氧化铝涂层2,如图2所示;所述复合材料坩埚的具体制备步骤如下:
(1)采用轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺的形式制备体积密度为0.60g/cm3的炭纤维预制体;
其中,炭纤维无纬布/炭网胎复合铺层中含有一层炭纤维无纬布和一层炭网胎,炭纤维无纬布/炭网胎复合铺层与一层炭纤维连续缠绕层交替叠加;
(2)先采用化学气相渗透工艺对炭纤维预制体进行热解炭增密处理且增密至1.2g/cm3,然后采用树脂浸渍炭化工艺进行树脂炭增密且增密至1.6g/cm3,之后进行机械加工,即得到炭/炭基体;
化学气相渗透工艺的参数如下:以天然气为碳源气体,碳源气体的流量为100L/min,沉积温度为1100℃,总沉积时间为120h;
树脂浸渍炭化工艺的工艺条件如下:先采用糠酮树脂进行压力浸渍,然后进行固化,再进行炭化,之后不需要循环树脂浸渍固化炭化操作处理;其中,浸渍压力为3.0MPa,单次浸渍时间为0.5h,固化温度为300℃,单次固化时间为1h,炭化温度为1100℃,单次炭化时间为2h,糠酮树脂浸渍固化炭化周期循环处理总共1次;
(3)先将炭/炭基体置于2200℃下高温纯化1h,然后采用前驱体浸渍裂解工艺对炭/炭基体进行碳化硅增密处理,得到体积密度为2.0g/cm3的C/C-SiC基体,即得到坩埚本体1;
前驱体浸渍裂解工艺的工艺条件如下;以聚碳硅烷为含硅前驱体,先对炭/炭基体进行浸渍处理,浸渍压力为3.0MPa,浸渍时间为1h;浸渍完成后进行固化处理,固化温度为400℃,固化时间为1h;固化完成后进行炭化处理,炭化温度为1050℃,炭化时间为3h;炭化完成后,即完成1个浸渍固化炭化周期,则浸渍固化炭化周期循环处理总共2次,得到体积密度为2.0g/cm3的C/C-SiC基体,即得到坩埚本体1;
(4)选用粒度为100μm以及质量纯度≥99.50%的氧化铝,载气氮气压力为2.0MPa,辅气氢气压力为1.0MPa,电压为50V,电流为400A,喷涂距离为30mm,通过等离子喷涂将氧化铝粉体喷涂在坩埚本体1的内表面,在其内表面形成一层厚度为700μm的氧化铝涂层2,即得到所述复合材料坩埚。
对步骤(3)制备的坩埚本体1分别进行拉伸强度测试以及XRD测试,测得拉伸强度为90MPa(根据GB/T 33501-2017标准测试);根据XRD的测试结果可知,采用PIP工艺引入的是非晶型SiC。
对步骤(4)所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚的内表面进行XRD测试,根据测试结果可知,C/C-SiC复合材料坩埚本体1内表面的涂层成分以γ-Al2O3为主,同时还含有少量的α-Al2O3
对本发明实施例1~3所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚与目前西安超码科技有限公司现有的“石英坩埚+炭/炭复合材料坩埚”生产模式下石英坩埚损耗量进行对比,结果见表1。
表1
Figure BDA0003447197890000081
对本发明实施例1~3所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚中的C/C-SiC复合材料坩埚本体1与目前西安超码科技有限公司现有的“石英坩埚+炭/炭复合材料坩埚”组合中的炭/炭复合材料坩埚力学性能进行对比,结果见表2。
表2
材料 拉伸强度(MPa)
炭/炭复合材料坩埚 60~80
C/C-SiC复合材料坩埚本体1 80~90
对本发明实施例1~3所制备的含有氧化铝涂层的高密度C/C-SiC复合材料坩埚与目前西安超码科技有限公司现有的“石英坩埚+炭/炭复合材料坩埚”组合中的炭/炭复合材料坩埚使用寿命进行对比,结果见表3。
表3
材料 使用寿命(月)
炭/炭复合材料坩埚 6~9
含有氧化铝涂层的高密度C/C-SiC复合材料坩埚 8~9
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:所述复合材料坩埚包括坩埚本体以及涂覆在坩埚本体内表面的氧化铝涂层;
所述坩埚本体是通过化学气相渗透工艺、树脂浸渍炭化工艺以及前驱体浸渍裂解工艺依次对炭纤维预制体进行热解炭、树脂炭以及碳化硅增密处理获得的体积密度为1.8g/cm3~2.0g/cm3的C/C-SiC复合材料;其中,炭纤维预制体的体积密度为0.3g/cm3~0.6g/cm3,热解炭增密至1.0g/cm3~1.2g/cm3,树脂炭增密至1.4g/cm3~1.6g/cm3,碳化硅增密至1.8g/cm3~2.0g/cm3
所述氧化铝涂层的成分以γ-Al2O3为主。
2.根据权利要求1所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:炭纤维预制体为轴向炭纤维无纬布/炭网胎复合铺层与环向炭纤维连续缠绕层交替叠加针刺形成的。
3.根据权利要求2所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:炭纤维无纬布/炭网胎复合铺层中含有一层炭纤维无纬布和一层炭网胎,炭纤维无纬布/炭网胎复合铺层与一层炭纤维连续缠绕层交替叠加。
4.根据权利要求1所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:采用化学气相渗透工艺进行热解炭增密过程中,碳源气体采用天然气或丙烯。
5.根据权利要求1所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:采用树脂浸渍炭化工艺进行树脂炭增密过程中,先采用糠酮树脂或/和酚醛树脂进行压力浸渍,然后进行固化,再进行炭化,之后循环树脂浸渍固化炭化操作处理直至增密至所需密度;
其中,浸渍压力1.0MPa~3.0MPa,单次浸渍时间0.5h~5h,固化温度100℃~300℃,单次固化时间1h~10h,炭化温度900℃~1100℃,单次炭化时间2h~6h。
6.根据权利要求1所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:先将热解炭和树脂炭增密处理后获得的炭/炭基体在1600℃~2200℃下高温纯化1h~5h,然后采用前驱体浸渍裂解工艺进行碳化硅增密。
7.根据权利要求1至6任一项所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:采用前驱体浸渍裂解工艺进行碳化硅增密时,含硅前驱体选用聚碳硅烷,具体的工艺条件如下:先采用含硅前驱体对热解炭以及树脂炭增密后获得的炭/炭基体进行浸渍处理,然后进行固化处理,再进行炭化处理,之后循环浸渍固化炭化操作处理直至增密至所需密度;
其中,浸渍压力为1.0MPa~3.0MPa,单次浸渍时间为1h~5h,固化温度为200℃~400℃,单次固化时间为1h~5h,炭化温度为950℃~1050℃,单次炭化时间为3h~8h。
8.根据权利要求1所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:氧化铝涂层的厚度为500μm~700μm。
9.根据权利要求1或8所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:采用等离子喷涂法制备氧化铝涂层,其中等离子喷涂的工艺参数如下:载气压力为0.2MPa~2.0MPa,辅气压力为0.1MPa~1.0MPa,电流为200A~400A,电压为30V~50V,喷涂距离为30mm~50mm。
10.根据权利要求9所述的一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚,其特征在于:等离子喷涂所采用的氧化铝粉体的纯度大于等于99.50%,粒径为10μm~100μm。
CN202111653464.9A 2021-12-30 2021-12-30 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚 Active CN114455969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111653464.9A CN114455969B (zh) 2021-12-30 2021-12-30 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111653464.9A CN114455969B (zh) 2021-12-30 2021-12-30 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚

Publications (2)

Publication Number Publication Date
CN114455969A true CN114455969A (zh) 2022-05-10
CN114455969B CN114455969B (zh) 2023-08-11

Family

ID=81407508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111653464.9A Active CN114455969B (zh) 2021-12-30 2021-12-30 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚

Country Status (1)

Country Link
CN (1) CN114455969B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988905A (zh) * 2022-07-19 2022-09-02 中南大学 一种Al2O3填充Cf/PyC-SiCNWs复合材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309779A (ja) * 1996-03-19 1997-12-02 Tokai Carbon Co Ltd 耐酸化性c/c複合材の製造方法
US20020086119A1 (en) * 2000-11-15 2002-07-04 Hariharan Allepey V. Protective layer for quartz crucibles used for silicon crystallization
WO2009024045A1 (fr) * 2007-08-21 2009-02-26 Hunan Kingbo Carbon-Carbon Composites Co. Ltd Creuset composite c/c et son procédé de fabrication
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
CN103553692A (zh) * 2013-09-27 2014-02-05 西安超码科技有限公司 一种炭/碳化硅复合材料坩埚的制备方法
CN103553711A (zh) * 2013-09-27 2014-02-05 西安超码科技有限公司 一种复合涂层炭/炭复合材料坩埚及其制备方法
RU2012153529A (ru) * 2012-12-11 2014-06-20 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Способ изготовления герметичных изделий из углерод-карбидокремниевых материалов
US20140349016A1 (en) * 2013-03-14 2014-11-27 Board Of Trustees, Southern Illinois University Glass ceramics based antioxidants for the oxidation protection of carbon carbon composites
US20170036964A1 (en) * 2014-04-11 2017-02-09 Herakles Process for manufacturing a multiperforated composite part
WO2019049784A1 (ja) * 2017-09-08 2019-03-14 国立研究開発法人物質・材料研究機構 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309779A (ja) * 1996-03-19 1997-12-02 Tokai Carbon Co Ltd 耐酸化性c/c複合材の製造方法
US20020086119A1 (en) * 2000-11-15 2002-07-04 Hariharan Allepey V. Protective layer for quartz crucibles used for silicon crystallization
WO2009024045A1 (fr) * 2007-08-21 2009-02-26 Hunan Kingbo Carbon-Carbon Composites Co. Ltd Creuset composite c/c et son procédé de fabrication
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
RU2012153529A (ru) * 2012-12-11 2014-06-20 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Способ изготовления герметичных изделий из углерод-карбидокремниевых материалов
US20140349016A1 (en) * 2013-03-14 2014-11-27 Board Of Trustees, Southern Illinois University Glass ceramics based antioxidants for the oxidation protection of carbon carbon composites
CN103553692A (zh) * 2013-09-27 2014-02-05 西安超码科技有限公司 一种炭/碳化硅复合材料坩埚的制备方法
CN103553711A (zh) * 2013-09-27 2014-02-05 西安超码科技有限公司 一种复合涂层炭/炭复合材料坩埚及其制备方法
US20170036964A1 (en) * 2014-04-11 2017-02-09 Herakles Process for manufacturing a multiperforated composite part
WO2019049784A1 (ja) * 2017-09-08 2019-03-14 国立研究開発法人物質・材料研究機構 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988905A (zh) * 2022-07-19 2022-09-02 中南大学 一种Al2O3填充Cf/PyC-SiCNWs复合材料及其制备方法
CN114988905B (zh) * 2022-07-19 2022-12-02 中南大学 一种Al2O3填充Cf/PyC-SiCNWs复合材料及其制备方法

Also Published As

Publication number Publication date
CN114455969B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN114455982B (zh) 一种含有氧化铝涂层和碳化硅涂层的炭/炭复合材料坩埚
US5616175A (en) 3-D carbon-carbon composites for crystal pulling furnace hardware
Cao et al. Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment
CN113045325B (zh) 一种高强度碳/碳-碳化硅复合材料的制备方法
CN110372408A (zh) 一种陶瓷纤维增韧cvd碳化硅复合材料及其制备方法和应用
CN114455969B (zh) 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
KR20020066547A (ko) 탄소직물로 이루어진 C/SiC 복합재료의 제조방법
JP5434922B2 (ja) SiC繊維結合型セラミックスの製造方法
CN114455963B (zh) 一种含有α-Al2O3涂层的炭/炭-碳化硅复合材料坩埚
CN109402786B (zh) 一种近化学计量比SiC纤维的制备方法
CN114368975B (zh) 一种含有α-Al2O3涂层的低密度C/C-SiC复合材料坩埚
CN114455970B (zh) 一种含有氧化铝涂层的低密度C/C-SiC复合材料坩埚
CN114455971B (zh) 一种含有α-Al2O3涂层的高密度C/C-SiC复合材料坩埚
CN115894085A (zh) 一种复合陶瓷涂层材料及其制备方法和应用
CN114455964B (zh) 一种含有氧化铝涂层的C/SiC复合材料坩埚
CN115368155A (zh) 一种直拉硅单晶用复合材料坩埚的制备方法及应用
CN114455981B (zh) 一种含有α-Al2O3涂层的中密度C/C-SiC复合材料坩埚
CN109825901B (zh) 铝、锆共掺杂的碳化硅/氮化硼纤维及其制备方法
JP2006131451A (ja) 単結晶引き上げ用ルツボとその製造方法
CN114455965B (zh) 一种含有α-Al2O3涂层的C/SiC复合材料坩埚
JPH10158090A (ja) 半導体単結晶引上げ用c/c製ルツボの製法
CN115286393B (zh) 一种低成本长寿命的碳陶热场产品及其制备方法
KR101684600B1 (ko) 탄화규소 섬유의 제조방법 및 이에 의한 탄화규소 섬유
JP2000103686A (ja) 炭素繊維強化炭素複合材の製造方法
CN113200765B (zh) 一种含Si3N4和BN复合涂层的碳陶复合材料坩埚及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant